From the Sector

Reset
4 results
(c) gr3n
26.07.2023

gr3n: First manufacturing plant for depolymerization of PET in Spain

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

The world’s first industrial-scale MADE PET recycling plant will have the capability to process post-industrial and post-consumer PET waste including hard-to-recycle waste, to produce approximately 40.000 tons of virgin PET chips from the recycled monomers saving nearly 2 million tons of CO2 during its operating life. The post-consumer and/or post-industrial polyesters will be both from bottles (colored, colorless, transparent, opaque) and textiles (100% polyester but also mixtures of other materials like PU, cotton, polyether, polyurea, etc. with up to 30% of presence in the raw textile).

The technical concept of the MADE plant is to break down PET into its main components (monomers) so they can potentially be re-polymerized endlessly to provide brand new virgin PET or any other polymer using one of the monomers. Polymers obtained can be used to produce new bottles/trays and/or new garments, essentially completely displacing feedstock material from fossil fuels, as the recycled product has the same functionality as that derived traditionally. This means that gr3n can potentially achieve bottle-to-textile, textile-to-textile, or even textile-to-bottle recycling, moving from a linear to a circular system.

gr3n’s process has the potential to change the way PET is recycled worldwide, enabling huge benefits for both the recycling industry and the entire polyester value chain. Many efforts have been made in the past to transfer enhanced recycling from research laboratories to the manufacturing industry, but the economics and skepticism of the first adopters have constantly blocked the progress of the proposed solutions. Thanks to the MADE technology developed by gr3n, this approach is now feasible and makes gr3n one of the few companies with the potential to provide a reliable enhanced recycling solution that closes the life cycle of PET, and also offers food grade polymer material, processes a large variety of waste and reduces the carbon footprint of these materials usually destined for incineration or landfill.

More information:
gr3n PET Intecsa
Source:

gr3n

Foto: ANDRITZ
Novafiber CEO and Head of Production together with ANDRITZ technicians and project manager in front of the newly installed 6-cylinder EXEL line
05.04.2023

Novafiber starts up textile recycling and airlay lines from ANDRITZ

International technology group ANDRITZ has delivered, installed, and commissioned a mechanical textile recycling line and an airlay line at Novafiber’s nonwovens production mill in Palín, Guatemala. Both lines have been successfully operating since December 2022.

The recycling line – the second tearing line ANDRITZ supplied to Novafiber – processes post-industrial textile waste from Central America. The recycled fibers feed the latest ANDRITZ Flexiloft airlay line, which produces nonwoven end-products for the bedding and furniture industries – a true example of a circular textile-to-nonwoven approach. The production process ensures complete material use as a state-of-the-art edge trim recycling system returns any waste directly to the tearing and/or airlay line.

This combination of ANDRITZ tearing and airlay lines allows Novafiber to process large amounts of post-industrial garments, controlling the supply chain from raw material to final product. In addition, it enables energy savings and a reduced carbon footprint due to the reduction of shipments.

International technology group ANDRITZ has delivered, installed, and commissioned a mechanical textile recycling line and an airlay line at Novafiber’s nonwovens production mill in Palín, Guatemala. Both lines have been successfully operating since December 2022.

The recycling line – the second tearing line ANDRITZ supplied to Novafiber – processes post-industrial textile waste from Central America. The recycled fibers feed the latest ANDRITZ Flexiloft airlay line, which produces nonwoven end-products for the bedding and furniture industries – a true example of a circular textile-to-nonwoven approach. The production process ensures complete material use as a state-of-the-art edge trim recycling system returns any waste directly to the tearing and/or airlay line.

This combination of ANDRITZ tearing and airlay lines allows Novafiber to process large amounts of post-industrial garments, controlling the supply chain from raw material to final product. In addition, it enables energy savings and a reduced carbon footprint due to the reduction of shipments.

Based in Palín, Novafiber is a leading company in Guatemala for producing nonwovens from post-industrial textile waste for both the local market and export.

Source:

ANDRITZ AG

(c) Recover™
30.12.2022

Tillys partners with Recover™

California born and bred, Tillys is one of fashion’s leading specialty casualwear retailers. And now, thanks to its collaboration with Recover™ , their premium denim brand RSQ, it is set to become a leader of sustainable fashion.

The three brands – Tillys, Recover™ and RSQ – have come together to create a sustainable capsule collection. The new collection includes classic-inspired denim, a tee, and an on-trend chore jacket, all of which contain a minimum of 20% of Recover’s low-impact recycled cotton fiber. To shop the exclusive Recover™ pieces in the RSQ collection, go to tillys.com or visit one of Tillys stores across 33 states.

To bring this collaboration to life, textile waste has been salvaged that would otherwise end up in a landfill to create high-quality recycled fiber that Tillys used to produce its premium-quality RSQ collection. Using recycled fiber significantly reduces the carbon and water footprint compared to apparel made with virgin fiber. This collaboration models how post-industrial textile waste can be integrated back into the system creating a more sustainable production model.

California born and bred, Tillys is one of fashion’s leading specialty casualwear retailers. And now, thanks to its collaboration with Recover™ , their premium denim brand RSQ, it is set to become a leader of sustainable fashion.

The three brands – Tillys, Recover™ and RSQ – have come together to create a sustainable capsule collection. The new collection includes classic-inspired denim, a tee, and an on-trend chore jacket, all of which contain a minimum of 20% of Recover’s low-impact recycled cotton fiber. To shop the exclusive Recover™ pieces in the RSQ collection, go to tillys.com or visit one of Tillys stores across 33 states.

To bring this collaboration to life, textile waste has been salvaged that would otherwise end up in a landfill to create high-quality recycled fiber that Tillys used to produce its premium-quality RSQ collection. Using recycled fiber significantly reduces the carbon and water footprint compared to apparel made with virgin fiber. This collaboration models how post-industrial textile waste can be integrated back into the system creating a more sustainable production model.

“We are delighted to celebrate this new partnership with Tillys, helping to reduce the environmental impacts created by the fashion industry and pave the way towards a more sustainable future.”
– Alfredo Ferre, CEO Recover™

Source:

Recover™

(c) Coperion GmbH
24.06.2022

Coperion: New Development for Plastic Fiber and Flake Recycling

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

Increased Throughput in Numbers
With a ZSK 58 Mc18 twin screw extruder, the throughput increase and thus the potential of the new ZS-B MEGAfeed becomes very clear. When recycling PA fibers with a bulk density of ~40-50 kg/m3, throughputs of 70 kg/h were previously achieved using conventional equipment. When the PA fibers were fed into the ZSK extruder using the ZS-B MEGAfeed, throughputs increased about fourteenfold to 1,000 kg/h. Similar results were achieved recycling carbon fibers with a bulk density of ~50-70 kg/m3; in this case, throughputs increased from 50 kg/h to 2,500 kg/h using the ZS-B MEGAfeed. When recycling PCR (Post-Consumer Recycled) flakes, throughputs increased from 50 kg/h to 700 kg/h, and from 80 kg/h to 1,300 kg/h with multilayer film flakes.

Key to Economical Recycling of A Wide Variety of Plastics
Plastics previously considered not recyclable are becoming a valuable raw material using the new Coperion ZS-B MEGAfeed. For example, PCR flakes or recyclate from carbon fiber-reinforced plastics can now be fed into the ZSK extruder at high feed rates and recycled economically.

In the case of mechanical upcycling, upstream processes necessary for compounding, such as compacting, melting and agglomeration, are completely eliminated using the ZS-B MEGAfeed technology. In this recycling process, flakes and fibers can be fed directly into the ZSK extruder, where they are melted, compounded, devolatilized, and filtered in a single step. In so doing, both investment costs and energy consumption drop. The production process becomes significantly more efficient. Moreover, the thermal product stress is reduced and recyclate quality increases.

Even when recycling PET, the feed rate is no longer a limiting factor. With the ZS-B MEGAfeed, PET flakes and fibers can be fed into the ZSK twin screw extruder in large quantities with no pre-drying or crystallizing, where they can be processed with the highest degree of profitability.

The ZS-B MEGAfeed can also feed large quantities of post-consumer waste, adding appreciable value to the chemical recycling process with the ZSKs. ZSK throughput rates are very high with the ZS-B MEGAfeed. Preheating of the recyclate via mechanical energy input of the twin screws thus becomes even more economical for further processing in the reactor.

Existing Coperion extruders can be retrofitted with ZS-B MEGAfeed technology to greatly expand their spectrum of applications and increase their throughput rates.

Source:

Coperion GmbH / Konsens Public Relations GmbH & Co. KG