From the Sector

Reset
2 results
Dr Ioana Slabu and Benedict Bauer with the nanomodified stent. Photo Peter Winandy
30.03.2023

Nanomodified polymerstent: Novel technology for tumour therapy

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

Ioana Slabu of the AME explains: "Not only can we drastically reduce treatment costs, but above all we can provide relief for millions of patients worldwide.
 
A manufacturing process and proof of concept for magnetic hyperthermia are already in place. This novel technology has a very high development potential because it can also be used for tumours in other parts of the body such as the prostate, stomach, intestine or urinary bladder or for cardiovascular diseases.  

The AiF/IGF project started under the project title "ProNano" funded by BMWK. Now the approval for the follow-up project "ProNano2" has also been received. The approved project is called: "Validation of the innovation potential of heatable stents for heat-induced treatment of cavity tumours" and is funded by BMBF in course of the VIP+ program. With the Clinic for General, Visceral and Transplantation Surgery of the University Hospital Aachen and the Institute for Technology and Innovation Management at RWTH Aachen University, the consortium is enriched by clinical and economic expertise. Every year, RWTH Aachen University honours particularly innovative university projects with the Innovation Award. Professor Malte Brettel, Prorector for Business and Industry, presented the certificates to four outstanding projects as part of RWTHtransparent.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Start of 3-years Interreg cross-border project AACOMA  is kicked-off (c) AMAC GmbH
AMAC-Standortkarte
13.05.2020

Start of 3-years Interreg cross-border project AACOMA is kicked-off

  • AACOMA - Accelerate advanced composite manufacturing
  • EMR Region Belgium, the Netherlands & Germany area hot spot for the future of lightweight materials and technologies

The Euregio Meuse-Rhine provides a huge potential with its many highly innovative, leading companies and especially SMEs which are active in the area of advanced material manufacturing in many industrial sectors, such as Automotive, Aerospace, Electronics, Building and Infrastructure, etc. The advanced material sector is growing, with a consolidated offer, ranging from raw material producers over technology development to production, research and development as well as industrial OEMs.

Interreg Euregio Meuse-Rhine invests EUR 96 million from the European Regional Development Fund (ERDF) in the period 2014-2020. Through the investments in cross-border projects, the European Union invests in the economic development, innovation, territorial development and social inclusion and education of this region.

Project

  • AACOMA - Accelerate advanced composite manufacturing
  • EMR Region Belgium, the Netherlands & Germany area hot spot for the future of lightweight materials and technologies

The Euregio Meuse-Rhine provides a huge potential with its many highly innovative, leading companies and especially SMEs which are active in the area of advanced material manufacturing in many industrial sectors, such as Automotive, Aerospace, Electronics, Building and Infrastructure, etc. The advanced material sector is growing, with a consolidated offer, ranging from raw material producers over technology development to production, research and development as well as industrial OEMs.

Interreg Euregio Meuse-Rhine invests EUR 96 million from the European Regional Development Fund (ERDF) in the period 2014-2020. Through the investments in cross-border projects, the European Union invests in the economic development, innovation, territorial development and social inclusion and education of this region.

Project

The Euregio Meuse-Rhine is a potential hot-spot for the further development of advanced material and process technologies. Technical Centers and Institutes around Aachen/Germany, Liège/Belgium and Eindhoven/The Netherlands were awarded with this new project AACOMA.

Innovative material design and advanced manufacturing provide large opportunities for SMEs. The AACOMA project kick-off took place in Aachen at the Campus of the RWTH University of technology in 1 Q 2020. The aim of the project, which is running for 3 years until 2023 with a budget of €3 Mio, is to connect SMEs with innovation hot-spots like institutes and technical centers.
Seven partners from all three regions will carry the project out: Centexbel is the project leader and gets support by University of Liège, Sirris and Flanders Make from Belgium, as well as Fontys University of Applied Science and AMIBM of Maastricht University in the Netherlands and AMAC in Germany.

Statements

Bernard Paquet, Project Coordinator from Centexbel/ Belgium stated:
“Centexbel, with a strong experience in textile and composites, will identify with its Interreg partners and an advisory board of international experts several demonstrators which will enable an accelerated advanced manufacturing of composite parts. This could include new materials and intermediates, high performance additives, bio-based products and new composites by additive manufacturing”.

Michael Effing, Managing Director of AMAC/ Germany said:
“The major goal of the project is to connect around 200 innovative SMEs with each other and establish the links to the world-class institutes in the EMR region. We will facilitate 6 roadshow events, addressing key topics like automated manufacturing, additive manufacturing or bio-based material systems combined with match making and training events. The first roadshow will be held on September 24, 2020 at the Aachen Campus of the RWTH University of Technology.”

Prof. Gunnar Seide from the AMIBM/The Netherlands continued:  
“Our AMIBM offers already an international master program on bio-based materials. The AACOMA project will be an important element for transborder research and will identify new players in the value chain coming from the EMR region. Innovative companies find markets for their new bio-based building blocks, chemicals and polymers. Their success stories and upcoming technological breakthroughs are needed for a sustainable future.”