From the Sector

Reset
30 results
26.03.2024

CARBIOS joins Paris Good Fashion

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS will be particularly involved in the association's project to set up a working group dedicated to the development of a "fiber-to-fiber" industry, one of Paris Good Fashion's top priorities over the next five years. While only 1% of textiles are currently recycled fiber-to-fiber (circular), this working group will identify levers for significantly increasing the share of recycled fibers in the industry.  Polyester currently follows a linear model from which we need to break out: virgin polyester is made from petroleum, and recycled polyester from PET bottles. After use, most of these products end their lives in landfill or incineration. A circular, "fiber-to-fiber" industry will give new life to textiles and reduce the environmental impact associated to their end-of-life management.

Source:

Carbios

The research group Water Engineering Innovation Photo: Aarhus University
The research group Water Engineering Innovation, led by Associate Professor Zongsu Wei, works to develop water purification technologies, especially in connection with PFAS. The group collaborates in this project with the research group Robotics from the Department of Mechanical and Production Engineering.
24.01.2024

Artificial intelligence to help remove PFAS

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

"In the project, we will design, construct and test a new, automated degradation technology for continuous PFAS degradation. We’re also going to set up an open database to identify significant and limiting factors for degradation reactions with PFAS molecules in the reactor," says Associate Professor Xuping Zhang from the Department of Mechanical and Production Engineering at Aarhus University, who is co-heading the project in collaboration with Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering.

Ever since the 1940s, PFAS (per- and polyfluoroalkyl substances) have been used in a myriad of products, ranging from raincoats and building materials to furniture, fire extinguishers, solar panels, saucepans, packaging and paints.

However, PFAS have proven to have a number of harmful effects on humans and the environment, and unfortunately the substances are very difficult to break down in nature. As a result, the substances continuously accumulate in humans, animals, and elsewhere in nature.

In Denmark, PFAS have been found in drinking water wells, in surface foam on the sea, in the soil at sites for fire-fighting drills, and in many places elsewhere, for example in organic eggs. It is not possible to remove PFAS from everything, but work is underway to remove PFAS from the groundwater in drinking water wells that have been contaminated with the substances.

Currently, the most common method to filter drinking water for PFAS is via an active carbon filter, an ion-exchange filter, or by using a specially designed membrane. All of these possibilities filter PFAS from the water, but they do not destroy the PFAS. The filters are therefore all temporary, as they have to be sent for incineration to destroy the accumulated PFAS, or they end in landfills.

The project is called 'Machine Learning to Enhance PFAS Degradation in Flow Reactor', and it aims to design and develop an optimal and permanent solution for drinking water wells and treatment plants in Denmark that constantly captures and breaks down PFAS, while also monitoring itself.

"We need to be creative and think outside the box. I see many advantages in linking artificial intelligence with several different water treatment technologies, but integrating intelligence-based optimisation is no easy task. It requires strong synergy between machine learning and chemical engineering, but the perspectives are huge," says Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering at Aarhus University.

More information:
PFAS Aarhuis University
Source:

Aarhus University
Department of Biological and Chemical Engineering
Department of Mechanical and Production Engineering

Sorted and cut textile waste ready for tearing © SBO EVENT
Sorted and cut textile waste ready for tearing
01.12.2023

First automated textile waste sorting and recycling line in France

Partnership between Nouvelles Fibres Textiles, Pellenc ST and ANDRITZ promotes circular economy for textiles.

France’s first industrial plant for automated sorting and recycling of textile waste was officially inaugurated at Nouvelles Fibres Textiles, Amplepuis, on November 30, 2023. The plant is the result of an ambitious partnership between textile recycling company Nouvelles Fibres Textiles, waste sorting specialist Pellenc ST and international technology group ANDRITZ, a specialist in textile recycling machinery and processes.

Capable of automatically sorting garments by composition and color, the new line meets the needs of both post-consumer and post-industrial waste markets. The line also removes hard parts such as buttons and zippers to prepare the material for further processing in an ANDRITZ tearing machine.

The automated textile sorting line at Nouvelles Fibres Textiles is dedicated to industrial-scale production, customer trials and projects, and the R&D activities of the partners. It will process textile waste to produce recycled fibers for the spinning, nonwovens, and composites industries.

Partnership between Nouvelles Fibres Textiles, Pellenc ST and ANDRITZ promotes circular economy for textiles.

France’s first industrial plant for automated sorting and recycling of textile waste was officially inaugurated at Nouvelles Fibres Textiles, Amplepuis, on November 30, 2023. The plant is the result of an ambitious partnership between textile recycling company Nouvelles Fibres Textiles, waste sorting specialist Pellenc ST and international technology group ANDRITZ, a specialist in textile recycling machinery and processes.

Capable of automatically sorting garments by composition and color, the new line meets the needs of both post-consumer and post-industrial waste markets. The line also removes hard parts such as buttons and zippers to prepare the material for further processing in an ANDRITZ tearing machine.

The automated textile sorting line at Nouvelles Fibres Textiles is dedicated to industrial-scale production, customer trials and projects, and the R&D activities of the partners. It will process textile waste to produce recycled fibers for the spinning, nonwovens, and composites industries.

Automated sorting was the last missing link needed to develop a complete ecosystem in France, where the fashion industry, social and solidarity economy actors, waste management companies, and textile producers from different sectors are working together towards a textile circular economy.

The EU's strategy for sustainable and circular textiles aims to ensure that by 2030 textile products are made to a great extent of recycled fibers and incineration and landfilling of textiles are minimized.

chemistry from renewable feedstock and waste (c) RUDOLF HUB1922
21.11.2023

RUDOLF HUB1922: Evolutionary chemistry from renewable feedstock and waste

RUDOLF HUB1922 makes a move in response to the escalating demand for genuinely sustainable technologies, particularly from forward-thinking segments within the textile and apparel industry. In a showcase at Denim by Premiere Vision Milan, RUDOLF HUB1922 presents a pioneering range of textile chemistry that embodies true evolution.

This chemistry marks a milestone in addressing the pressing need for sustainable solutions. By harnessing raw materials derived from organic waste, plastic waste, and renewable feedstock, RUDOLF's latest textile innovations stand poised to transform the industry, promising a substantial reduction in its environmental footprint.

Alberto De Conti, Head of RUDOLF HUB1922, emphasizes the radical nature of evolutionary textile chemistry, stating, "RUDOLF's approach tackles the challenge of waste generation head-on by transforming waste materials into valuable resources". The diversion of waste and renewable feedstock away from landfills and incinerators to fuel textile chemical production is a game-changer, that diminishes the industry's reliance on non-renewable resources and endorses a circular economy model.

RUDOLF HUB1922 makes a move in response to the escalating demand for genuinely sustainable technologies, particularly from forward-thinking segments within the textile and apparel industry. In a showcase at Denim by Premiere Vision Milan, RUDOLF HUB1922 presents a pioneering range of textile chemistry that embodies true evolution.

This chemistry marks a milestone in addressing the pressing need for sustainable solutions. By harnessing raw materials derived from organic waste, plastic waste, and renewable feedstock, RUDOLF's latest textile innovations stand poised to transform the industry, promising a substantial reduction in its environmental footprint.

Alberto De Conti, Head of RUDOLF HUB1922, emphasizes the radical nature of evolutionary textile chemistry, stating, "RUDOLF's approach tackles the challenge of waste generation head-on by transforming waste materials into valuable resources". The diversion of waste and renewable feedstock away from landfills and incinerators to fuel textile chemical production is a game-changer, that diminishes the industry's reliance on non-renewable resources and endorses a circular economy model.

The successful integration of chemicals derived from organic and plastic waste, as well as renewable feedstocks, necessitates effective communication and education. Herein lies the significance of fostering collaborative efforts within the industry. De Conti underscores this point, stating, "Collaboration among scientists, fashion designers, and manufacturers is paramount. It propels a collective shift towards sustainable practices, making eco-friendly fashion the standard and minimizing the industry's environmental impact".

Source:

RUDOLF HUB1922

Fußballstadion Bild von Pexels auf Pixabay
20.11.2023

University of Manchester academics criticising UK government

Sustainable fashion and sportswear must be high on the political agenda:
Three University of Manchester academics who specialise in fashion and textiles have criticised the Government for failing to take action to boost sustainability in the UK fashion and sportswear industries.

In an article published by the University’s policy engagement unit Policy@Manchester to coincide with the 20th annual Recycle Week, Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon highlight that, of the one million tonnes of textiles disposed of every year in this country, 300,000 tonnes end up in landfill or incineration with figures suggesting 10 per cent of global CO2 emissions may come from the fashion industry.

And they warn that the damage inflicted by discarded sportswear is often overlooked, “despite an over-reliance on polyester garments, which are harmful to the environment as the fabric releases microfibres and takes hundreds of years to fully biodegrade.”

Sustainable fashion and sportswear must be high on the political agenda:
Three University of Manchester academics who specialise in fashion and textiles have criticised the Government for failing to take action to boost sustainability in the UK fashion and sportswear industries.

In an article published by the University’s policy engagement unit Policy@Manchester to coincide with the 20th annual Recycle Week, Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon highlight that, of the one million tonnes of textiles disposed of every year in this country, 300,000 tonnes end up in landfill or incineration with figures suggesting 10 per cent of global CO2 emissions may come from the fashion industry.

And they warn that the damage inflicted by discarded sportswear is often overlooked, “despite an over-reliance on polyester garments, which are harmful to the environment as the fabric releases microfibres and takes hundreds of years to fully biodegrade.”

Pressdee, Benstead and Conlon stress the importance of establishing “sustainable behaviour throughout the supply chain” and praise the European Commission for proposing an “extended producer responsibility (EPR)” for textiles in the EU which “aims to create appropriate incentives to encourage producers to design products that have a reduced environmental impact at the end of their life.”

This contrasts with the UK where, they argue, “tackling sustainability in the fashion industry has lost its place on the political agenda.”

"We are calling on the Government to reintroduce textiles as part of the school curriculum to engage young people in sustainable materials and equip them with the basic skills required to repair clothes.”
Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon

The University of Manchester academics contend that there has been “disappointing lack of progress from the UK Government” following the House of Commons Environmental Audit Committee’s Fixing Fashion report in 2019.

They continue: “This report included a call for the use of EPR as well as other important recommendations such as a ban on incinerating or landfilling unsold stock that can be reused or recycled and a tax system that shifts the balance of incentives in favour of reuse, repair and recycling to support responsible companies. We urge the Government to think again and drive forward the Committee’s recommendations in order to put sustainable fashion back on the political agenda.”

Pressdee, Benstead and Conlon also criticise Ministers for abolishing the standalone GCSE in textiles which provided many young people with the ability to mend clothing such as football kits instead of throwing them away.

They write: “We are therefore calling on the Government to reintroduce textiles as part of the school curriculum to engage young people in sustainable materials and equip them with the basic skills required to repair clothes.”

The University of Manchester has launched a new project dedicated to tackling the impact of textile waste in the football industry through the provision of workshops tasked with transforming surplus football shirts into unique reusable tote bags, whilst educating local communities on the environmental impacts of textile waste and how to extend the life of garments. The initiative aims to provide a fun, responsible way to keep kits in circulation while shining a light on the problem.

More information:
United Kingdom politics
Source:

University of Manchester

Lenzing and Södra win ITMF Award for cooperation in textile recycling (c) Lenzing AG/Leopold
Lenzing x Södra Project team
06.11.2023

Lenzing and Södra: ITMF Award for cooperation in textile recycling

  • Lenzing and Södra – a long-standing partnership for systemic change
  • International Textile Manufacturers Federation (ITMF) honored the two companies in the "International Cooperation" category
  • EU co-funded recycling project for textiles on an industrial scale

The Lenzing Group, the world’s leading supplier of specialty fibers for the textile and nonwovens industries, and the Swedish pulp producer Södra have received the ITMF Award 2023 in the category “International Cooperation” for their joint achievements in textile recycling and circular economy. The award was presented at the ITMF Annual Conference in Keqiao, China, on November 06, 2023.

  • Lenzing and Södra – a long-standing partnership for systemic change
  • International Textile Manufacturers Federation (ITMF) honored the two companies in the "International Cooperation" category
  • EU co-funded recycling project for textiles on an industrial scale

The Lenzing Group, the world’s leading supplier of specialty fibers for the textile and nonwovens industries, and the Swedish pulp producer Södra have received the ITMF Award 2023 in the category “International Cooperation” for their joint achievements in textile recycling and circular economy. The award was presented at the ITMF Annual Conference in Keqiao, China, on November 06, 2023.

The ITMF Award 2023 is given by the International Textile Manufacturers Federation (ITMF) to recognize outstanding achievements and merits in the textile sector in two categories: ”Sustainability & Innovation“ and ”International Cooperation“. Since 2021, the two pioneers have been joining forces in textile recycling, making a decisive contribution to promoting the circular economy in the fashion industry. As part of the cooperation, the companies intend to share their knowledge with each other and jointly develop processes to enable the wider use of cellulose-based used textiles on a commercial scale.

The OnceMore® pulp from Södra, which was jointly developed further by Södra and Lenzing, is subsequently used, among other things, as a raw material for the production of Lenzing fibers with REFIBRA™ technology. The OnceMore® process makes it possible to process and recycle a blend of cotton and polyester.

ITMF paid particular tribute to the joint LIFE TREATS project (Textile Recycling in Europe AT Scale)1,which was supported by an EU grant of EUR 10m under the LIFE 20222 program and aims to build a large-scale plant at Södra's Mörrum site in Sweden.

For more information on the ITMF Awards 2023, visit the ITMF website.

1 Project 101113614 — LIFE22-ENV-SE-TREATS
2 https://cinea.ec.europa.eu/programmes/life_en

Source:

Lenzing AG

06.10.2023

Accelerating Circularity launches Alliance of Chemical Textile Recycling (ACTR) with key members

The mission of Accelerating Circularity is to create new supply chains and business models to turn textile waste into mainstream raw materials. Accelerating Circularity has created a working group, the Alliance of Textile Chemical Recyclers (ACTR), to meet and address the textile industry with a common voice to facilitate accurate information on textile chemical recycling.

“We formed this collective to move chemical recycling technology forward, share common definitions, and address policies in a collaborative way to maximize the elimination of textile waste to landfills and incineration” explained Karla Magruder, Founder and President of Accelerating Circularity. “Chemical recycling technology has many benefits, including quality more similar to virgin fiber and the ability to recycle multiple times.”

ACTR plans to provide the industry with information on how textile chemical recycling can:

The mission of Accelerating Circularity is to create new supply chains and business models to turn textile waste into mainstream raw materials. Accelerating Circularity has created a working group, the Alliance of Textile Chemical Recyclers (ACTR), to meet and address the textile industry with a common voice to facilitate accurate information on textile chemical recycling.

“We formed this collective to move chemical recycling technology forward, share common definitions, and address policies in a collaborative way to maximize the elimination of textile waste to landfills and incineration” explained Karla Magruder, Founder and President of Accelerating Circularity. “Chemical recycling technology has many benefits, including quality more similar to virgin fiber and the ability to recycle multiple times.”

ACTR plans to provide the industry with information on how textile chemical recycling can:

  • offer solutions for diverting textile waste to landfill
  • enable textile to textile recycling versus incineration/landfill
  • provide sustainably sourced/circular materials
  • support brand/retailers/producers in achieving their CO2 reduction targets
  • provide long term price stability and consistent supply of raw materials versus virgin

Members of the Alliance include founding members Eastman, Lenzing, and The LYCRA Company, as well as key innovators Circ®, Sappi, Renewcell, Infinited fiber, Worn Again Technologies, Gr3n, CuRe Technology, and OnceMore® from Sodra.

As a first step, the ACTR (Alliance of Chemical Textile Recycling) is introducing a dictionary of common terms developed to educate the industry on the chemical recycling of textiles.

26.07.2023

Fashion for Good partners join forces with fastfeetgrinded for circular footwear

Fashion for Good launches new pilot with brand partners adidas, Inditex, Target and Zalando, and footwear recycling innovator FastFeetGrinded to test and validate the innovative footwear recycling process to support the uptake of recycled content in footwear, driving the change towards a more circular footwear industry.

Globally, 24 billion shoes are added to the market each year*, and a staggering 90% of shoes are either landfilled or incinerated*. To tackle this challenge, Fashion for Good has launched a new pilot with partners adidas, Inditex, Target and Zalando, in collaboration with innovator FastFeetGrinded, aiming to test and validate the footwear recycling process and support the uptake of recycled materials in footwear. FastFeetGrinded possesses the unique capability to deconstruct any type of pre- and post-consumer shoe, breaking it down into its macro-components. These macro-components are then subsequently grinded down into smaller high purity granulates which FastFeetGrinded may use to create material streams for repurposed use.

Fashion for Good launches new pilot with brand partners adidas, Inditex, Target and Zalando, and footwear recycling innovator FastFeetGrinded to test and validate the innovative footwear recycling process to support the uptake of recycled content in footwear, driving the change towards a more circular footwear industry.

Globally, 24 billion shoes are added to the market each year*, and a staggering 90% of shoes are either landfilled or incinerated*. To tackle this challenge, Fashion for Good has launched a new pilot with partners adidas, Inditex, Target and Zalando, in collaboration with innovator FastFeetGrinded, aiming to test and validate the footwear recycling process and support the uptake of recycled materials in footwear. FastFeetGrinded possesses the unique capability to deconstruct any type of pre- and post-consumer shoe, breaking it down into its macro-components. These macro-components are then subsequently grinded down into smaller high purity granulates which FastFeetGrinded may use to create material streams for repurposed use.

Through this collaborative pilot, the partners will divert pre- and post-consumer footwear to FastFeetGrinded, who will transform them into various new material granulates. The next step involves FastFeetGrinded’s network of supply chain partners, who will produce output products, such as outsoles, midsoles, and flip flops. The brands will closely evaluate the products’ quality and purity, aiming to showcase the potential of FastFeetGrinded's footwear recycling technology and pave the way for scalable solutions.

*World Footwear Yearbook (2020). Footwear production with a new record of 24.3 billion pairs.
*Vivobarefoot. 22 billion pairs of shoes are dumped into landfill each year. It’s time for change.
*WRAP (2019) Valuing our Clothes.
*Material Innovation Initiative (2021). 2021 State of the Industry Report: Next-Gen Materials.

Source:

Fashion for Good

(c) gr3n
26.07.2023

gr3n: First manufacturing plant for depolymerization of PET in Spain

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

The world’s first industrial-scale MADE PET recycling plant will have the capability to process post-industrial and post-consumer PET waste including hard-to-recycle waste, to produce approximately 40.000 tons of virgin PET chips from the recycled monomers saving nearly 2 million tons of CO2 during its operating life. The post-consumer and/or post-industrial polyesters will be both from bottles (colored, colorless, transparent, opaque) and textiles (100% polyester but also mixtures of other materials like PU, cotton, polyether, polyurea, etc. with up to 30% of presence in the raw textile).

The technical concept of the MADE plant is to break down PET into its main components (monomers) so they can potentially be re-polymerized endlessly to provide brand new virgin PET or any other polymer using one of the monomers. Polymers obtained can be used to produce new bottles/trays and/or new garments, essentially completely displacing feedstock material from fossil fuels, as the recycled product has the same functionality as that derived traditionally. This means that gr3n can potentially achieve bottle-to-textile, textile-to-textile, or even textile-to-bottle recycling, moving from a linear to a circular system.

gr3n’s process has the potential to change the way PET is recycled worldwide, enabling huge benefits for both the recycling industry and the entire polyester value chain. Many efforts have been made in the past to transfer enhanced recycling from research laboratories to the manufacturing industry, but the economics and skepticism of the first adopters have constantly blocked the progress of the proposed solutions. Thanks to the MADE technology developed by gr3n, this approach is now feasible and makes gr3n one of the few companies with the potential to provide a reliable enhanced recycling solution that closes the life cycle of PET, and also offers food grade polymer material, processes a large variety of waste and reduces the carbon footprint of these materials usually destined for incineration or landfill.

More information:
gr3n PET Intecsa
Source:

gr3n

09.08.2022

Carbios joined WhiteCycle to process and recycle plastic textile waste

  • An innovative European project to process and recycle plastic textile waste
  • A partnership to reach the objectives set by the European Union in reducing CO2 emissions by 2030
  • A unique consortium rallying 16 public and private European organizations working together for more circular economy

Carbios joined WhiteCycle, a project coordinated by Michelin, which was launched in July 2022. Its main goal is to develop a circular solution to convert complex[1] waste containing textile made of plastic into products with high added value. Co-funded by Horizon Europe, the European Union’s research and innovation program, this unprecedented public/private European partnership includes 16 organizations and will run for four years.
 

  • An innovative European project to process and recycle plastic textile waste
  • A partnership to reach the objectives set by the European Union in reducing CO2 emissions by 2030
  • A unique consortium rallying 16 public and private European organizations working together for more circular economy

Carbios joined WhiteCycle, a project coordinated by Michelin, which was launched in July 2022. Its main goal is to develop a circular solution to convert complex[1] waste containing textile made of plastic into products with high added value. Co-funded by Horizon Europe, the European Union’s research and innovation program, this unprecedented public/private European partnership includes 16 organizations and will run for four years.
 
WhiteCycle envisions that by 2030 the uptake and deployment of its circular solution will lead to the annual recycling of more than 2 million tons of the third most widely used plastic in the world, PET[2]. This project should prevent landfilling or incineration of more than 1.8 million tons of that plastic each year. Also, it should enable reduction of CO2 emissions by around 2 million tons.
 
Complex waste containing textile (PET) from end-of-life tyres, hoses and multilayer clothes are currently difficult to recycle, but could soon become recyclable thanks to the project outcomes. Raw material from PET plastic waste could go back into creation of high-performance products, through a circular and viable value chain.
 
Public and private European organizations are combining their scientific and industrial expertises:

  • industrial partners (Michelin, Mandals, KORDSA);
  • cross-sector partnership (Inditex)
  • waste management companies (Synergies TLC, ESTATO);
  • intelligent monitoring systems for sorting (IRIS);
  • biological recycling SME (Carbios);
  • product life cycle analysis company (IPOINT);
  • university, expert in FAIR data management (HVL);
  • universities, research and technology organizations (PPRIME – Université de Poitiers/CNRS, DITF, IFTH, ERASME);
  • industry cluster (Axelera);
  • project management consulting company (Dynergie).

 
The consortium will develop new processes required throughout the industrial value chain:

  • Innovative sorting technologies, to enable significant increase of the PET plastic content of complex waste streams in order to better process them;
  • A pre-treatment for recuperated PET plastic content, followed by a breakthrough recycling enzyme-based process to decompose it into pure monomers in a sustainable way;
  • Repolymerization of the recycled monomers into like new plastic;
  • Fabrication and quality verification of the new products made of recycled plastic materials

 
WhiteCycle has a global budget of nearly 9.6 million euros and receives European funding in the amount of nearly 7.1 million euros. The consortium’s partners are based in five countries (France, Spain, Germany, Norway and Turkey). Coordinated by Michelin, it has an effective governance system involving a steering committee, an advisory board and a technical support committee.

[1] Complex waste: multi materials waste (Rubber goods composites and multi-layer textile)
[2] PET: Polyethylene terephthalate

Source:

Carbios

(c) plasticpreneur
Shredder, injection moulding unit and extruder
22.06.2022

EREMA Group acquires stake in start-up company plasticpreneur®

As of 30 May 2022, EREMA Group GmbH acquired 19.8 percent of plasticpreneur® gmbh. plasticpreneur® is an Austrian start-up company founded two years ago that manufactures at its production site in Klagenfurt recycling solutions for plastic waste that are mobile and can be operated without prior knowledge. The machine portfolio covers the recycling process and the production of new end-products. Due to it´s wide range of applications, it is in demand both in the Global South and in industrialised countries.

In the two years since the company was founded, plasticpreneur® has already sold 330 machines to customers in over 70 countries on all continents. In addition, they have made over 750 application-specific moulds, many of them custom-built to comply with individual customer specifications.

As of 30 May 2022, EREMA Group GmbH acquired 19.8 percent of plasticpreneur® gmbh. plasticpreneur® is an Austrian start-up company founded two years ago that manufactures at its production site in Klagenfurt recycling solutions for plastic waste that are mobile and can be operated without prior knowledge. The machine portfolio covers the recycling process and the production of new end-products. Due to it´s wide range of applications, it is in demand both in the Global South and in industrialised countries.

In the two years since the company was founded, plasticpreneur® has already sold 330 machines to customers in over 70 countries on all continents. In addition, they have made over 750 application-specific moulds, many of them custom-built to comply with individual customer specifications.

While plastics recycling has gained enormous momentum in the industrialised countries, more remote and poorer regions of the world have hardly benefited from high-tech solutions for industrial recycling processes so far. They are held back by a lack of infrastructure and know-how. That is why waste is often incinerated or disposed of in landfills, rivers and the surrounding environment. "Our mission - Another life for plastic, because we care - is also aimed at supporting these regions with solutions for plastic recycling, and with plasticpreneur® we have found the ideal partner for this," says Manfred Hackl, CEO EREMA Group.

The start-up company's machines can process HDPE, PP, PS, LDPE, PLA, AB and TPU separately. Their product range includes a shredder, injection moulding unit, extruder unit for the production of end products, air filters as well as custom-built moulds. "For our machines to be used in regions with little infrastructure, they must be easy to operate without prior knowledge. The fact that we also develop end-product solutions needed locally makes our range of services particularly attractive here," explains Sören Lex, CEO and co-founder of plasticpreneur®. As soon as recycling also becomes a source of income for the operators, they become entrepreneurs. That explains the name of the start-up, a word created from "plastic" and "entrepreneur". plasticpreneur® customers in these countries include e.g. social enterprises and operators of refugee camps, where everyday consumer goods - from clothes pegs and school supplies to toys and fence posts - are produced and sold using plastic waste. This means that the added value stays local.

The demand for plasticpreneur® machines is also increasing in industrialised countries. On the one hand by educational institutions and organisations that use them to raise awareness of the need for a circular economy in workshops and to give pupils as well as adults a better understanding of plastic recycling. On the other hand by customers who are developing new end-products for plastic waste together with plasticpreneur®. Because the machines are so easy to operate they enable a low-theshold use of recycled plastics in product development processes, starting from generating prototypes to launchin small series production. Small companies, product designers and developers therefore are another steadily growing customer segment.

Source:

EREMA Group GmbH

(c) Indorama Ventures PCL
21.06.2022

Indorama Ventures works with Auping and TWE Group to deliver a fully circular mattress

The sustainable collaboration and innovation between Indorama Ventures (IVL), Auping and TWE Group presented a certified cradle to cradle process for mattress components across nonwoven applications, at Techtextil, Frankfurt, 21st to 24th June 2022.

Using circular research and design, the industry partnership between IVL Mullagh (Ireland), Auping and TWE Group has resulted in a perpetual, sustainable economic business model, for manufacturers globally. The inclusion of safe raw materials within mattress manufacturing allows the materials to be easily disassembled at the product’s end of use in order to be further reused as same components or recycled into new raw material at the same quality level, to enable versatile textile applications.

The sustainable collaboration and innovation between Indorama Ventures (IVL), Auping and TWE Group presented a certified cradle to cradle process for mattress components across nonwoven applications, at Techtextil, Frankfurt, 21st to 24th June 2022.

Using circular research and design, the industry partnership between IVL Mullagh (Ireland), Auping and TWE Group has resulted in a perpetual, sustainable economic business model, for manufacturers globally. The inclusion of safe raw materials within mattress manufacturing allows the materials to be easily disassembled at the product’s end of use in order to be further reused as same components or recycled into new raw material at the same quality level, to enable versatile textile applications.

Designed for disassembly to optimize the use of existing resources, reduce carbon footprint and support customer objectives all along their customers’ supply chain. This circular industry collaboration begins with design, where the mattress is constructed using only two different base materials, 100% PET polyester textiles and steel wire pocket springs connected with Niaga®️, a non toxic reversible adhesive, making the mattress easy to disassemble and recover.

IVL, Auping and TWE’s shared vision for a better world is demonstrated through their connected and innovative circularity that helps to close the loop. Auping collects, sorts and separates the collected fabrics, which then go to IVL Mullagh for processing, melting and extrusion to form polyester staple fiber. These staple fibers are then converted by TWE Group into nonwovens for use in Auping’s Evolve mattress, a fully circular mattress. Following the end of mattress use, the material recovery process simply starts again.

Auping estimates that annually more than 40 million mattresses are disposed of in Europe alone, the majority of which are incinerated. Their take back system in the Netherlands ensures that when their new mattress is delivered, the old mattress is retrieved and recycled, irrespective of the brand, ensuring existing materials are continually optimized, diverted from landfill and kept in use to achieve a circular economy.

Source:

Indorama Ventures PCL

Graphic: RadiciGroup
20.06.2022

RadiciGroup at Techtextil with innovative textile solutions

  • Target markets: automotive, furnishings, sports and technical apparel
  • New product entry: radipeople® line of personal protective equipment

RadiciGroup is at Techtextil 2022, the leading European trade fair for technical textiles, taking place in Frankfurt am Main, Germany, from 21 to 24 June. On display in the RadiciGroup exhibition area are the Group’s latest products for the automotive, furnishings and apparel markets: from nylon and polyester yarn, including biosource and recycled lines, to nonwovens and the new radipeople® line of personal protective equipment (PPE).

Indeed, at Techtextil, RadiciGroup is showcasing RENYCLE®, a yarn obtained from recycled nylon; REPETABLE®, a polyester yarn from post-consumer recycled plastic bottles; RESPUNSIBLE®, a nonwoven fabric from recycled polypropylene; and BIOFEEL®, a brand identifying a yarn line obtained from renewable sources of both nylon and polyester.

  • Target markets: automotive, furnishings, sports and technical apparel
  • New product entry: radipeople® line of personal protective equipment

RadiciGroup is at Techtextil 2022, the leading European trade fair for technical textiles, taking place in Frankfurt am Main, Germany, from 21 to 24 June. On display in the RadiciGroup exhibition area are the Group’s latest products for the automotive, furnishings and apparel markets: from nylon and polyester yarn, including biosource and recycled lines, to nonwovens and the new radipeople® line of personal protective equipment (PPE).

Indeed, at Techtextil, RadiciGroup is showcasing RENYCLE®, a yarn obtained from recycled nylon; REPETABLE®, a polyester yarn from post-consumer recycled plastic bottles; RESPUNSIBLE®, a nonwoven fabric from recycled polypropylene; and BIOFEEL®, a brand identifying a yarn line obtained from renewable sources of both nylon and polyester.

Moreover, RadiciGroup is participating in a forum organized by the Technical Textiles Section of Sistema Moda Italia in collaboration with the Italian Space Agency (ICE) (Hall 12.1 – Stand C58), with the goal of introducing product innovations not only coming from a single manufacturer, but also from an innovative synergistic approach all along the supply chain, from raw materials to finished products. An example of this synergistic collaboration is the “Mars Spacesuit”, recently tested in the USA by analogue astronauts as part of a space medicine project designed to measure the vital signs of future astronauts and develop technologies to support the simulation of life in space and planetary environments. RadiciGroup teamed up with major Italian textile companies and supplied the materials to make the suits for the six analogue astronauts participating in the mission and coordinated the development of the technologies needed to create the technicalwear for use in extreme environmental conditions.

 

Source:

RadiciGroup

26.05.2022

New french recycling technology to recycle 50 million PET food trays per year

Indorama Ventures, VALORPLAST, Klöckner Pentaplast (kp) and CITEO collaboration delivers a commercial recycling solution for monolayer PET trays

Thai-based Indorama Ventures Public Company Limited (IVL) with its facility Wellman France Recycling in Verdun, has been working on the PET trays recycling for 6 years and through an ongoing project with VALORPLAST and supported by CITEO.

The project has the objective to develop and validate recycling for monolayer and multilayer PET trays. VALORPLAST has collected significant quantities of post-consumer PET trays and several industrial runs have been conducted by Wellman. The produced flakes are being tested by several actors to develop high quality applications. Those tests have led by IVL to develop a commercially feasible recycling solution for monolayer PET trays with the collaboration of Klöckner Pentaplast.
The new technology is processing monolayer PET trays used for food packaging (meat, produce and cheese) into a high-quality product, suitable for new tray production.

This new recycling innovation will see over 50 million post-consumer PET trays diverted away from landfill or incineration.

Indorama Ventures, VALORPLAST, Klöckner Pentaplast (kp) and CITEO collaboration delivers a commercial recycling solution for monolayer PET trays

Thai-based Indorama Ventures Public Company Limited (IVL) with its facility Wellman France Recycling in Verdun, has been working on the PET trays recycling for 6 years and through an ongoing project with VALORPLAST and supported by CITEO.

The project has the objective to develop and validate recycling for monolayer and multilayer PET trays. VALORPLAST has collected significant quantities of post-consumer PET trays and several industrial runs have been conducted by Wellman. The produced flakes are being tested by several actors to develop high quality applications. Those tests have led by IVL to develop a commercially feasible recycling solution for monolayer PET trays with the collaboration of Klöckner Pentaplast.
The new technology is processing monolayer PET trays used for food packaging (meat, produce and cheese) into a high-quality product, suitable for new tray production.

This new recycling innovation will see over 50 million post-consumer PET trays diverted away from landfill or incineration.

Testing has now moved into commercial production. 500 tonnes of PET trays are now being processed monthly and transformed into a high-quality tray flake, which can be used to produce new trays. The purity of the flakes is comparable with high-quality bottle flake. A further scale up is foreseen, and the company plans to process 10KT of tray flake in 2022.

More information:
PET recycling fibers
Source:

 Indorama Ventures Public Company Limited 

05.04.2022

ADD-ITC 2022: Call for Abstracts

The Aachen-Dresden-Denkendorf International Textile Conference 2022 as face-to-face event takes place on-site in Aachen on December 1-2, 2022.

There is the opportunity to contribute to the conference program and submit an abstract for a talk or poster presentation. The Call for Abstracts for oral presentations ends on May 6, 2022. The Call for Abstracts for poster contributions is open until July 31, 2022.

The ADD-ITC is a conference for experts from the fields of
·    Textile chemistry, finishing & functionalization
·    Synthetic Fibers & Materials
·    Machinery, Processes & Composites

The conference program includes plenary lectures and themed sessions in the areas of
·    Sustainability in the textile industry
·    Future of textile production
·    Textiles for medicine and health
·    Smart textiles & fashion
·    Historic textiles
·    Technology transfer (IGF-ZIM projects)
·    Textile developments by start-ups
 

The Aachen-Dresden-Denkendorf International Textile Conference 2022 as face-to-face event takes place on-site in Aachen on December 1-2, 2022.

There is the opportunity to contribute to the conference program and submit an abstract for a talk or poster presentation. The Call for Abstracts for oral presentations ends on May 6, 2022. The Call for Abstracts for poster contributions is open until July 31, 2022.

The ADD-ITC is a conference for experts from the fields of
·    Textile chemistry, finishing & functionalization
·    Synthetic Fibers & Materials
·    Machinery, Processes & Composites

The conference program includes plenary lectures and themed sessions in the areas of
·    Sustainability in the textile industry
·    Future of textile production
·    Textiles for medicine and health
·    Smart textiles & fashion
·    Historic textiles
·    Technology transfer (IGF-ZIM projects)
·    Textile developments by start-ups
 

Further information about the conference program, plenary and keynote speakers as well as the call for abstracts are online availabel.

Source:

Aachen-Dresden-Denkendorf International Textile Conference

01.02.2022

C.L.A.S.S. welcomes Circular Systems into its Material Hub

After the C.L.A.S.S. recent evolution of its communication tools, they are really pleased to introduce Circular Systems as new C.L.A.S.S. Material Hub partner.

Circular Systems is a California based materials science company, focused on creating a net positive impact on environment, society and economy through innovation. Its circular plus regenerative technologies provide systemic solutions for transforming waste into valuable fibre, yarns, and fabrics for the fashion industry.

Textile waste and agriculture residues are a huge problem, often burned, left to rot in the fields, or sent to landfills creating massive amounts of CO2. Circular Systems is looking at these waste streams as valuable resources, turning problem into a solution by converting them into high value materials for the fashion industry. The “Lightest Touch™“ philosophy, defines their mission to retain maximum amount of embedded energy in waste inputs while creating the “highest-value outputs” with the lowest impacts. Integration of these technologies into global supply chains is key without compromising quality, thus extending the life cycle of these materials.

After the C.L.A.S.S. recent evolution of its communication tools, they are really pleased to introduce Circular Systems as new C.L.A.S.S. Material Hub partner.

Circular Systems is a California based materials science company, focused on creating a net positive impact on environment, society and economy through innovation. Its circular plus regenerative technologies provide systemic solutions for transforming waste into valuable fibre, yarns, and fabrics for the fashion industry.

Textile waste and agriculture residues are a huge problem, often burned, left to rot in the fields, or sent to landfills creating massive amounts of CO2. Circular Systems is looking at these waste streams as valuable resources, turning problem into a solution by converting them into high value materials for the fashion industry. The “Lightest Touch™“ philosophy, defines their mission to retain maximum amount of embedded energy in waste inputs while creating the “highest-value outputs” with the lowest impacts. Integration of these technologies into global supply chains is key without compromising quality, thus extending the life cycle of these materials.

Circular Systems has three waste-to-fibre platforms that offer an efficient management of textile and agricultural waste:

  • The Agraloop™ refines natural fibers derived from agricultural crops into textile-grade fiber called Agraloop™ BioFibre™.  A NEW Natural Fiber mindfully sourced for circularity. With our specialized processing technique, cellulose fiber from stems and leaves are purified into soft fiber bundles ready to spin into yarns. The Agraloop™ processes leftovers from various food and medicine crops including, oilseed hemp/flax, CBD hemp, banana, and pineapple.
  • Texloop™ Recycling produces high-quality GRS (Global Recycled Standard) certified recycled cotton fibre called RCOT™. Texloop™ preserves fiber quality for the next generation of recycled materials and blends with GOTS (Global Organic Textile Standard) certified organic cotton and Canopy approved man-made cellulosics to create near virgin quality yarns for knitting and weaving.
  • Orbital™ hybrid yarns create high-quality materials with high-performance, using organic and recycled fiber inputs. Orbital's patent-pending technology produces inherent wicking and fast dry performance materials, even with 50%-70% natural fiber composition, eliminating the need for chemical finishes to create high-performance fabrics.

All Circular Systems yarns are GRS, OCS and/or GOTS certified and are in the process of developing  their own Crop Residue Standard with Textile Exchange that would relate to the Agraloop™ platform technology.

15.12.2021

AFRY & Infinited Fiber: Bio-based textile fibers from waste

Finland-based circular fashion and textile technology group Infinited Fiber Company has selected AFRY as the main engineering partner for its new flagship factory for producing regenerated textile fibers for leading fashion and apparel brands.

More than 92 million tonnes of textile waste are produced globally every year, with much of it ending up in landfills or incinerators. At the same time, textile fiber demand is increasing rapidly. Infinited Fiber Company’s technology turns cellulose-based raw materials, like cotton-rich textile waste, into a premium regenerated textile fiber that goes by the name Infinna™. The technology, which can be licensed for both new factories and to retrofit existing pulp or viscose production units, offers a solution for eliminating waste and reducing the textile industry’s burden on limited virgin resources.

Finland-based circular fashion and textile technology group Infinited Fiber Company has selected AFRY as the main engineering partner for its new flagship factory for producing regenerated textile fibers for leading fashion and apparel brands.

More than 92 million tonnes of textile waste are produced globally every year, with much of it ending up in landfills or incinerators. At the same time, textile fiber demand is increasing rapidly. Infinited Fiber Company’s technology turns cellulose-based raw materials, like cotton-rich textile waste, into a premium regenerated textile fiber that goes by the name Infinna™. The technology, which can be licensed for both new factories and to retrofit existing pulp or viscose production units, offers a solution for eliminating waste and reducing the textile industry’s burden on limited virgin resources.

Infinited Fiber Company currently operates pilot plants in Finland and has announced plans to build a flagship factory there to meet the strong demand from international clothing brands. The flagship factory will be the first of its kind in the world and will use post-consumer textile waste as feedstock. Production is scheduled to begin in 2024. In Finland, the national-level collection of textile waste will begin in 2023, and in the EU, the collection of textile waste will become mandatory in 2025, which will facilitate raw material supply.

The annual production capacity of the plant is planned at 30,000 tonnes of Infinna fiber, which corresponds to the amount of fiber needed for about 100 million t-shirts. Infinited Fiber Company has already sold a significant portion of future production through multi-year sales deals with global fashion brands, who see its regenerated Infinna fiber as an important part of their own circular economy strategies.

AFRY’s assignment includes the basic engineering of the new factory to support the final investment decision. In this basic engineering phase, AFRY will design the combination of several technology and equipment deliveries into one viable plant. AFRY will also provide its AFRY Smart Site services for the digitalization of the factory, utilizing Industry 4.0 technologies to optimize and digitally connect all the factory's processes and operations.

Modelabel Brunello Cucinelli setzt nachhaltiges PaperLab von Epson ein (c) Epson / Brunello Cucinelli
14.12.2021

Modelabel Brunello Cucinelli setzt nachhaltiges PaperLab von Epson ein

Das Technologieunternehmen Epson hat mit der italienischen Luxusmodemarke Brunello Cucinelli eine Partnerschaft geschlossen, um das PaperLab von Epson einzusetzen. Das PaperLab ist ein innovatives und nachhaltiges Papierrecyclingsystem, das es Unternehmen ermöglicht, den Ressourcenkreislauf zu schließen und die Kreislaufpapierwirtschaft auf ihrem Weg zur Nachhaltigkeit vollständig zu nutzen.  

Mit dem PaperLab von Epson können Unternehmen Papier in einem Prozess recyceln und upcyceln – eine zirkuläre Lösung, die Papier, Abfall und Energieverschwendung erheblich reduziert. So kann Brunello Cucinelli sein Papier in einem einzigen Prozess nicht nur recyceln, sondern auch upcyceln.

Das Technologieunternehmen Epson hat mit der italienischen Luxusmodemarke Brunello Cucinelli eine Partnerschaft geschlossen, um das PaperLab von Epson einzusetzen. Das PaperLab ist ein innovatives und nachhaltiges Papierrecyclingsystem, das es Unternehmen ermöglicht, den Ressourcenkreislauf zu schließen und die Kreislaufpapierwirtschaft auf ihrem Weg zur Nachhaltigkeit vollständig zu nutzen.  

Mit dem PaperLab von Epson können Unternehmen Papier in einem Prozess recyceln und upcyceln – eine zirkuläre Lösung, die Papier, Abfall und Energieverschwendung erheblich reduziert. So kann Brunello Cucinelli sein Papier in einem einzigen Prozess nicht nur recyceln, sondern auch upcyceln.

Epson hat sich im Rahmen seiner Unternehmensvision „Epson 25“ verpflichtet, die Emissionen in der Lieferkette bis 2030 um mehr als zwei Millionen Tonnen zu reduzieren. Die Strategie ebnet Unternehmen den Weg, ihre Geschäftsmodelle anzupassen. Ein Beispiel hierfür ist ein funktionierender Recyclingkreislauf in Büros. Etwa die Hälfte des gesamten Abfallaufkommens im Büro ist Papier, mit entsprechenden CO2-Fußabdruck. Es wird geschätzt, dass Papier mehr als ein Viertel des gesamten Abfalls auf Deponien ausmacht und ursächlich für rund 42 Prozent der weltweiten Holzernte ist.

Das PaperLab fungiert als Katalysator für ein zirkuläres Büro-Ökosystem, indem es gleichzeitig Wasser und Holz spart und CO2-Emissionen reduziert. Basierend auf der innovativen Dry Fiber-Technologie von Epson kann das PaperLab stündlich bis zu 720 A4- oder 360 A3-Blatt Papier produzieren. Neben Umweltaspekten ist das PaperLab auch unter Sicherheitsgesichtspunkten interessant, denn das Papier wird so zerstört, dass sensible Inhalte nicht wiederhergestellt werden können.

Source:

Epson Deutschland GmbH

VDMA: Top young talent with cutting-edge topics  (c) VDMA
The 2021 winners (from top left to right): Dr Martin Hengstermann, Irina Kuznik, Kai-Chieh Kuo.
10.11.2021

VDMA: Top young talent with cutting-edge topics

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

Mr Kai-Chieh Kuo was awarded the diploma/master's thesis promotion prize of 3,500 euros. With his master's thesis, which was written at RWTH Aachen University, Mr Kuo contributes to the production of vital components used in medicine. The stents made of ultra-fine yarns are made possible by an innovative modification of the classic tube weaving process.

The Walter Reiners Foundation rewarded the doctoral thesis of Dr. Martin Hengstermann with the promotional prize in the dissertation category, endowed with 5,000 euros. The thesis deals with the production of recycled carbon fibres. These can be used to produce lightweight components for motor vehicle and aircraft construction or the wind energy sector.

New Prize Sustainability / Circular Economy
The environmental conditions of the textile industry and machine construction are changing. Topics such as climate protection and the circular economy are becoming central. From this perspective, the board of the Walter Reiners Foundation has decided to further develop the foundation's prize system.

In 2022, the foundation will for the first time offer a prize with a focus on design / sustainability. Peter D. Dornier, Chairman of the Foundation, explained: "Already in the design phase, one can set the parameters so that a textile product can be reintroduced after use into the economic cycle for a high-quality application. For example, through the appropriate use of materials and finishing. We are looking for solutions for resource-saving design, technology and manufacturing processes."   

With the "SmartTex" shirt, astronauts can wear the necessary sensors comfortably on their bodies. © DLR
SmartTex Shirt
27.10.2021

Research for cosmic missions: SmartTex provides data on vital functions

It looks like a normal shirt, but it has it all: The new SmartTex shirt uses integrated sensors to transfer physiological data from astronauts to Earth via a wireless communication network. In this way, the effects of the space environment on the human cardiovascular system will be evaluated and documented, especially with regard to long-term manned space missions. Developed by the German Aerospace Center (DLR) in cooperation with DSI Aerospace Technology, the Medical Faculty of Bielefeld University and textile research partner Hohenstein, SmartTex will be tested for the first time as part of the Wireless Compose-2 (WICO2) project by German ESA astronaut Dr. Matthias Maurer, who will leave for his ‘Cosmic Kiss’ mission on the International Space Station (ISS) for six months on October 30, 2021.

It looks like a normal shirt, but it has it all: The new SmartTex shirt uses integrated sensors to transfer physiological data from astronauts to Earth via a wireless communication network. In this way, the effects of the space environment on the human cardiovascular system will be evaluated and documented, especially with regard to long-term manned space missions. Developed by the German Aerospace Center (DLR) in cooperation with DSI Aerospace Technology, the Medical Faculty of Bielefeld University and textile research partner Hohenstein, SmartTex will be tested for the first time as part of the Wireless Compose-2 (WICO2) project by German ESA astronaut Dr. Matthias Maurer, who will leave for his ‘Cosmic Kiss’ mission on the International Space Station (ISS) for six months on October 30, 2021.

"We were already able to gain valuable insights into the interaction of the body, clothing and climate under microgravity conditions during the previous projects Spacetex (2014) and Spacetex2 (2018)," explains Hohenstein Senior Scientific Expert Dr. Jan Beringer. The insights provided at the time by the mission of ESA astronaut Dr. Alexander Gerst have now been directly incorporated into the development of the new SmartTex shirt at Hohenstein. "Matthias Maurer can wear his tailor-made shirt comfortably on his body during his everyday work on the International Space Station. For this, we used his body measurements as the basis for our cut development and the production of the shirt. We integrated the necessary sensors as well as data processing and communication modules into the shirt's cut in such a way that they interfere as little as possible and are always positioned in the right place, regardless of the wearing situation. This is the prerequisite for reliably measuring the relevant physiological data." The SmartTex shirt is intended to provide a continuous picture of the vital functions of astronauts. This will be particularly relevant for future long-term manned space missions to the Moon and Mars.

For example, during the BEAT experiment (Ballistocardiography for Extraterrestrial Applications and long-Term missions), Matthias Maurer will be the first astronaut to wear a T-shirt equipped with sensors that measure his ballistocardiographic data such as pulse and relative blood pressure. For this purpose, the sensors were calibrated in the :envihab research facility at the DLR Institute of Aerospace Medicine in Cologne. Details on the contraction rate and opening and closing times of the heart valves, which are normally only accessible via sonography or computer tomography, can also be read from the data material. The goal is to study the effects of the space environment on the human cardiovascular system. To be able to analyse these effects realistically, Matthias Maurer's ballistocardiographic data will be recorded before, during and after his stay on the ISS. For the future, a technology transfer of the SmartTex shirt for application in the field of fitness or even in telemedicine is conceivable.

Wireless Compose-2 (WICO2)
The project was planned and prepared by the German Aerospace Center (DLR) and its cooperation partners DSI Aerospace Technology, Hohenstein and the University of Bielefeld. The wireless communication network reads sensor data and can determine the position of people and objects in space by propagation times of radio pulses. It is also available as a platform for several experiments on the ISS. The determined data is temporarily stored within the network and read out at regular intervals by the astronauts. These data packets are then transferred to Earth via the ISS link and analysed by the research teams. It can generate its own energy from artificial light sources via solar cells.

 

 

ESA astronaut Dr. Matthias Maurer in summer 2021 during preliminary talks on the Cosmic Kiss mission in DLR's :envihab in Cologne. © DLR


Sensors measure physiological data during a test run on Earth. © DLR


With the "SmartTex" shirt, astronauts can wear the necessary sensors comfortably on their bodies. © DLR

Dr. Jan Beringer, Hohenstein Senior Scientific Expert. © Hohenstein