From the Sector

Reset
27 results
01.03.2024

AkzoNobel: New manufacturing plant in Pakistan

A new €26 million manufacturing plant with its own forest has been opened by AkzoNobel in Faisalabad – the company’s largest investment in Pakistan to date.

The 25-acre site, which has facilities for making decorative paint, wood finishes, automotive and specialty coatings, coil coatings and protective coatings, will help to meet increasing customer demand across a variety of markets.

Also incorporated into the Faisalabad location is a forest spanning an area of 5,450 square feet. More than 1,400 native trees and shrubs – planted using the Japanese Miyawaki gardening technique – are expected to grow into a flourishing self-sustaining ecosystem over the next two years.

The site, which employs nearly 200 people, has been constructed to comply with the company’s strict environmental standards and includes a series of sustainability features, such as renewable energy generation and energy efficient design.

A new €26 million manufacturing plant with its own forest has been opened by AkzoNobel in Faisalabad – the company’s largest investment in Pakistan to date.

The 25-acre site, which has facilities for making decorative paint, wood finishes, automotive and specialty coatings, coil coatings and protective coatings, will help to meet increasing customer demand across a variety of markets.

Also incorporated into the Faisalabad location is a forest spanning an area of 5,450 square feet. More than 1,400 native trees and shrubs – planted using the Japanese Miyawaki gardening technique – are expected to grow into a flourishing self-sustaining ecosystem over the next two years.

The site, which employs nearly 200 people, has been constructed to comply with the company’s strict environmental standards and includes a series of sustainability features, such as renewable energy generation and energy efficient design.

Source:

AkzoNobel

AkzoNobel participates in research program with SusInkCoat project (c) The Dutch Research Council (NWO)
05.02.2024

AkzoNobel participates in research program with SusInkCoat project

More than 82 companies, businesses and social organizations – including AkzoNobel – are involved in a major Dutch research program focused on developing new technologies that will help solve some of today’s societal challenges.
 
Seven broad consortia have been established as part of the government-funded “Perspectief” program, with AkzoNobel set to play a leading role in the SusInkCoat project, which will explore how to make inks and coatings more sustainable.

The company will work together with private partners and other societal stakeholders to develop new materials, processes and applications to improve the durability, functionality and recyclability of coatings, thin films and inks. The program, which will run for the next five years, is backed by the Ministry of Economic Affairs and Climate Policy and the Dutch Research Council (NWO).

More than 82 companies, businesses and social organizations – including AkzoNobel – are involved in a major Dutch research program focused on developing new technologies that will help solve some of today’s societal challenges.
 
Seven broad consortia have been established as part of the government-funded “Perspectief” program, with AkzoNobel set to play a leading role in the SusInkCoat project, which will explore how to make inks and coatings more sustainable.

The company will work together with private partners and other societal stakeholders to develop new materials, processes and applications to improve the durability, functionality and recyclability of coatings, thin films and inks. The program, which will run for the next five years, is backed by the Ministry of Economic Affairs and Climate Policy and the Dutch Research Council (NWO).

“Our discussions about collaborating with our SusInkCoat partners have been very positive,” says AkzoNobel’s R&D Director of Scientific Academic Programs, André van Linden, who is also the co-lead of SusInkCoat. “We’re all facing the same societal challenges – how to become more circular – and we’re looking for the same solutions in different application areas. But we’ve never done that together for this specific research topic, so we need an ecosystem to help us solve these challenges.
 
Van Linden adds that the program – one of many R&D projects the company is involved with – will also support AkzoNobel’s ambition to achieve 50% less carbon emissions in its own operations – and across the value chain – by 2030.
 
 “We want to make the recyclability of materials - such as furniture, building materials and steel constructions - easier by introducing functionalities like self-healing, higher durability and triggered release,” he continues. “The more you can leave the materials in their original state, the more sustainably you can operate.”

AkzoNobel will be collaborating with Canon, Evonik, GFB, PTG and RUG Ventures, who together possess extensive knowledge of market demands, supply chains and production processes. All the SusInkCoat partners will also work with academic researchers at several Dutch universities in an effort to identify promising developments that can be commercialized, used for education purposes or for outreach to the public.

Research being conducted by the other six consortia includes investigating methods to make tastier plant-based food; flat optics for more sustainable hi-tech equipment; and cheaper and more accessible medical imaging technology.

More information:
AkzoNobel Coatings Sustainability
Source:

AkzoNobel

26.01.2024

Stahl expands ZDHC level 3-certified portfolio

Stahl has achieved Zero Discharge of Hazardous Chemicals (ZDHC) MRSL 3.1 Gateway certification for 2,151 products in its portfolio. This achievement underlines Stahl’s ongoing commitment to the ZDHC mission of achieving high standards for sustainable chemical management.

ZDHC certification enables companies working in the footwear, apparel and accessories value chains to demonstrate their commitment to responsible chemical management, with the ultimate goal being zero discharge of hazardous chemicals. Level 3 certification represents the highest level of conformity with the ZDHC certification programme. To achieve this, Stahl’s formulated chemical products and raw materials were verified and tested against ZDHC’s latest Manufacturing Restricted Substances List (MRSL 3.1) by Eurofins | Chem-MAP®. The Chem-MAP® programme was also used to audit the chemical management and stewardship processes at three of Stahl’s manufacturing sites.

 

Stahl has achieved Zero Discharge of Hazardous Chemicals (ZDHC) MRSL 3.1 Gateway certification for 2,151 products in its portfolio. This achievement underlines Stahl’s ongoing commitment to the ZDHC mission of achieving high standards for sustainable chemical management.

ZDHC certification enables companies working in the footwear, apparel and accessories value chains to demonstrate their commitment to responsible chemical management, with the ultimate goal being zero discharge of hazardous chemicals. Level 3 certification represents the highest level of conformity with the ZDHC certification programme. To achieve this, Stahl’s formulated chemical products and raw materials were verified and tested against ZDHC’s latest Manufacturing Restricted Substances List (MRSL 3.1) by Eurofins | Chem-MAP®. The Chem-MAP® programme was also used to audit the chemical management and stewardship processes at three of Stahl’s manufacturing sites.

 

Source:

Stahl

Freudenberg: Sustainable microfiber solution for artificial leather applications (c) Freudenberg Performance Materials Holding GmbH
Evolon® sustainable microfiber coating substrate for artificial leather
19.07.2023

Freudenberg: Sustainable microfiber solution for artificial leather applications

Freudenberg Performance Materials (Freudenberg) will be presenting new applications for its European environmentally-friendly Evolon® microfiber technology for Fall/Winter 24/25 fashion and leather goods collections at Lineapelle, from September 19-21. These include solutions for artificial leather applications suitable for the shoe, furniture and automotive industries.

Freudenberg Performance Materials (Freudenberg) will be presenting new applications for its European environmentally-friendly Evolon® microfiber technology for Fall/Winter 24/25 fashion and leather goods collections at Lineapelle, from September 19-21. These include solutions for artificial leather applications suitable for the shoe, furniture and automotive industries.

Evolon® sustainable microfiber coating substrates
Evolon® microfiber fabrics are ideal coating substrates for artificial leather applications in the shoe, furniture and car industries. They are particularly suitable as a carrier material for PU and PVC coatings. Evolon® microfiber materials have non-fraying edges, which makes converting easier and quicker. They contain 80% recycled PET from Freudenberg’s in-house bottle recycling plant. Furthermore, they are manufactured with no solvent and no chemical binder in the company’s Evolon® plant located in Colmar, France. The plant is accredited according to OEKO-TEX STeP sustainability manufacturing certification and the DETOX TO ZERO criteria. European manufacturing offers logistic benefits to European customers through shorter supply chain and transport routes.

Reinforcement material for leather goods
Manufacturers of leather goods also benefit from Evolon® microfiber when they use it as a reinforcement material for original leather. It is drapable and soft and provides optimal shaping support for leather. In addition, Evolon® materials offer important sustainability advantages for the manufacturing of luxury leather bags, such as being 100% made in Europe, eco-friendly and socially-responsible production, and the use of recycled raw materials.

Source:

Freudenberg Performance Materials Holding GmbH

19.06.2023

AkzoNobel launches online energy savings calculator for powder coatings

An openly accessible online energy savings calculator for all users of powder coatings has been launched by AkzoNobel.

All powder coatings customers can instantly calculate the energy and carbon reduction they could achieve with the company’s Interpon products and related services.

It's the latest example of how the company is continuing to work towards its ambition of reducing carbon emissions across the full value chain by 50% by 2030. “Sustainability is critical for all of us and helping customers to reduce energy is one of the many ways we can work with – and for – them in order to meet our shared ambitions,” says Jeff Jirak, Director of AkzoNobel’s Powder Coatings business.

An openly accessible online energy savings calculator for all users of powder coatings has been launched by AkzoNobel.

All powder coatings customers can instantly calculate the energy and carbon reduction they could achieve with the company’s Interpon products and related services.

It's the latest example of how the company is continuing to work towards its ambition of reducing carbon emissions across the full value chain by 50% by 2030. “Sustainability is critical for all of us and helping customers to reduce energy is one of the many ways we can work with – and for – them in order to meet our shared ambitions,” says Jeff Jirak, Director of AkzoNobel’s Powder Coatings business.

To make using the tool as easy as possible, the calculator – currently only available in Europe – is supported by a detailed guide, which helps customers better understand how even making small changes in the powder coating process can have a big impact in terms of becoming more energy efficient. These include checking for leakages in compressed air systems, improving insulation and ensuring all process equipment is regularly serviced and maintained. Customers also receive expert support from Interpon’s technical service team.

Source:

AkzoNobel

05.05.2023

Stahl's emissions reduction targets approved by Science Based Targets initiative (SBTi)

Stahl announces that its near-term greenhouse gas (GHG) emissions reduction targets have been validated by the Science Based Targets initiative (SBTi). Stahl is one of the few coatings companies to receive this validation. To date, 145 companies in the chemicals sector have submitted an emissions reduction target to the SBTi, of which 61 have had their targets validated.

Stahl’s science-based targets, which reflect the company’s commitment to the 2015 Paris Agreement goals, are:  

  • Stahl Holdings B.V. commits to reduce absolute scope 1 & 2 GHG emissions 42.0% by CY2030 from a CY2021 base year.*
  • Stahl Holdings B.V. commits to reduce absolute scope 3 GHG emissions 25.0% by CY2030 from a CY2021 base year.

The SBTi classifies emissions reduction targets according to two potential temperature pathways: 1) limiting global temperature rises to 1.5°C above pre-industrial levels, and 2) limiting temperature rises to well below 2°C. The SBTi has determined that Stahl’s Scope 1 and 2 target is in line with a 1.5°C trajectory, while Stahl’s Scope 3 target has been validated in line with the well-below 2°C pathway.

Stahl announces that its near-term greenhouse gas (GHG) emissions reduction targets have been validated by the Science Based Targets initiative (SBTi). Stahl is one of the few coatings companies to receive this validation. To date, 145 companies in the chemicals sector have submitted an emissions reduction target to the SBTi, of which 61 have had their targets validated.

Stahl’s science-based targets, which reflect the company’s commitment to the 2015 Paris Agreement goals, are:  

  • Stahl Holdings B.V. commits to reduce absolute scope 1 & 2 GHG emissions 42.0% by CY2030 from a CY2021 base year.*
  • Stahl Holdings B.V. commits to reduce absolute scope 3 GHG emissions 25.0% by CY2030 from a CY2021 base year.

The SBTi classifies emissions reduction targets according to two potential temperature pathways: 1) limiting global temperature rises to 1.5°C above pre-industrial levels, and 2) limiting temperature rises to well below 2°C. The SBTi has determined that Stahl’s Scope 1 and 2 target is in line with a 1.5°C trajectory, while Stahl’s Scope 3 target has been validated in line with the well-below 2°C pathway.

Maarten Heijbroek, CEO of Stahl: “The validation of our Scope 1, 2, and 3 emissions reduction targets by the SBTi is an important milestone on our ESG journey as we strive to limit our contribution to global warming, in line with the Paris Agreement. Our targets are ambitious, and rightly so. Realizing our goal to help create a more responsible coatings value chain starts with being accountable for our own environmental impact, and taking concrete steps to reduce our emissions wherever possible.”

A clear strategy to reduce GHG emissions
Stahl’s approach to realizing its near-term emissions reduction targets is outlined in the company’s Environmental, Social, and Governance (ESG) Roadmap to 2030. This strategy defines the specific metrics against which progress on the company’s ESG commitments will be measured.

Stahl’s Scope 1 and 2 GHG emissions reduction targets, as submitted to the SBTi, cover emissions from all manufacturing sites where Stahl products are produced, as well as the company’s largest non-manufacturing locations. Stahl aims to lower these emissions by reducing its overall energy consumption and increasing the use of renewable energy at its sites. To achieve this, the company plans to increase its self-generated electricity capacity (using solar power, for example) and continue investing in more energy-efficient equipment.

Stahl plans to reduce its Scope 3 upstream emissions primarily by replacing fossil-based raw materials in its products with renewable alternatives, such as bio-based and recycled-based feedstocks. In addition, the company plans to introduce more low-impact raw materials into its product design.

* The target boundary includes biogenic land-related emissions and removals from bioenergy feedstocks.

Source:

Stahl Holdings B.V.

(c) Fashion for Good
22.03.2023

Fashion for Good welcomes start-ups to its Global Platform

Fashion for Good welcomes twelve new start-ups to its Global Platform. The selected Innovators will participate in a nine-month innovation programme with bespoke support to validate their technologies in preparation for implementation across the fashion value chain.

The selected innovators represent technologies across Raw Materials, Processing, Traceability & Transparency, Circular Business Models and End of Use.

The selected innovators joining the Fashion for Good 2023 Innovation Programme are: Virent, Inc., ZimoChem Inc, Polybion, Saltico Ltd, Lamoral Coatings B.V., CleanKore LLC, RESPONSIBLE, Qingdao Amino Material Technology Co., Ltd.,Protein Evolution, Inc., DePoly, Ioncell Oy, and SATMA CE.

 

Fashion for Good welcomes twelve new start-ups to its Global Platform. The selected Innovators will participate in a nine-month innovation programme with bespoke support to validate their technologies in preparation for implementation across the fashion value chain.

The selected innovators represent technologies across Raw Materials, Processing, Traceability & Transparency, Circular Business Models and End of Use.

The selected innovators joining the Fashion for Good 2023 Innovation Programme are: Virent, Inc., ZimoChem Inc, Polybion, Saltico Ltd, Lamoral Coatings B.V., CleanKore LLC, RESPONSIBLE, Qingdao Amino Material Technology Co., Ltd.,Protein Evolution, Inc., DePoly, Ioncell Oy, and SATMA CE.

 

Source:

Fashion for Good

(c) AkzoNobel
01.02.2023

AkzoNobel using 100% renewable electricity in North America

All of AkzoNobel’s locations in North America are now operating on 100% renewable electricity – helping to drive the company’s ambition of reducing carbon emissions across the full value chain by 50% by 2030 (baseline 2018).

The milestone – reached at the beginning of the year – is the latest in AkzoNobel’s ongoing efforts to transition to 100% renewable electricity at all its sites globally, with Europe having achieved the landmark at the start of 2022.  

The transition to 100% renewable electricity in North America includes manufacturing sites, offices, warehouses and research and development facilities. However, the company is looking much further than its own operations.
Examples of how AkzoNobel is moving to 100% renewable electricity globally include:

All of AkzoNobel’s locations in North America are now operating on 100% renewable electricity – helping to drive the company’s ambition of reducing carbon emissions across the full value chain by 50% by 2030 (baseline 2018).

The milestone – reached at the beginning of the year – is the latest in AkzoNobel’s ongoing efforts to transition to 100% renewable electricity at all its sites globally, with Europe having achieved the landmark at the start of 2022.  

The transition to 100% renewable electricity in North America includes manufacturing sites, offices, warehouses and research and development facilities. However, the company is looking much further than its own operations.
Examples of how AkzoNobel is moving to 100% renewable electricity globally include:

  • Self-generated renewable electricity – by installing solar panels at many of their locations and continue to make steady progress
  • Sourcing renewable electricity – the electricity generated by their solar panels covers only part of their total electricity consumption needs. For the remainder, they'll continue to purchase renewable electricity with certificates of origin.
Source:

AkzoNobel

Geno and Aquafil
21.07.2022

Geno and Aquafil: Pre-commercial production for plant-based nylon-6

Genomatica (Geno) alongside longtime collaborator Aquafil [ECNL:IM] successfully completed the first demonstration scale production runs for plant-based nylon-6. The material is intended to reshape the $22B nylon industry, enabling brands to meet demand from consumers for sustainable everyday materials from apparel to automotive parts to carpets. Geno and Aquafil have produced the first several tons of plant-based nylon-6 building block caprolactam, have converted it to nylon-6 polymer, and are now in the process of transforming it for evaluation in nylon applications such as yarns for textile and carpet and engineering plastics as part of pre-commercial quantities from demonstration production taking place in Europe.

The companies have been collaborating to first produce pilot-scale quantities of plant-based nylon-6 and have now advanced to produce pre-commercial quantities at demonstration scale which will help determine the final design of future commercial plants. The material will go to leading global brands and their value chain partners who are eager to explore and develop renewable products, create showcase goods and test feedback with customers.

Genomatica (Geno) alongside longtime collaborator Aquafil [ECNL:IM] successfully completed the first demonstration scale production runs for plant-based nylon-6. The material is intended to reshape the $22B nylon industry, enabling brands to meet demand from consumers for sustainable everyday materials from apparel to automotive parts to carpets. Geno and Aquafil have produced the first several tons of plant-based nylon-6 building block caprolactam, have converted it to nylon-6 polymer, and are now in the process of transforming it for evaluation in nylon applications such as yarns for textile and carpet and engineering plastics as part of pre-commercial quantities from demonstration production taking place in Europe.

The companies have been collaborating to first produce pilot-scale quantities of plant-based nylon-6 and have now advanced to produce pre-commercial quantities at demonstration scale which will help determine the final design of future commercial plants. The material will go to leading global brands and their value chain partners who are eager to explore and develop renewable products, create showcase goods and test feedback with customers.

Plant-based nylon-6 is Geno’s third major product line on a path to commercialization. The company has executed high impact deals with a range of brands to accelerate the global commercialization of sustainable materials, with the potential to reduce greenhouse gas emissions by 100 million tons in upcoming years. Recent milestones advancing the sustainable materials transition include: a collaboration with lululemon (NASDAQ: LULU) to bring plant-based materials into lululemon’s products, a production milestone with partner Covestro (OTCMKTS: COVTY) for plant-based HMD used in sustainable coatings, and a partnership with Asahi Kasei (OTCMKTS: AHKSY) and a newly formed venture with Unilever (NASDAQ: UL) to commercialize and scale plant-based alternatives to feedstocks like palm oil or fossil fuels, to make key ingredients used in everyday cleaning and personal care products.

Source:

method communications

(c) AkzoNobel
13.07.2022

AkzoNobel launches tool to drive bodyshop sustainability

Bodyshops can now take advantage of the vehicle refinish industry’s first repair calculator to measure, manage and reduce carbon emissions, which has been developed by AkzoNobel.

Designed to help customers improve their carbon footprint when using the company’s premium refinish products, the CO2eRepairCalculator* is part of a new initiative which aims to encourage bodyshops to become more sustainable.

The tool is the latest digital innovation from AkzoNobel focused on making a long-lasting difference to customers. It identifies the carbon levels associated with the painting and drying process – including the energy consumed – and is linked directly to the vehicle refinishing products being used. It also provides data relating to the emission of volatile organic compounds (VOCs), therefore helping customers to understand where improvements can be made.

When using the tool, the emissions and energy consumed are calculated based on a controlled two-panel repair in a spray booth to Greenhouse Gas Protocol accounting standards. The results are presented in an online dashboard, which allows local energy prices to be factored in.

Bodyshops can now take advantage of the vehicle refinish industry’s first repair calculator to measure, manage and reduce carbon emissions, which has been developed by AkzoNobel.

Designed to help customers improve their carbon footprint when using the company’s premium refinish products, the CO2eRepairCalculator* is part of a new initiative which aims to encourage bodyshops to become more sustainable.

The tool is the latest digital innovation from AkzoNobel focused on making a long-lasting difference to customers. It identifies the carbon levels associated with the painting and drying process – including the energy consumed – and is linked directly to the vehicle refinishing products being used. It also provides data relating to the emission of volatile organic compounds (VOCs), therefore helping customers to understand where improvements can be made.

When using the tool, the emissions and energy consumed are calculated based on a controlled two-panel repair in a spray booth to Greenhouse Gas Protocol accounting standards. The results are presented in an online dashboard, which allows local energy prices to be factored in.

The launch means it will now be easier for bodyshops to take positive action in an effort to meet their sustainability and carbon reduction targets. This is becoming increasingly important, as insurance companies are putting greater pressure on preferred bodyshop partners to cut their emissions in line with supply chain ambitions that meet the UN Sustainable Development Goals.

The CO2eRepairCalculator is currently being introduced in the UK market to Sikkens customers (with Lesonal to follow shortly). It will be rolled out across markets in Europe during the next few months.

*CO2e stands for carbon dioxide and equivalent gases. The tool measures carbon dioxide (CO2) and equivalent gases such as methane (CH4) and nitrous oxide (N2O), which all fall under the term greenhouse gases (GHGs).

More information:
AkzoNobel Coatings Automotive
Source:

AkzoNobel

(c) Borealis
28.06.2022

Borealis introduces portfolio of circular base chemicals

  • The Borvida™ portfolio introduces sustainable base chemicals to Borealis’ range of product offering
  • The range will initially be based on non-food waste biomass, and chemically-recycled waste; in the future it will also draw from atmospheric carbon capture
  • The traceability of the content will be based on Mass Balance, which is ISCC PLUS certified
  • This is the next step in an ambitious sustainability journey, which will see Borealis move away from traditional fossil-based feed

Borealis is strengthening its EverMinds™ circular product offering with Borvida™, a range of sustainable base chemicals.

The Borvida portfolio will offer base chemicals or cracker products (such as ethylene, propylene, butene and phenol) with ISCC Plus-certified sustainable content from Borealis sites in Finland, Sweden and Belgium. The move is part of Borealis’ broader commitment to a Future-Positive Revolution, in which the unrivalled benefits of base chemicals and polymers can be enjoyed at minimal impact to the planet.   

  • The Borvida™ portfolio introduces sustainable base chemicals to Borealis’ range of product offering
  • The range will initially be based on non-food waste biomass, and chemically-recycled waste; in the future it will also draw from atmospheric carbon capture
  • The traceability of the content will be based on Mass Balance, which is ISCC PLUS certified
  • This is the next step in an ambitious sustainability journey, which will see Borealis move away from traditional fossil-based feed

Borealis is strengthening its EverMinds™ circular product offering with Borvida™, a range of sustainable base chemicals.

The Borvida portfolio will offer base chemicals or cracker products (such as ethylene, propylene, butene and phenol) with ISCC Plus-certified sustainable content from Borealis sites in Finland, Sweden and Belgium. The move is part of Borealis’ broader commitment to a Future-Positive Revolution, in which the unrivalled benefits of base chemicals and polymers can be enjoyed at minimal impact to the planet.   

The portfolio will initially comprise Borvida B, from non-food waste biomass, and Borvida C, from chemically-recycled waste. In the future, the range will evolve to include Borvida A, sourced from atmospheric carbon capture. Borvida is complementary and is the building block to Bornewables™, a portfolio of polyolefins based on renewably-sourced second generation feedstocks, and Borcycle™, which offers circular polyolefins produced from mechanically- and chemically-recycled plastic waste.

Borealis produces a wide range of base chemicals for use in numerous industries based on various feedstock, such as naphtha, butane, propane and ethane. Through its olefin units (steam cracker and propane dehydrogenation), it converts these into the building blocks of the chemical industry: ethylene, propylene and C4 hydrocarbons (butylenes, ethyl tertiary-butyl ether (ETBE) and butadiene), and C5-6 hydrocarbons (pygas, phenol) among others.

The basis of the Borvida portfolio is Mass Balance, a Chain of Custody model that enables sustainable content to be tracked, traced, and verified through the entire value chain, offering sustainability-assured products from feedstock to end product. Using this model, circular alternatives can be offered in a cost-effective and environmentally-conscious way, which can be scaled up quickly without compromising on quality or efficiency.

Borvida can be used for a wide range of different polymer and chemical applications, also beyond polyolefins (PO). Non-PO polymers, such as polycarbonates, acrylonitrile butadiene styrene (ABS), super absorbant polymer (SAP) and other chemicals, are utilised for various end applications including coatings, plasticizers, adhesives, automotive, electronics, lubricants, detergents, appliances and sports equipment.

Together with key strategic partners, including Neste and Covestro, Borealis strives to provide a long-term solution in order to allow value-chain partners to meet their sustainability goals. Borvida will enable our customers to increase the sustainability of their products, keeping them ahead of forthcoming legislative changes, and meeting their customers’ demands for climate-conscious products.

Introduced on a smaller scale in early 2020, early renewable base chemicals customers include Covestro. “The use of alternative sustainable raw materials is one important pillar of our strategic ambition to become fully circular”, comments Frank Dörner, Managing Director Covestro Procurement Services GmbH & Co. KG. “The new product line is a good example for joint solutions, another strategic pillar, in order to establish new and reliable supply chains creating benefits for our customers.”

Source:

Borealis

(c) Baldwin Technology Company Inc. / Barry-Wehmiller
26.05.2022

Baldwin’s TexCoat G4 finishing system minimizes chemical and water waste

Baldwin Technology Company Inc. has announced the installation of its TexCoat G4 finishing system at Graniteville Specialty Fabrics, a recognized leader in the production of specialty coatings and coated fabrics. With Baldwin’s cost-efficient and highly sustainable spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.

Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets, and others. The company excels in developing and sourcing custom coatings, and creating specialized technical solutions to meet specific, and often unique, end-user requirements. The installation of Baldwin’s TexCoat G4 is part of a major facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

Baldwin Technology Company Inc. has announced the installation of its TexCoat G4 finishing system at Graniteville Specialty Fabrics, a recognized leader in the production of specialty coatings and coated fabrics. With Baldwin’s cost-efficient and highly sustainable spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.

Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets, and others. The company excels in developing and sourcing custom coatings, and creating specialized technical solutions to meet specific, and often unique, end-user requirements. The installation of Baldwin’s TexCoat G4 is part of a major facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

With extensive sustainability benefits, unprecedented tracking and process control, and Industry 4.0 integration, the TexCoat G4 provides consistently high-quality fabric finishing, with no chemistry waste, as well as minimal water and energy consumption. This system utilizes non-contact precision-spray technology, ensuring precise finishing coverage with the exact amount of chemistry for reaching the optimal performance of the fabric. Changeovers (pad bath emptying, cleaning and refilling) are significantly reduced, resulting in substantial chemical conservation and increased productivity.

Source:

Baldwin Technology Company Inc. / Barry-Wehmiller

(c) AkzoNobel
19.05.2022

AkzoNobel and partners team up to hack carbon reduction challenges

A boundary-pushing approach to hacking carbon reduction challenges has been established by AkzoNobel and partners from across the extended value chain following the company’s first ever global Collaborative Sustainability Challenge.

During 24 hours of intense discussion at the pioneering event a series of high impact exploration teams was set up. Those involved will now continue to work together in a determined effort to collectively accelerate the reduction of carbon emissions in the paints and coatings industry.

The participants – represented by senior and next generation leaders – hacked four key areas: energy transition, process efficiency, solvent emissions and circular solutions. It resulted in 27 partners signing up, including suppliers, customers and end-users, as well as representatives from finance, government, service providers and consultancies.

A boundary-pushing approach to hacking carbon reduction challenges has been established by AkzoNobel and partners from across the extended value chain following the company’s first ever global Collaborative Sustainability Challenge.

During 24 hours of intense discussion at the pioneering event a series of high impact exploration teams was set up. Those involved will now continue to work together in a determined effort to collectively accelerate the reduction of carbon emissions in the paints and coatings industry.

The participants – represented by senior and next generation leaders – hacked four key areas: energy transition, process efficiency, solvent emissions and circular solutions. It resulted in 27 partners signing up, including suppliers, customers and end-users, as well as representatives from finance, government, service providers and consultancies.

AkzoNobel has set science-based sustainability targets to halve its carbon emissions across the full value chain by 2030. Achieving that ambition will rely heavily on collaborating with partners and challenging each other to find innovative ways to overcome the unprecedented challenges everyone faces.

Source:

AkzoNobel

AkzoNobel launches 24-hour challenge to unite partners and tackle climate change (c) AkzoNobel
07.04.2022

AkzoNobel launches 24-hour challenge to unite partners and tackle climate change

A initiative designed to collectively accelerate carbon reduction in the paints and coatings industry has been launched by AkzoNobel.

The company has invited partners from across the value chain to take part in its Collaborative Sustainability Challenge – a new Paint the Future initiative which aims to develop a shared approach to tackling climate change.

Due to be staged in May, the 24-hour event will involve senior executives and next generation leaders from a select group of partners – including suppliers and customers – who will engage in open discussions in a non-confidential environment.

During the event, participants will deep-dive into the following areas:

A initiative designed to collectively accelerate carbon reduction in the paints and coatings industry has been launched by AkzoNobel.

The company has invited partners from across the value chain to take part in its Collaborative Sustainability Challenge – a new Paint the Future initiative which aims to develop a shared approach to tackling climate change.

Due to be staged in May, the 24-hour event will involve senior executives and next generation leaders from a select group of partners – including suppliers and customers – who will engage in open discussions in a non-confidential environment.

During the event, participants will deep-dive into the following areas:

  • Energy transition – Inspire partners towards decarbonizing processes and transitioning to renewable energy sources
  • Process efficiency – Increase the efficiency of material use and reduce the energy required for applying and curing paints and coatings
  • Solvent emissions – Reduce the number of solvents emitted throughout our entire value chain
  • Circular solutions – Increase the use of circular solutions in paints and coatings, both upstream and downstream

The forthcoming Collaborative Sustainability Challenge will build on the success of Paint the Future, which has already established a collaborative innovation ecosystem with startups, suppliers, academia and customers.

AkzoNobel’s Collaborative Sustainability Challenge is scheduled to take place in Amsterdam, the Netherlands, between May 17 and 18, 2022.

Source:

AkzoNobel

Three Startups receive the Paint the Future award from AkzoNobel (c) AkzoNobel
24.03.2022

Three Startups receive the Paint the Future award from AkzoNobel

The three winners of the Paint the Future global startup challenge are all set to accelerate their innovative solutions for the paints and coatings industry. Following an intense three-day bootcamp, these startups were selected by an international jury to continue working with AkzoNobel on sustainable business opportunities.
 
These are the three winners of the Paint the Future global startup challenge:

  • SolCold (Israel) - Sustainable self-cooling coating based on anti-Stokes
  • Aerones (Latvia) - Robotics for wind turbine maintenance
  • SprayVision (Czech Republic) - Data-driven approach to optimal spray application of paint

“Through Paint the Future, we’re bringing innovation and sustainability together as a key driver of our business,” says Thierry Vanlancker, AkzoNobel CEO. “In our ecosystem, we collaborate with startups, suppliers, customers and academia around exciting solutions that will ensure a more sustainable future.”

The three winners of the Paint the Future global startup challenge are all set to accelerate their innovative solutions for the paints and coatings industry. Following an intense three-day bootcamp, these startups were selected by an international jury to continue working with AkzoNobel on sustainable business opportunities.
 
These are the three winners of the Paint the Future global startup challenge:

  • SolCold (Israel) - Sustainable self-cooling coating based on anti-Stokes
  • Aerones (Latvia) - Robotics for wind turbine maintenance
  • SprayVision (Czech Republic) - Data-driven approach to optimal spray application of paint

“Through Paint the Future, we’re bringing innovation and sustainability together as a key driver of our business,” says Thierry Vanlancker, AkzoNobel CEO. “In our ecosystem, we collaborate with startups, suppliers, customers and academia around exciting solutions that will ensure a more sustainable future.”

Paint the Future startup challenges are designed to connect startups with industry knowledge and expertise to help accelerate their solutions in the paints and coatings industry. This Paint the Future global startup challenge launched May 18, 2021, attracting 245 submissions from 62 countries. Ten finalists were invited to Amsterdam to participate in the bootcamp program.
 
This is AkzoNobel’s second global startup challenge, following its industry-first predecessor in 2019. Regional startup challenges have since been held in Brazil (2020), China (2021), and most recently in India (2022).

More information:
AkzoNobel Sustainability Coatings
Source:

AkzoNobel

(c) Flocus ™
22.02.2022

Flocus ™ kapok nonwovens and fabrics for the leather goods and footwear

Flocus ™, the trademark for kapok fibers, offers a range of kapok textile materials such as fibers, yarns, textiles and nonwovens. The company presents the most performing and zero carbon footprint solutions based on Flocus™ kapok available for the leather goods industry, a sector that is making an important transition to sustainability in terms of processing and raw materials.

As for nonwoven, some of their most used products in the world of leatherware are:

Flocus ™, the trademark for kapok fibers, offers a range of kapok textile materials such as fibers, yarns, textiles and nonwovens. The company presents the most performing and zero carbon footprint solutions based on Flocus™ kapok available for the leather goods industry, a sector that is making an important transition to sustainability in terms of processing and raw materials.

As for nonwoven, some of their most used products in the world of leatherware are:

  • Maliwatt - 50% Kapok, 50% PLA (based on corn), a 100% biodegradable non-woven which can be used in the shoe sole. Maliwatt can be thermopressed/heat press and turned into a paper/cardboard type and lightweight structure. It is the perfect material for sneakers, casual and active shoes thanks to its quick dry, antibacterial, hydrophobic, hypoallergenic, Insulation properties. Other frequent applications are in the field of automotive, construction and car panels, sound absorption and acoustics panels and geo textiles.
  • HDE /Hydroentanglement - 50% Kapok, 50% Organic cotton. It is a 100% natural and biodegradable material that can be used in the shoe production as a sole, intersole or as a padding for shoes and bags. Thanks to its termoregulating, lightweight, hypoallergenic, thermoconductivity, insulation, soft touch, hydrophobic, anti-moth anti mite properties, it is used for a large range of applications. It is popular in the apparel world as a cruelty free filling for winter jackets, replacing duck down, and in the home industry ad a stuffing for mattresses, duvets, furniture, sleeping bags.

The offer for the leather goods industry includes also Flocus™ kapok-based fabrics in different blends and weights: linings, coatings, fabric inserts, accessories, components rich in performance and style. For example, kapok and organic cotton with GOTS certification, kapok with Tencel and recycled polyester (Repreve), kapok with linen, organic cotton and a small percentage of Spandex.

These materials were presented at the September 2021 edition of Lineapelle in the exhibition "A New point of materials", dedicated to eco-responsible innovations in terms of technologies, applications, materials and machines.

Source:

Flocus

(c) Autoneum
14.07.2021

Autoneum: Carpets even more eco-friendly

Autoneum carpet systems already meet high standards of sustainable mobility due to their high content of recycled fibers. Thanks to an alternative backcoating (ABC) process, Autoneum carpets are now becoming even more environmentally friendly: By replacing the latex commonly used in standard backcoatings with thermoplastic material, the recyclability of carpets at the end of product life is further  improved. In addition, the innovative manufacturing process greatly reduces water and energy consumption and thus CO2 emissions in production.

Autoneum carpet systems already meet high standards of sustainable mobility due to their high content of recycled fibers. Thanks to an alternative backcoating (ABC) process, Autoneum carpets are now becoming even more environmentally friendly: By replacing the latex commonly used in standard backcoatings with thermoplastic material, the recyclability of carpets at the end of product life is further  improved. In addition, the innovative manufacturing process greatly reduces water and energy consumption and thus CO2 emissions in production.

Lightweight, textile-based carpet technologies such as Di-Light or Relive-1 significantly improve the environmental performance of carpets. For example, Di-Light-based carpets consist of up to 97% recycled PET; aside from that, they are around 20% lighter than conventional needlepunch carpets, thus contributing to lower fuel consumption and CO2 emissions from vehicles. In addition, Autoneum needlepunch carpets are now even more sustainable thanks to the innovative ABC process, which uses a thermoplastic adhesive instead of latex in the backcoating: Unlike latex, thermoplastic adhesives can be heated and melted down together with the carpet components made of pure PET at the end of the product life cycle, which facilitates recycling considerably. Furthermore, since the fibers of the thermoplastic mono-material are easier to open, carpet cut-outs can be reclaimed more easily, thereby reducing the consumption of natural resources as well as waste volumes and thus CO2 emissions. The environmental  performance of Autoneum’s needlepunch carpets, which already contain a high proportion of recycled PET, is thus further improved.

Moreover, backcoatings without latex improve the sustainability of carpets not only thanks to better recyclability at the end of the product life cycle. Since the application of the thermoplastic adhesive using the innovative ABC process consumes significantly less energy than the production of latexbased backcoatings and does not require any water at all, the environmental impact can already be minimized in the manufacturing process. Additionally, thermoplastic adhesives developed in-house by Autoneum will open up new possibilities in the future for adapting backcoatings to the individual needs of vehicle manufacturers in terms of their acoustic performance, stiffness and abrasion resistance.

Models from various customers in Europe and North America are already equipped with latex-free needlepunch carpets from Autoneum. In the near future, backcoatings with thermoplastic adhesives will also be used for Autoneum’s tufted carpets. Production of the new, even more sustainable generation of tufted carpets is scheduled to start in early 2022.

Marabu to be climate neutral from July 2021 (c) Marabu GmbH & Co. KG
01.07.2021

Marabu to be climate neutral from July 2021

Marabu is one of the first ink manufacturers to achieve climate neutrality. All Marabu Business Units will, where possible, make a specific contribution to achieve the 17 United Nations Sustainable Development Goals (SDGs) with PROJECT GREEN and therefore participate in the Green Deal.

Marabu is one of the first ink manufacturers to achieve climate neutrality. All Marabu Business Units will, where possible, make a specific contribution to achieve the 17 United Nations Sustainable Development Goals (SDGs) with PROJECT GREEN and therefore participate in the Green Deal.

"We are safeguarding the future of the next generations and are proud that we have managed to be a climate neutral company from July 2021 with the Tamm and Bietigheim sites. All our products, whether printing inks or creative colours, are climate neutral, too," explains York Boeder, CEO Executive Committee. "Our so-called PROJECT GREEN combines all measures that are taking us on our journey to climate neutrality. Climate protection is a particular concern for us, to which we have made a binding commitment within the scope of an extensive sustainability strategy. In accordance with our Marabu Green Deal, we avoid and reduce emissions wherever possible, e. g. by using green electricity, energy-saving schemes, mobility concepts or environmentally friendly materials. We offset all unavoidable CO2 emissions by supporting internationally certified climate protection projects. We are continually implementing measures to improve our carbon footprint and update them annually to make their success measurable. We have therefore set ourselves the active goal of reducing our CO2 emissions by another 25 % by 2030."

For decades, Marabu has invested in the research and development of safe production processes, environmentally friendly products, and clean technologies with the aim of preserving the natural environment. Marabu has worked with Climate Partner to analyse all the CO2 emissions from the sites in Tamm and Bietigheim and determine its carbon footprint. Including all product-related factors such as raw materials and logistics, Marabu currently generates approx. 18,500 tons of unavoidable CO2 emissions. This value is the positive result of a number of climate-friendly measures pursued by Marabu, such as the early switch to green electricity in 2007.

Marabu's main activities to avoid and reduce CO2 emissions:

  • Energy - Switching to green electricity from hydropower
  • Mobility - Migration of the company's vehicles to electric and hybrid cars as well as in e-charging stations
  • Production - Use of renewable energies and resource-efficient production processes
  • Raw materials - Replacing critical substances with environmentally friendly alternatives for new and existing products
  • Transporting - Climate-neutral freight carriers and lower-emission transport methods like shipping or road transport replace air freight wherever possible
  • Product technology - Modern, low-emission products
Source:

Marabu GmbH & Co. KG

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists (c) JEC Group
17.05.2021

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

Sicomin, the formulator and supplier of the leading range of GreenPoxy bio-based epoxy resin systems, supplied its DNV GL approved InfuGreen 810 resin system that was used to infuse the Green Nacelle’s main structural sandwich panels, as well as providing intumescent FR gelcoats, bio-based laminating resins and UV resistant clear coatings for the groundbreaking new nacelle.  Materials, as well as on-site technical support, were delivered by Sicomin’s German distributor TIME OUT Composites.

The winners of the awards will be announced during JEC Connect which will be held on the 1st and 2nd June 2021.

Source:

100% Marketing

Sustainable leadership for GtA with new Monforts Montex wide width lines (c) AWOL Media
GtA Managing Director Andreas Niess
27.07.2020

Sustainable leadership for GtA with new Monforts Montex wide width lines

Following the successful commissioning of two new Monforts Montex wide-width stenter lines and additional environmental management equipment at its plant in Germany, GtA – Society for Textile Equipment GmbH – is aiming to be the first textile finishing company to become entirely CO2-neutral in the manufacture of all of its products by 2025.

GtA is a partner company to Germany’s large-format digital printing fabric leader, Georg and Otto Friedrich GmbH, which has has this year been able to considerably expand its portfolio due to the new Monforts lines.

Headquartered in Gross-Zimmern, close to Frankfurt, Georg and Otto Friedrich GmbH and its partners in Germany have an annual production of 37 million square metres of warp knits for a range of end-use applications, including garments, automotive interiors and technical textiles, but increasingly with a concentration on digital printing substrates.

Fault-free textiles

Following the successful commissioning of two new Monforts Montex wide-width stenter lines and additional environmental management equipment at its plant in Germany, GtA – Society for Textile Equipment GmbH – is aiming to be the first textile finishing company to become entirely CO2-neutral in the manufacture of all of its products by 2025.

GtA is a partner company to Germany’s large-format digital printing fabric leader, Georg and Otto Friedrich GmbH, which has has this year been able to considerably expand its portfolio due to the new Monforts lines.

Headquartered in Gross-Zimmern, close to Frankfurt, Georg and Otto Friedrich GmbH and its partners in Germany have an annual production of 37 million square metres of warp knits for a range of end-use applications, including garments, automotive interiors and technical textiles, but increasingly with a concentration on digital printing substrates.

Fault-free textiles

A new standard in pure white, 100% clean and fault-free textile substrates has been demanded by this market in recent years due to the rapid growth in digitally-printed banners and billboards – often referred to as ‘soft signage’.

The substrates of choice for digital printing are 100% polyester warp knits which are resilient and allow excellent take-up of inks, and vibrant colours and clear and precise images to be achieved with digital printing techniques. The knitted construction also has the advantage of elasticity, which is a plus in terms of flexibility for installers.

Critically, the warp knitted fabrics have extremely smooth surfaces which is becoming increasingly important due to the general move away from PVC coatings which were the standard in the past.

It was to finish these fabrics for Georg and Otto Friedrich GmbH as well as providing such services for many other customers, that the GtA plant in Neresheim, Baden-Württemberg, was established in 2015.

The purpose-built plant on a greenfield site was initially equipped with a fully-automated, 72 metre long Monforts installation comprising a washing machine integrated with a 3.6 metre wide, seven-chamber Montex stenter. The line quickly went from single to double shift production and then to 24/7 operation  to meet demand.

Expanded widths

Building on the success of this installation, GtA has now installed two more Montex stenter lines – both in expanded working widths of 5.6 metres and purpose-built at Montex GmbH in Austria.

A six-chamber Montex unit is combined with a washing machine to guarantee the purity of the substrates, while a five-chamber line is integrated with a wide-width coating machine. This new coating capability at GtA has led to a number of new additions to the Georg and Otto Friedrich DecoTex range for digital printing, including wide width fabrics with flame retardant, antimicrobial and non-slip finishes.

The new Montex stenter lines benefit from all of the latest innovations from Monforts, including the Smart Sensor system for the optimised maintenance planning of key mechanical wear components on the stenters. A comprehensive overview of the condition of all parts at any time is now available for operators within the highly intuitive Qualitex visualization software.

With Qualitex, all article-specific settings can be stored and the formulations for thousands of treatment processes called up again at any time. Individual operators can also personalise their dashboards with the most important machine functions and process parameters.

Environmental commitment

GtA is run by a seasoned team of textile professionals led by Managing Director Andreas Niess.

“We have received excellent service from Monforts from the outset and we were happy to place the order for these two new lines as part of our ongoing cooperation,” he says. “With all of the latest Monforts advances in technology we are fully in control of all production and quality parameters with these lines, as part of our significant commitment to innovative environmental technology.”

The GtA plant, which operates in near-cleanroom conditions, has also been equipped with proprietary technology to fully exploit the Monforts air-to-air heat recovery systems that are now standard with Montex stenters.

“Around 30 per cent of our investment volume at the site goes to energy-saving measures and we are sure that this commitment is worthwhile,” Mr Niess says. “As an example, our integrated heat recovery system fully exploits the waste heat from the process exhaust air and the burner exhaust gases of the Monforts stenters, allowing us to achieve an exhaust air temperature of  between 30 to 34°C, compared to what would conventionally be between 140 to 160°C. Another focus has been on exhaust air purification technology and here too, the latest technology has been installed with integrated heat recovery elements.”

This, he adds, saves 52% of the energy that would normally be used – equating to 5,800,000 KwH per year. The necessary audits for energy-efficient companies are also carried out annually.

In addition, GtA has purpose-designed the automatic chemical mixing and dosing systems that feed the padders for the key treatments that are carried out on the fabrics through the stenters.

The company is going further, however, in its pursuit of clean production and raw materials.

"We want to be an asset and not a burden on our immediate environment and therefore do not use any additives containing solvents," Mr Niess says. “We were the first to use fully halogen-free flame retardant chemistry, and we use bio-based, finely ground alumina products for the washing process instead of surfactants. PES polyester yarns made from recycled material are also increasingly used and the latest additions to our raw materials portfolio, the RC-Ocean products, are made from recycled sea plastic.

“We are now planning a combined heat and power plant for the production of electrical energy and heat and we will also build a photovoltaic system that converts solar radiation into electrical energy. GtA wants to be the first textile finishing company to be CO2-neutral in the manufacture of all of its products by 2025. The complete heat supply and heating for the 13,000 square metre production hall, as well as the office building and the hot water supply for the domestic water, is already energy-neutral. We are convinced that this commitment will pay off in the long term and our positive business development proves that sustainability and business profitability are perfectly compatible.”

In addition to the products for Georg and Otto Friedrich GmbH, GtA  offers its manufacturing capacities for other customers as a contract service.

All products are manufactured in accordance with Öko-Tex Standard 100, product class 1 and the company is also involved in the research and development of new sustainable manufacturing processes, in cooperation with many regional universities and funding project partners.

Source:

AWOL Media for A. Monforts Textilmaschinen GmbH & Co. KG