From the Sector

Reset
4 results
The Eton Systems team at the recent Filtech exhibition in Cologne, Germany. Photo Adrian Wilson
The Eton Systems team at the recent Filtech exhibition in Cologne, Germany. Left to right: Magnus Sundgren, Fredrik Andersson, Sven Sörbö and Olof Strömberg.
06.01.2025

Automation: Filter products made by Swedish textile machinery

Members of TMAS – the Swedish textile machinery association – are providing crucial manufacturing and automation services to the filtration sector, which is an often invisible but very significant part of the global textile industry.

Technical woven and nonwoven fabrics are used in a wide variety of products in filtration systems for air, gas and liquid filtration, touching on almost every facet of life in the 21st Century.

They are crucial to aerospace and road transportation and a vast range of industrial processes and also to be found in every home, hotel and institutional building in air conditioning systems and household appliances such as washing machines and vacuum cleaners.

At its Skjåk manufacturing plant in Norway, for example, Interfil manufactures an annual 230,000 air filter units from a staggering range of some 15,000 variants, with 9,000 products moving continuously through the differing stages of the plant at any time each day, and a daily finished output of 1,100 products.

Members of TMAS – the Swedish textile machinery association – are providing crucial manufacturing and automation services to the filtration sector, which is an often invisible but very significant part of the global textile industry.

Technical woven and nonwoven fabrics are used in a wide variety of products in filtration systems for air, gas and liquid filtration, touching on almost every facet of life in the 21st Century.

They are crucial to aerospace and road transportation and a vast range of industrial processes and also to be found in every home, hotel and institutional building in air conditioning systems and household appliances such as washing machines and vacuum cleaners.

At its Skjåk manufacturing plant in Norway, for example, Interfil manufactures an annual 230,000 air filter units from a staggering range of some 15,000 variants, with 9,000 products moving continuously through the differing stages of the plant at any time each day, and a daily finished output of 1,100 products.

It’s a similar situation at the US plant of Filtration System Products (FSP) in Farmington, St Louis, which now has a daily production of over 2,200 filter hoses and media.

Both Interfil and FSP rely on the automated material handling expertise of TMAS member Eton Systems.

Eton’s individually addressable product carriers are designed to eliminate manual transportation and minimise handling throughout a manufacturing plant, ensuring each individual product arrives at its correct position precisely when required for each separate process step.

Interfil has relied on Eton automation since 2014, when a 50-metre overhead conveyor system was designed and installed to link the company’s two production halls at the Skjåk plant, eliminating the need for manual handling and truck transport between the facilities. This has resolved the challenge of having semi-finished products made far from the final assembly area, not only improving efficiency, quality control and component traceability across all parts of production, but also increasing on-site safety due to the need for fewer trucks.

FSP has meanwhile calculated that since installing an Eton system in 2023, it has increased its production output by 60% using the same number of operators and the same working hours as with the previous manual system. Eton’s inbuilt quality system also ensures that only 100% perfect products are unloaded from the system, allowing for a much more efficient quality control process. In addition, Eton’s compact method of moving single units through the production process has saved floor space and created a safer and more ergonomic work environment.

More information:
TMAS filtration technologies
Source:

AWOL for TMAS

Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right. Source: ITMF
Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right.
01.12.2023

Faster and cheaper carbon fibre production with CarboScreen

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Both types of damage cannot be optimally detected by current means or only become apparent after production, to name just two examples. This leads to higher production costs. In an emergency, faulty production can even lead to plant fires. For this reason, and to ensure good production quality, the system is run at 15 m/min below its production capacity for safety reasons. However, 30 m/min or more would be possible. With the sensor-based online monitoring of CarboScreen, the production capacity can be doubled to 30 /min. This would lead to higher production, resulting in lower manufacturing costs and wider use of carbon fibres in mass markets such as automotive, aerospace and wind energy.

More information:
carbon fibers sensors Startup
Source:

ITA – Institut für Textiltechnik of RWTH Aachen University
 

(c) BRÜCKNER
The project team of BRÜCKNER and HEATHCOAT in BRÜCKNER’s Technology Centre in Leonberg
04.10.2022

BRÜCKNER: New finishing line for British company HEATHCOAT FABRICS

HEATHCOAT FABRICS partnered again with BRÜCKNER Textile Technologies and their sales partner ADVANCED DYEING SOLUTIONS to install a finishing line for industrial textiles. HEATHCOAT FABRICS specializes in the production of technical textiles in the fields of texturising, weaving and warp knitting as well as dyeing and finishing. The prroducts are manufactured for use in the automotive, healthcare, defence, and aerospace industries

Mrs. Regina Brückner, CEO and owner of the BRÜCKNER Group stated: "To meet the complex re-quirements of HEATHCOAT is not easy because of the great variety of technical textiles produced. Our line has to finish light as well as heavy articles, so the design, control and the whole line layout have to be flexible, functional and still easy to operate. Fortunately, the team at HEATHCOAT FABRICS is very innovative and open-minded, and together we worked hard to develop the right technology and han-dling. We are very happy that we could convince this customer, whom we appreciate very much, with the productivity of our line and of course with our technological know-how."

HEATHCOAT FABRICS partnered again with BRÜCKNER Textile Technologies and their sales partner ADVANCED DYEING SOLUTIONS to install a finishing line for industrial textiles. HEATHCOAT FABRICS specializes in the production of technical textiles in the fields of texturising, weaving and warp knitting as well as dyeing and finishing. The prroducts are manufactured for use in the automotive, healthcare, defence, and aerospace industries

Mrs. Regina Brückner, CEO and owner of the BRÜCKNER Group stated: "To meet the complex re-quirements of HEATHCOAT is not easy because of the great variety of technical textiles produced. Our line has to finish light as well as heavy articles, so the design, control and the whole line layout have to be flexible, functional and still easy to operate. Fortunately, the team at HEATHCOAT FABRICS is very innovative and open-minded, and together we worked hard to develop the right technology and han-dling. We are very happy that we could convince this customer, whom we appreciate very much, with the productivity of our line and of course with our technological know-how."

The direct gas heated BRÜCKNER POWER-FRAME stenter with its staggered heating source arrangement every half zone provides best available temperature consistency across the length and the width of the stenter. The unit is equipped with a low-lub, horizontally returning combined pin / clip chain and several fabric paths, especially designed for the different fabrics being processed. Together with HEATHCOAT FABRICS technologists, the BRÜCKNER design team developed a special delivery end of the stenter with different edge trimming and slitting possibilities. Depending on the kind of products, the fabrics can be batched on large diameter A-frames, wound on cardboard tubes or plaited into trolleys.

Source:

Brückner Trockentechnik GmbH & Co. KG

14.10.2021

Monforts: Automated finishing at Knopf’s Sohn

Knopf’s Sohn, a contract finisher of technical textiles, has installed a fully automated Montex stenter at its plant in Helmbrechts, Germany.
Knopf’s Sohn is processing technical textiles for the automotive, aerospace, home furnishings and workwear markets, based on wool, cellulose, polyamide and polyester fabrics, along with elastane blends, in weights of 80-800gsm.

The Montex machinery range is constantly being upgraded to meet evolving customer needs for greater automation, ease of operation and energy optimisation. The latest ten chamber line at Knopf’s Sohn, with a working width of up to 2.0 metres, was engineered to specific requirements in order to accelerate the company’s move to fully automatic control of its production, and high scaffolding was required for its installation.

The line benefits from two integrated ECO Booster modules to provide high energy savings. These compact, air-to-air heat exchangers, installed within the roof structure of the line, exploit energy from the exhaust gas to preheat up to 60% of the incoming fresh air entering the stenter.

Knopf’s Sohn, a contract finisher of technical textiles, has installed a fully automated Montex stenter at its plant in Helmbrechts, Germany.
Knopf’s Sohn is processing technical textiles for the automotive, aerospace, home furnishings and workwear markets, based on wool, cellulose, polyamide and polyester fabrics, along with elastane blends, in weights of 80-800gsm.

The Montex machinery range is constantly being upgraded to meet evolving customer needs for greater automation, ease of operation and energy optimisation. The latest ten chamber line at Knopf’s Sohn, with a working width of up to 2.0 metres, was engineered to specific requirements in order to accelerate the company’s move to fully automatic control of its production, and high scaffolding was required for its installation.

The line benefits from two integrated ECO Booster modules to provide high energy savings. These compact, air-to-air heat exchangers, installed within the roof structure of the line, exploit energy from the exhaust gas to preheat up to 60% of the incoming fresh air entering the stenter.

The use of a single ECO Booster unit has been calculated to save up to 35% in energy costs, based on fixation processes. Fully automatic operation, set at the Monforts Qualitex control unit, ensures there is no additional burden on the machine operator.

The line is powered by Exxotherm indirect heating, which practically eliminates the yellowing which can be experienced during the treatment of certain polyamide and elastane-based fabrics, and is also equipped with a Conticlean circulating air filter system for constant high drying capacity.

Software
The latest Qualitex visualisation software offers operators reliability and easy control with its full HD multi-touch monitor and slider function, dashboard function with individual adaptation to operating states and faster access to comprehensive recipe data management.

With the Monformatic control system, the exact maintenance of the dwell time in combined treatment processes (drying and heat-setting) can be monitored. When the heat-setting point is reached, the fan speed is automatically adjusted, keeping energy consumption fully under control.

Source:

A. Monforts Textilmaschinen GmbH & Co. KG / AWOL Media