From the Sector

Reset
29 results
18.05.2022

Hexcel at JEC World 2022

  • Hexcel Composite Innovations for Aerospace Applications on Display at JEC World 2022: Hall 5, Stand J41

In late 2021, Hexcel announced an agreement with Fairmat, a deep technology startup, to build the capability to recycle carbon fiber prepreg from Hexcel European operations for reuse in composite panels sold into commercial markets, giving a second life to recovered carbon fiber. To do so, Fairmat has developed a virtuous recycling process, and a sample of its newly recycled material will be available to view at JEC World 2022. Hexcel will present an array of product innovations for aerospace and urban air mobility customer applications during JEC World 2022 in Paris on May3-5. These latest innovations demonstrate the company’s leadership in developing advanced composites technology for the aerospace market.

  • Hexcel Composite Innovations for Aerospace Applications on Display at JEC World 2022: Hall 5, Stand J41

In late 2021, Hexcel announced an agreement with Fairmat, a deep technology startup, to build the capability to recycle carbon fiber prepreg from Hexcel European operations for reuse in composite panels sold into commercial markets, giving a second life to recovered carbon fiber. To do so, Fairmat has developed a virtuous recycling process, and a sample of its newly recycled material will be available to view at JEC World 2022. Hexcel will present an array of product innovations for aerospace and urban air mobility customer applications during JEC World 2022 in Paris on May3-5. These latest innovations demonstrate the company’s leadership in developing advanced composites technology for the aerospace market.

  • Sustainability Focus on Recycling and Reuse
  • HiTape® and HiMax® Reinforcements for OoA Processing
  • Innovative HiFlow™ Resins for Continuous and Shorter Cycle Injection Processes
  • HexPly® Prepregs for Primary Structure and Engine Applications
  • HexTow® High Modulus Fibers HM63 and HM54
  • Thermoplastics and Processing Innovations for Primary and Secondary Structures
  • Lightweight PrimeTex® Reinforcements Solutions for Urban Air Mobility (UAM)
(c) Hexcel Corporation
29.04.2022

Hexcel Composite Solutions for the Automotive, Marine, Wind Energy and Recreation Markets at JEC World 2022

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

G-Vent Technology for Marine Structures
Hexcel has developed a new technology for out-of-autoclave (OoA) processing that delivers a game-changing reduction in process time and cost for marine manufacturers without compromising mechanical performance. Hexcel has leveraged its experience in aerospace and wind energy to develop its new G-Vent technology for OoA processing of highly loaded, thick section marine structures such as masts, foils, and wind-assisted ship propulsion (WASP) components. A full range of Hexcel marine prepregs are now available with integrated G-Vent technology, reducing the requirement for debulking steps and ensuring extremely low porosity (<1%) regardless of the laminate thickness. Leading marine non-destructive testing specialists Q.I. Composites recently confirmed that the thick section G-Vent panels they had evaluated had void contents and laminate quality in line with state-of-the-art autoclaved prepreg components. Visitors to the Hexcel stand will see a unique 400mm carbon cube cured in a single stage using 695 layers of HexPly M79 carbon fiber UD600 prepreg with G-Vent technology.

New HexPly® Nature Range Sustainable Prepregs
HexPly® Nature Range prepregs feature proven resins such as HexPly M49, M78 and M79 with bio-derived epoxy resin content. Created for use in all industrial markets, HexPly Nature Range materials can be seamlessly integrated into existing production processes, maintaining consistent mechanical performance and processing properties. A dedicated sustainability corner of the Hexcel stand will detail Nature Range products optimized for automotive, marine, wind energy and winter sport applications. The display will include an alpine ski produced by leading manufacturer Tecnica Group Ski Excellence Center which produces skis for Blizzard and for Nordica using HexPly Nature M78.1 UD flax prepreg material. In addition to the reduced environmental impact of the sustainably grown reinforcement, the flax fiber laminates also improve impact resistance and vibration damping in the ski.

HexPly® XF Surface Technology for Improved Part Surface Finish Quality
HexPly XF is a lightweight, semi-preg material that replaces traditional in-mold gel coat. It eliminates time-consuming refinishing work typically required to obtain a paint-ready surface and produces lighter, more consistent parts with shorter cycle times and a cleaner working environment. Visitors to the stand will see a composite panel illustrating a high-quality painted surface enabled with XF technology in a diverse range of industrial applications such as super yacht roof parts, Class A surface automotive panels, and both prepreg and infused wind turbine blades.

HexPly® M49 Prepreg for Automotive Visual Carbon Parts
HexPly M49 is easy to process and is especially suitable for visual carbon fiber-look applications such as the Brabus hood scoop on display on the Hexcel stand at JEC.

HexPly® Prepregs and HiMax® Reinforcements for Performance Marine Structures
Using a scale model of a Gunboat 68 performance sailing catamaran, Hexcel will illustrate how its HexPly and HiMax materials provide manufacturers with a complete set of lightweight composite solutions for high-performance marine structures. HexPly prepreg was selected for critical structural parts of the Gunboat 68 and provides very high mechanical performance including high dry and wet Tg.

Heavyweight HiMax reinforcements offer high deposition rates and remain easy to handle after cutting, making them highly suitable for industrial applications. In combination with a lightweight PrimeTex® woven fabric, the package of carbon fiber HiMax materials developed for the Gunboat 68 enabled consistent resin flow during infusion with reduced surface print-through.

Hexcel Fibers and Reinforcements for Lightweight Sporting Equipment
Sporting equipment manufacturers rely on Hexcel composite materials to deliver the ultimate performance at the lowest possible weight. Hexcel will exhibit a number of the latest high-performance sporting equipment applications such as a Bauer hockey stick featuring PrimeTex 98 gsm AS4C 3K fabric and a Corima tri-spoke cycling wheel made with lightweight Hexcel carbon fiber UD tape. Hexcel will also demonstrate how its HexTow® carbon fibers are used in key leisure and marine applications by displaying an AEROrazr solid carbon rigging component manufactured by spar and rigging manufacturer Future Fibres for the 36th America’s Cup.

 

Source:

Hexcel Corporation / 100% Marketing

Photo: JEC Group
26.04.2022

The Winners of the 2022 JEC Composites Innovation Awards

Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composites industry. The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

The ceremony took place on April 26th in Paris. Highlighted by the presence of jury members, finalists and winners but most importantly, as it was livestreamed, the gathering of many people all around the world to watch the awaited results.

The enthusiasm for the Innovation Awards, exactly 7 days prior to JEC World, is a good sign of the industry’s eagerness to get back together and ensure the future of composites innovation.

Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composites industry. The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

The ceremony took place on April 26th in Paris. Highlighted by the presence of jury members, finalists and winners but most importantly, as it was livestreamed, the gathering of many people all around the world to watch the awaited results.

The enthusiasm for the Innovation Awards, exactly 7 days prior to JEC World, is a good sign of the industry’s eagerness to get back together and ensure the future of composites innovation.

  • Aerospace Application
    Diab (Sweden): 100% thermoplastic panel for cabin interiors
  • Aerospace – Process
    MTorres Disenos Industriales S.A.U. (Spain): Innovative Infusion Airframe Manufacturing System
  • Automotive & road transportation – Structural
    Jaguar Land Rover Limited (UK): TUCANA
  • Automotive & road transportation – Surfaces
    AUDI AG (Germany): Seamless Integration of Flexible Solar Film in FRP
  • Building & Civil Engineering
    Windesheim (Netherlands): Structural Re-Use of Thermoset Composites
  • Design, Furniture and Home
    Kairos (France): Kairlin®, a new recyclable & compostable material
  • Equipment and Machinery
    Fibraworks GmbH (Germany): Winding the future – fibraforce technology
  • Maritime Transportation & Shipbuilding
    Voith Composites SE & Co. KG (Germany): Marine Rotor Blades made of Voith ‘Carbon4Stack’
  • Renewable Energy
    Siemens Gamesa Renewable Energy (Denmark): RecyclableBlade
  • Sports, Leisure & Recreation
    Bcomp Ltd. (Switzerland): Eco-joint from thermoset race and thermoplast road
Source:

JEC Group

03.02.2022

The 2022 JEC Composites Innovation Awards: Official Finalists line up

Première Vision - Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composite industry.
The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

After pre-selection of the finalists, one winner is selected in each category:

  • Aerospace – Application
  • Aerospace – Process
  • Automotive & road transportation – surface
  • Automotive & road transportation – structural
  • Building & Civil Engineering
  • Design, Furniture & Home
  • Equipment & Machinery
  • Maritime Transportation & Shipbuilding
  • Sports, Leisure & Recreation
  • Renewable Energy

The international jury representing the entire composites value chain includes:

Première Vision - Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composite industry.
The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

After pre-selection of the finalists, one winner is selected in each category:

  • Aerospace – Application
  • Aerospace – Process
  • Automotive & road transportation – surface
  • Automotive & road transportation – structural
  • Building & Civil Engineering
  • Design, Furniture & Home
  • Equipment & Machinery
  • Maritime Transportation & Shipbuilding
  • Sports, Leisure & Recreation
  • Renewable Energy

The international jury representing the entire composites value chain includes:

  • Michel COGNET, Chairman of the Board, JEC Group
  • Christophe BINETRUY, Professor of Mechanical Engineering, EC Nantes
  • Kiyoshi UZAWA, Professor/Director, Innovative Composite Center, Kanazawa Institute of Technology
  • Jiming Sung HA, Professor, Hanyang University
  • Brian KRULL, Global Director of Innovation, Magna Exteriors Inc
  • Karl-Heinz FULLER, Manager Future Outside Materials, Mercedes Benz AG
  • Deniz KORKMAZ, CTO, Kordsa Teknik Tekstil AS
  • Henry SHIN, Head of Center, K-CARBON
  • Véronique MICHAUD, Associate Professor/ Director, EPFL – Laboratory for Processing of Advanced Composites
  • Alan BANKS, Lightweight Innovations Manager, Ford Motor Company
  • Enzo CRESCENTI, Technical Authority and Composite Expert, Airbus

Discover the finalists in each category here.

Source:

JEC Group

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – presents its Innovation Awards 2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

Category “Research and Science”
First place in the “Research and Science” category was awarded to the German Aerospace Center (DLR) for its Bondline Control Technology (BCT). This innovative process is used for quality control and assurance of bonded joints. The core element is a porous fabric which is applied to a joining surface using an epoxy adhesive or matrix resin. Peeling away the fabric creates a chemically reactive and undercut surface and can also be used as a test to check adhesion to the substrate. BCT has potential in a variety of possible applications. For example, peel ply can be replaced by BCT fabric to produce composite components with an optimised joining surface. The cost-effective BCT peel test is suitable for coupon testing and process control. In addition, the combined adhesion test and surface pre-treatment can be used for quality assurance of bonded repairs on fibre composite structures.

Second place was taken by the Institute of Textile Technology (ITA) at RWTH Aachen University and its partners AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR with “StoneBlade – Lightweight construction with granite for the wind industry”. This innovation enables manufacturers to reduce the amount of non-recyclable materials used in rotor blade construction. At the same time, it reduces the weight of these components and improves the mechanical properties relating to the stability of wind turbines. The innovative approach replaces glass-fibre reinforced plastic in the blade components with hard rock – a natural, cost-effective and recyclable lightweight material. The slabs of rock are cut and ground to a thickness of just a few millimetres and embedded in a fibre composite laminate with carbon fibre, which stabilises them for alternating load cases. The pre-stressed material is pressure-stable in the composite and can absorb tensile forces in the event of continuously alternating loads without any loss of stiffness.

Third place went to the Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK) with its partner Mercedes Benz AG for the interdisciplinary development of a highly integrated inductive charging module for electric vehicles. The ultra-thin charging module was designed to make optimum use of space in the vehicle underbody without reducing ground clearance. An interdisciplinary approach was adopted for the development process. This involved the electrical, mechanical and process characterisation of high-frequency Litz wires, ferromagnetic foil and metal wire cloth as well as the creation of a simulation model. The result is a demonstrator for a charging system with a structural height of 15 mm and a total weight of 8 kg. It achieves a transmission efficiency of up to 92 percent at 7.2 kW nominal power and active air cooling. The hardware demonstrator was fabricated in a 3-step process using RTM and VARI techniques.

Overview of all the winners in the three categories:
Category “Innovative Products/Applications”
1st Place: “Traffic signs from Nabasco (N-BMC)” – Nabasco Products BV and Lorenz Kunststofftechnik GmbH, partners: Pol Heteren BV and NPSP BV
2nd Place: “Novel, ultratough vinyl ester resin for the construction of large marine vessels” Evonik Operations GmbH
3rd Place: “Air intake housing with a multi-material design for gas turbines” – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH and Leichtbau-Systemtechnologien KORROPOL GmbH.
Category “Innovative Processes”
1st Place: “In-mould wrapping” off-tool, film-coated, fibre composite components for exterior applications – BMW Group, Partner: Renolit SE
2nd Place: “Adaptive automated repair of composite structural components in the aviation sector” – Lufthansa Technik AG, Partner: iSAM AG
3rd Place: “Automated surface pre-treatment using VUV excimer lamps” – CTC GmbH
Category “Research and Science”
1st Place: “Bondline Control Technology (BCT)” – German Aerospace Center (DLR)
2nd Place: “StoneBlade – Lightweight construction with granite for the wind industry” – Institute of Textile Technology at RWTH Aachen University, Partners: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3rd Place: “Interdisciplinary development of a highly integrated inductive charging module for electric vehicles” – Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK), Partner: Mercedes Benz AG

Submissions for the next Innovation Award can be made from the end of January 2022.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

19.10.2021

Teijin to boost Heat-Resistant Carbon Fiber Prepreg Production

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Source:

Teijin Carbon Europe GmbH

14.10.2021

Monforts: Automated finishing at Knopf’s Sohn

Knopf’s Sohn, a contract finisher of technical textiles, has installed a fully automated Montex stenter at its plant in Helmbrechts, Germany.
Knopf’s Sohn is processing technical textiles for the automotive, aerospace, home furnishings and workwear markets, based on wool, cellulose, polyamide and polyester fabrics, along with elastane blends, in weights of 80-800gsm.

The Montex machinery range is constantly being upgraded to meet evolving customer needs for greater automation, ease of operation and energy optimisation. The latest ten chamber line at Knopf’s Sohn, with a working width of up to 2.0 metres, was engineered to specific requirements in order to accelerate the company’s move to fully automatic control of its production, and high scaffolding was required for its installation.

The line benefits from two integrated ECO Booster modules to provide high energy savings. These compact, air-to-air heat exchangers, installed within the roof structure of the line, exploit energy from the exhaust gas to preheat up to 60% of the incoming fresh air entering the stenter.

Knopf’s Sohn, a contract finisher of technical textiles, has installed a fully automated Montex stenter at its plant in Helmbrechts, Germany.
Knopf’s Sohn is processing technical textiles for the automotive, aerospace, home furnishings and workwear markets, based on wool, cellulose, polyamide and polyester fabrics, along with elastane blends, in weights of 80-800gsm.

The Montex machinery range is constantly being upgraded to meet evolving customer needs for greater automation, ease of operation and energy optimisation. The latest ten chamber line at Knopf’s Sohn, with a working width of up to 2.0 metres, was engineered to specific requirements in order to accelerate the company’s move to fully automatic control of its production, and high scaffolding was required for its installation.

The line benefits from two integrated ECO Booster modules to provide high energy savings. These compact, air-to-air heat exchangers, installed within the roof structure of the line, exploit energy from the exhaust gas to preheat up to 60% of the incoming fresh air entering the stenter.

The use of a single ECO Booster unit has been calculated to save up to 35% in energy costs, based on fixation processes. Fully automatic operation, set at the Monforts Qualitex control unit, ensures there is no additional burden on the machine operator.

The line is powered by Exxotherm indirect heating, which practically eliminates the yellowing which can be experienced during the treatment of certain polyamide and elastane-based fabrics, and is also equipped with a Conticlean circulating air filter system for constant high drying capacity.

Software
The latest Qualitex visualisation software offers operators reliability and easy control with its full HD multi-touch monitor and slider function, dashboard function with individual adaptation to operating states and faster access to comprehensive recipe data management.

With the Monformatic control system, the exact maintenance of the dwell time in combined treatment processes (drying and heat-setting) can be monitored. When the heat-setting point is reached, the fan speed is automatically adjusted, keeping energy consumption fully under control.

Source:

A. Monforts Textilmaschinen GmbH & Co. KG / AWOL Media

19.07.2021

ISKO to work with the MIT Computer Science & Artificial Intelligence Lab

ISKO announces its participation in CSAIL’s Alliances programme, a collaboration with CSAIL researchers, students and industry partners. Through participation in the programme, ISKO will contribute its expertise in textile innovation and collaborate on the research and development of smart textiles and wearable technologies.

The company joins a network of 26 industries – from startups to big organizations – including AI and machine learning, aerospace, healthcare, life sciences and telecommunications, as well as retail, media and entertainment.

With the goal of overall advancement of the textile and denim industry through the development of smart and wearable solutions, ISKO is stepping up to lead the change through these technologies and their many possible end-uses. The work is done in compliance with ISKO’s Responsible Innovation™ approach.

ISKO brings its innovative and agile structure, impressive production capacity and textile knowledge to the CSAIL programme which has over 1200 people, 60 research groups, 120+ researchers, 600+ students and over 900+ active projects.

ISKO announces its participation in CSAIL’s Alliances programme, a collaboration with CSAIL researchers, students and industry partners. Through participation in the programme, ISKO will contribute its expertise in textile innovation and collaborate on the research and development of smart textiles and wearable technologies.

The company joins a network of 26 industries – from startups to big organizations – including AI and machine learning, aerospace, healthcare, life sciences and telecommunications, as well as retail, media and entertainment.

With the goal of overall advancement of the textile and denim industry through the development of smart and wearable solutions, ISKO is stepping up to lead the change through these technologies and their many possible end-uses. The work is done in compliance with ISKO’s Responsible Innovation™ approach.

ISKO brings its innovative and agile structure, impressive production capacity and textile knowledge to the CSAIL programme which has over 1200 people, 60 research groups, 120+ researchers, 600+ students and over 900+ active projects.

Source:

ISKO / Menabò Group srl

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications (c) Hexcel Corporation
07.07.2021

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel Neumarkt was one of eight industrial partners supporting the university team throughout the project, providing all carbon fiber prepreg materials used for the drone’s landing gear as well as the fuselage. The ultra-lightweight 32g landing gear was laid up and cured in the press, whereas the fuselage was autoclave cured by the student team using Hexcel HexPly M901 and HexPly M78.1 prepreg resin systems with a combination of woven and unidirectional carbon fiber reinforcements.

With the development of Unmanned Aerial Vehicles (UAV) as a key emerging market and innovation space in the transportation sector, Hexcel’s collaboration with the University of Applied Sciences Upper Austria team not only creates an important link with the next generation of lightweight composite engineers but also highlights the weight saving and structural benefits of Hexcel composite material solutions.

"The massive weight saving achieved with their updated version of the camera drone is a fantastic achievement by the student team," said Michael Rabl, Dean of FH Wels of the Upper Austria University of Applied Sciences. "The joint study not only illustrates the wide range of complex and innovative composite techniques present in the drone sector but also presents the opportunities that exist for further development in the wider Urban Air Mobility (UAM) and aerospace composites markets.”

Hexcel congratulates the project team which includes Lukas Weninger, Karl-Heinz Schneider, Jakob Schlosser, Matthias Thon, Marla Unter, and Simone Hartl on an exceptional piece of lightweight composite design and thanks them for showcasing the contribution of Hexcel materials with a presentation and drone flight. Johanna Arndt, research and technology group leader at Hexcel Neumarkt, said, “It was a great pleasure to work with the team who were very cooperative and self-motivated to succeed. Watching the drone just fly around the Neumarkt plant was just great.”

Hexcel manufactures a complete range of carbon fibers, dry carbon UD tapes, specialty reinforcements, prepregs, and honeycomb core materials, providing customized manufacturing options for new UAM applications that combine aerospace reliability with the high-rate production required. Hexcel composite materials are the ideal solution for the lightest and most efficient cost-competitive transportation vehicles of the future.

Source:

Hexcel Corporation / 100% Marketing

Decision SA and Carboman Group Announce New Direct Mould Tooling Technology for Aerospace (c) Decision SA.
new direct mould tooling technology
08.03.2021

Decision SA and Carboman Group Announce New Direct Mould Tooling Technology for Aerospace

Decision SA, part of the leading European composites consortium, Carboman Group, and a specialist in the development, prototyping and production of large composite structures, is proud to announce a new direct mould tooling technology for aerospace.  Decision’s latest tooling solution provides OEMs and manufacturers with short lead times for highly stable direct moulds for series production both in and outside of the autoclave at temperatures of up to 180˚C.

Decision and Carboman recently delivered the first customer moulds using the new technology, providing a tooling glass prepreg, stainless-steel backed direct female mould tool created for the series production of a Class 3 fairing to a leading European aerospace OEM. Decision has immediate availability and capacity for similar tooling projects with lead times currently as short as six to eight weeks.

Decision SA, part of the leading European composites consortium, Carboman Group, and a specialist in the development, prototyping and production of large composite structures, is proud to announce a new direct mould tooling technology for aerospace.  Decision’s latest tooling solution provides OEMs and manufacturers with short lead times for highly stable direct moulds for series production both in and outside of the autoclave at temperatures of up to 180˚C.

Decision and Carboman recently delivered the first customer moulds using the new technology, providing a tooling glass prepreg, stainless-steel backed direct female mould tool created for the series production of a Class 3 fairing to a leading European aerospace OEM. Decision has immediate availability and capacity for similar tooling projects with lead times currently as short as six to eight weeks.

With no traditional plug or mould pattern required, Decision’s direct mould process starts with the group’s engineers selecting a material combination for the tool surface and support structure that will provide the optimum match between the coefficient of thermal expansion (CTE) of the mould and the composite part to be processed.  The CNC machined composite face sheet is supported by a stress-relieved metallic or composite backing structure before final post curing and machining is completed. The principal benefit of this novel approach, aside from removing the need for costly and time-consuming plug production, is the production accuracy delivered by the closely matched CTE of the mould tool and the finished composite part.

The autoclaved composite tool surface is not only extremely dimensionally stable up to processing temperatures of 180˚C, but it can also be configured with additional metallic inserts or fixtures if required.  

Produced in an EN 9100:2018 controlled production environment, and with CMM checks before and after machining, the new direct composite tools have dimensional tolerances of +/-0.2mm.  The available tooling dimensional envelope is currently defined by Decision’s 2200mm x 6000mm autoclave.

“With our new direct tooling technology, we are able to combine the highest technical standards in dimensional accuracy and thermal stability with extremely short lead times.  Decision and Carboman Groups’ combined mission has always been to develop the construction methods for tomorrow’s composite structures, and we believe that this tooling solution will allow our customers to accelerate the implementation of the next generation of high-performance carbon fibre aerostructures and components” Grégoire Metz, Managing Director, Decision SA.

Source:

Decision SA.

MaruHachi/AMAC: High-temperature thermoplastic tapes and laminates (c) MaruHachi
16.02.2021

MaruHachi/AMAC: High-temperature thermoplastic tapes and laminates

With their recently installed high-temperature unidirectional tape line, Japan-based composites manufacturer MaruHachi enables new opportunities for high-end applications in demanding market segments like aerospace, automotive or others outperforming traditional materials based on PP and PA which are already widely available.

In the first phase, MaruHachi will produce up to 40 tons/year and focuses now specifically on high-temperature thermoplastic uni-directional (UD) tapes and multi-layer sheet laminates. The material is based on high-performance fibers like carbon, aramid, glass or natural fibers and the matrix can be high-performance polymers like PPS, PEEK or other higher temperature polymers, which are much tougher than epoxies and easy to recycle. With a width of 500 mm, a specific weight from 60 to 350 g/m2, depending on the chosen material, the lines can operate under temperatures up to 420 degrees Celsius. Working under these extremely high temperatures allows for better material properties of the final application, higher performance, increased resistance and integrated high-performance functionalities e.g. by overmoulding.

With their recently installed high-temperature unidirectional tape line, Japan-based composites manufacturer MaruHachi enables new opportunities for high-end applications in demanding market segments like aerospace, automotive or others outperforming traditional materials based on PP and PA which are already widely available.

In the first phase, MaruHachi will produce up to 40 tons/year and focuses now specifically on high-temperature thermoplastic uni-directional (UD) tapes and multi-layer sheet laminates. The material is based on high-performance fibers like carbon, aramid, glass or natural fibers and the matrix can be high-performance polymers like PPS, PEEK or other higher temperature polymers, which are much tougher than epoxies and easy to recycle. With a width of 500 mm, a specific weight from 60 to 350 g/m2, depending on the chosen material, the lines can operate under temperatures up to 420 degrees Celsius. Working under these extremely high temperatures allows for better material properties of the final application, higher performance, increased resistance and integrated high-performance functionalities e.g. by overmoulding.

Since 2017, MaruHachi Group is active in the European market in cooperation with Dr. Michael Effing,the CEO of AMAC GmbH, who advises and supports the company strategically. The established, family-owned MaruHachi Group has a strong history in automotive and medical textiles and has been active in the innovative composites market for more than 15 years.

Toshi Sugahara, CEO of MaruHachi: “For many years, we have already been cooperating with domestic and international partners on high-demand applications and therefore, MaruHachi decided now to invest over 1 million EUR in this new line in phase 1, including a funding participation from the Japanese government NEDO. New developments in phase 2 will be be undertaken by end of 2021 on the downstream technologies like the automated preforming and consolidation. With our new products, we want to contribute to significant weight reductions of the final products, thus improve energy efficiency while offering a cost-efficient and high-quality solution.”

Dr. Effing, CEO of AMAC GmbH confirms: „The focus on the niche of high-temperature products based on PPS and PEEK allows MaruHachi on very demanding high-end applications such as structural frames on space and aircrafts, aircraft seats or engine components etc. The tapes are fully recyclable and can be processed e.g. with high-speed with laser-based tape placement machines and robots.”

Source:

AMAC GmbH

14.12.2020

Hexcel and Safran Expand Scope of Existing Contract

Hexcel and Safran Expand Scope of Existing Contract for Advanced Composite Materials on Commercial Aerospace Programs

Hexcel Corporation (NYSE: HXL) announced today that the scope of its long-term supplier contract with Safran S.A. has been expanded to include advanced composite materials for a broader range of commercial aerospace applications.

For more than three decades, Hexcel has been a trusted, leading supplier of high-performance, advanced composites such as carbon fiber, adhesives, prepregs, dry fabrics, and honeycomb core to Safran programs. Since 2013, Hexcel HexTow® IM7 carbon fiber has been supplied for the LEAP*-1A, -1B and -1C engine programs. That contract now has been amended to include HexTow IM7 for the GE9X engine that powers the Boeing 777X.The contract also includes Hexcel core, adhesives, prepregs, and fabrics for additional applications on engine nacelles and aircraft interiors.

Hexcel and Safran Expand Scope of Existing Contract for Advanced Composite Materials on Commercial Aerospace Programs

Hexcel Corporation (NYSE: HXL) announced today that the scope of its long-term supplier contract with Safran S.A. has been expanded to include advanced composite materials for a broader range of commercial aerospace applications.

For more than three decades, Hexcel has been a trusted, leading supplier of high-performance, advanced composites such as carbon fiber, adhesives, prepregs, dry fabrics, and honeycomb core to Safran programs. Since 2013, Hexcel HexTow® IM7 carbon fiber has been supplied for the LEAP*-1A, -1B and -1C engine programs. That contract now has been amended to include HexTow IM7 for the GE9X engine that powers the Boeing 777X.The contract also includes Hexcel core, adhesives, prepregs, and fabrics for additional applications on engine nacelles and aircraft interiors.

“It was time to include Safran Cabin, Safran Seats and Safran Aerosystems within our global long-term agreement,” said Thierry Viguier, Vice President, Safran Materials Purchasing. “Hexcel has shown again, during this difficult period of time, that they are a strong and reliable long-term partner.”

“This contract expansion is the result of a successful, collaborative relationship between Safran and Hexcel that started more than 35 years ago to serve the aerospace industry,” said Thierry Merlot, President Aerospace Europe, Asia Pacific, Middle East, Africa & Industrial. “This agreement will further strengthen the long-term partnership between our companies and reinforces our strategic position within Safran’s First Circle suppliers.”

13.11.2020

The AVK presents its awards virtually for the first time

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

3rd Place: “Fireproof composite metal hybrid structure – LEO® fire protection sandwich with integrated Hyconnect steel-glass hybrid connector” – developed by SAERTEX GmbH & Co. KG and Hyconnect GmbH.*

Category “Innovative Processes”
1st Place: “Robotised Injection Moulding (ROBIN)” – developed by Robin, Dresden with the Institute for Lightweight Engineering and Polymer Technology at the TU Dresden*

2nd Place: “Omega stringer from the roll” – developed by the German Aerospace Center, Braunschweig*

3rd Place: “Hybrid die-casting – manufacturing of intrinsic CFRP-aluminium composite structures in aluminium high-pressure die-casting” – developed by Faserinstitut Bremen e. V. with Fraunhofer IFAM, Bremen*

Category “Research and Science”:
1st Place: “New high-temperature resistant UP resins and toughening agents” – developed by Münster University of Applied Sciences with BASF SE Global New Business Development, Leibniz Institute for Polymer Research e. V., Saertex multicom GmbH*

2nd Place: “Scientific basis for the industrial application of the thermoplastic resin transfer moulding (T-RTM) process” – developed by Fraunhofer Institute for Chemical Technology ICT, Pfinztal*

3rd Place: “The material- and energy-efficient production of turbine struts by the integrative combination of thermoset fibre reinforced materials” – developed by the Institute of Polymer Technology, University of Erlangen-Nuremberg with the German Aerospace Center, Gubesch Group, Schmidt WFT, Siebenwurst, Raschig.

Award ceremony on the Internet for the first time
For the first time, due to the Covid-19 pandemic, the award ceremony took place as an online event on 12 November 2020. Many of the award winners’ innovations will be presented again in this year’s AVK Innovation Award brochure. This will be available online: https://www.avk-tv.de/innovationaward.php

 

*Please see attached document for more information.

 

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V

vombaur: Composites for Aviation and Automotive (c) vombaur
Pioneering tech tex
04.11.2020

vombaur: Composites for Aviation and Automotive

  • Composite textiles for modern mobility
  • Extremely lightweight, high tensile components by vombaur

In the snow, on a plane, in an electric vehicle or on a bicycle: no matter where and how we are on the road – composite textiles by vombaur ensure that we make good progress. With materials that are both extremely light and extremely reliable.

Lightweight components for modern mobility
Modern mobility relies on high-tech lightweight components Narrow textiles by vombaur are woven from high-performance fibres. On looms that are specially made for particularly demanding composite textiles: the textile company uses special machines to produce high-tech woven tapes with closed selvedges and elasticated UD tubulars that retain their 0° orientation over the entire length of the component – regardless of the diameter. Since they do not exhibit undesired break points caused by seams or welding, they not only have a particularly high bursting strength, they are also extremely reliable and durable.

  • Composite textiles for modern mobility
  • Extremely lightweight, high tensile components by vombaur

In the snow, on a plane, in an electric vehicle or on a bicycle: no matter where and how we are on the road – composite textiles by vombaur ensure that we make good progress. With materials that are both extremely light and extremely reliable.

Lightweight components for modern mobility
Modern mobility relies on high-tech lightweight components Narrow textiles by vombaur are woven from high-performance fibres. On looms that are specially made for particularly demanding composite textiles: the textile company uses special machines to produce high-tech woven tapes with closed selvedges and elasticated UD tubulars that retain their 0° orientation over the entire length of the component – regardless of the diameter. Since they do not exhibit undesired break points caused by seams or welding, they not only have a particularly high bursting strength, they are also extremely reliable and durable.

Challenging applications
"From snowboards to aerospace – the applications for our composite textiles are demanding; the mechanical, chemical and thermal requirements are extreme," explains COO Christoph Schliefer. "As a development partner, we at vombaur are therefore often involved in product development at an early stage. We specify our woven tapes and tubulars individually for each project to suit the specific task at hand."

High quality raw materials, wide variety of geometries
The variety of shapes is virtually unlimited. vombaur manufactures 3D fabrics for composites in individual special shapes from carbon, aramid, glass or hybrids. Curves, edges, tubulars, spiral fabrics – the shape of the 3D fabrics, like the material itself, depends entirely on the task at hand. Powder or non-woven coatings create additional important properties.

Pioneering tech tex
"Developments in the field of modern mobility are happening at a rapid pace," emphasizes Schliefer. "With our composite textiles for extremely lightweight and high tenacity components, we at vombaur are also pushing these developments forward."

Tailor-made large-scale fabrics production at SGL Carbon in Wackersdorf, Germany (c) SGL Carbon
Tailor-made large-scale fabrics production at SGL Carbon in Wackersdorf, Germany
07.02.2020

JEC World 2020: SGL Carbon presents new solutions

At this year’s JEC World, the largest trade fair for composites held from March 3-5, 2020 in Paris, SGL Carbon will focus on the topic of serial production for the automotive, aerospace and industrial sectors. The key is customized solutions with individual component designs combined with tailored materials and production processes ready for large scale production. Under the motto “The Solution Provider,” the company will present selective innovative component solutions from all three areas in Hall 6, Booth D25. Furthermore, as an example for industrial applications, SGL Carbon will showcase at the JEC world a crossbeam made of carbon fiber reinforced plastics (CFRP) used in automated Schuler press lines.

At this year’s JEC World, the largest trade fair for composites held from March 3-5, 2020 in Paris, SGL Carbon will focus on the topic of serial production for the automotive, aerospace and industrial sectors. The key is customized solutions with individual component designs combined with tailored materials and production processes ready for large scale production. Under the motto “The Solution Provider,” the company will present selective innovative component solutions from all three areas in Hall 6, Booth D25. Furthermore, as an example for industrial applications, SGL Carbon will showcase at the JEC world a crossbeam made of carbon fiber reinforced plastics (CFRP) used in automated Schuler press lines.

  •    Composite battery enclosures for e-mobility
  •    Flexible new leaf spring generation for rear axles
  •    Innovative component designs for passenger airplanes, helicopters and air taxis
  •    Extremely lightweight and stable transfer beam for mechanical engineering

Selective applications with focus on serial production
In the field of automotive applications, SGL Carbon will present at the JEC World composite battery enclosures as a promising new application driven by increasing demand for electric vehicles and the resulting new flexible chassis platforms. The company demonstrates a prototype of a battery enclosure based on carbon fibers. However, hybrid composites with a mixture of glass and carbon fibers are also possible.

In the aerospace sector, SGL Carbon is also expanding its portfolio of realized projects and expertise relying on the trend to use more efficient materials and processes in this industry too.
In the area of primary structure components, the company will present a demo exhibit for the door frame of a passenger airplane realized in collaboration with external partners and based on 50k carbon fiber from the SGL Carbon, which is suitable for serial production.

Live simulations and intense exchange at the booth
Visitors can experience live how their ideas can be implemented both sustainably and cost-effectively in composites thanks to simulations. Experts from the company’s own Lightweight and Application Center demonstrate the path from the concept to virtual prototypes using simulation software, with the result visible either to the entire audience or just individual visitors. To prepare, interested parties can contact the team now at the following link: https://www.sglcarbon.com/anmeldung-jec.

On March 4, 2020, the SGL Carbon stand will host its traditional get-together for customers and friends starting at 4 p.m. – no registration necessary.
 

More information:
SGL Carbon JEC World
Source:

SGL Carbon

(c) Edward C. Gregor Associates
03.02.2020

Dynamic Modifiers: Highest flame retardancy with new coating

A new non-halogenated FR compound called PAL...VersaCHARTM can achieve a new level of flame retardant performance as a coating for nonwovens and technical textiles.

PAL...VersaCHARTM has been tested to 1,950°C – the highest to date – and shown to prevent all flaming drips of polymer. Char bodies form on the compound surface, protecting against flame creation and delaying heat transfer. Rapid self- extinguishing burn behaviour protects any underlying substrate to which it is adhered.

The compound has passed ASTM E84 (Class A) with a 15/10 rating, which includes ‘clean’ smoke generation of only 2.3% of the allowable ASTM smoke limits. In addition, the compound is light weight, at a specific gravity of 1.0, and 100% non-toxic in every respect, being free from heavy metals, halogens and VOCs. 

Other properties include excellent cold crack performance, hydrophobicity, printability, extreme chemical resistance and the ability to be custom tailored for specific needs such as UV or antimicrobial performance, as volume warrants. The compound is also very competitively priced.

A new non-halogenated FR compound called PAL...VersaCHARTM can achieve a new level of flame retardant performance as a coating for nonwovens and technical textiles.

PAL...VersaCHARTM has been tested to 1,950°C – the highest to date – and shown to prevent all flaming drips of polymer. Char bodies form on the compound surface, protecting against flame creation and delaying heat transfer. Rapid self- extinguishing burn behaviour protects any underlying substrate to which it is adhered.

The compound has passed ASTM E84 (Class A) with a 15/10 rating, which includes ‘clean’ smoke generation of only 2.3% of the allowable ASTM smoke limits. In addition, the compound is light weight, at a specific gravity of 1.0, and 100% non-toxic in every respect, being free from heavy metals, halogens and VOCs. 

Other properties include excellent cold crack performance, hydrophobicity, printability, extreme chemical resistance and the ability to be custom tailored for specific needs such as UV or antimicrobial performance, as volume warrants. The compound is also very competitively priced.

In addition to its use as a coating, PAL...VersaCHARTM compound can be produced as a flexible film or sheet and moulded to shape or over-moulded to most materials, including metal for corrosion resistance. As a polymeric compound it can be cast or calendered and typical durometers from 80-99A for flexible-to-high rigid formats are practical. 

Separately, an adhesive has been created which bonds to many surfaces. In internal evaluations of two laminated plies of woven carbon fibre and two plies of glass fabrics, both passed a 60 second vertical burn with no ply separation, distortion or flaming drips from the adhesive.

Dynamic Modifiers envisages many uses for PAL...VersaCHARTM, from aerospace to the protection of rigid structural materials in building interiors etc.   
 

Ultra-light landing gear made of carbon fiber composites for air taxis (c) SGL Carbon
Ultra-light landing gear made of carbon fiber composites for air taxis
20.01.2020

SGL Carbon: Ultra-light landing gear made of carbon fiber composites for air taxis

  • Series order for a total of 500 units
  • First SGL Carbon component project for manned autonomous aviation

SGL Carbon will begin serial production of landing gear made from braided carbon fiber material early this year. The landing skids will be installed in around 500 air taxis worldwide over the next two years.

The air taxis will be powered by several electric motors. To optimize the range of the taxis, every single gram counts. Measuring about two meters in length and 1.5 meters in width, the ultra-light landing skid will weigh less than three kilograms, making it about 15 percent lighter than a similar component made from aluminum. This increases the potential flight time capacity of the air taxi which is a key differentiator for the air taxi operator.

  • Series order for a total of 500 units
  • First SGL Carbon component project for manned autonomous aviation

SGL Carbon will begin serial production of landing gear made from braided carbon fiber material early this year. The landing skids will be installed in around 500 air taxis worldwide over the next two years.

The air taxis will be powered by several electric motors. To optimize the range of the taxis, every single gram counts. Measuring about two meters in length and 1.5 meters in width, the ultra-light landing skid will weigh less than three kilograms, making it about 15 percent lighter than a similar component made from aluminum. This increases the potential flight time capacity of the air taxi which is a key differentiator for the air taxi operator.

“With with our landing gear we help to shape this very new, promising application of manned, autonomous civil aviation. This involvement also demonstrates our wide range of services. From engineering, to prototype manufacture, to serial production with our own materials – all of our competences along the entire value chain made a contribution to the project ,” emphasizes Dr. Andreas Erber, Head of the Aerospace segment of the Composites – Fibers & Materials business unit at SGL Carbon.

The landing gear was developed in close collaboration between customer experts and specialists from SGL Carbon. The carbon fibers for the component are produced at the SGL Carbon plant in Muir of Ord, Scotland. The final part is being manufactured at the SGL Carbon site in Innkreis, Austria.

 

More information:
SGL Carbon
Source:

SGL Carbon

SGL Carbon und Solvay schließen Kooperation zur Entwicklung von im hohen Maße konkurrenzfähigen und fortschrittlichen Carbonfaser-Verbundwerkstoffen für Primärstrukturen in der Luftfahrt (c) SGL CARBON SE
SGL Carbon Large-Tow-IM-Carbonfaser Produktion am US-Standort Moses Lake
03.12.2019

Collaboration between SGL Carbon and Solvay

SGL Carbon and Solvay collaborate to develop highly-competitive advanced carbon fiber composites for aerospace primary structures

SGL Carbon and Solvay have entered into a joint development agreement (JDA) to bring to market the first composite materials based on large-tow intermediate modulus (IM) carbon fiber. These materials, which address the need to reduce costs and CO2 emissions, and improve the production process and fuel efficiency of next-generation commercial aircraft, will be based on SGL Carbon’s large-tow IM carbon fiber and Solvay’s primary structure resin systems.

The agreement encompasses both thermoset and thermoplastic composite technologies. It builds on Solvay’s leadership in supplying advanced materials to the aerospace industry and SGL Carbon’s expertise in high-volume carbon fiber manufacturing.

SGL Carbon and Solvay collaborate to develop highly-competitive advanced carbon fiber composites for aerospace primary structures

SGL Carbon and Solvay have entered into a joint development agreement (JDA) to bring to market the first composite materials based on large-tow intermediate modulus (IM) carbon fiber. These materials, which address the need to reduce costs and CO2 emissions, and improve the production process and fuel efficiency of next-generation commercial aircraft, will be based on SGL Carbon’s large-tow IM carbon fiber and Solvay’s primary structure resin systems.

The agreement encompasses both thermoset and thermoplastic composite technologies. It builds on Solvay’s leadership in supplying advanced materials to the aerospace industry and SGL Carbon’s expertise in high-volume carbon fiber manufacturing.

“For Solvay, this is an opportunity to lead the aerospace adoption of a composite material based on 50K IM carbon fiber. This is a highly competitive value proposition that brings more affordable high-performance solutions to our customers. We see this as the first step in a long-term partnership,” said Augusto Di Donfrancesco, member of Solvay’s executive committee.

“By combining SGL’s carbon fiber expertise in our newly developed, unique 50K IM fiber with Solvay’s resin formulation and aerospace market expertise, both partners are aiming to develop an advanced aerospace material system. This alliance supports our strategic direction and accelerates our growth in the attractive aerospace market,” said Dr. Michael Majerus, spokesman of the management board of SGL Carbon.

Composite materials for aerospace applications represent a multi-billion-dollar market that is expected to grow strongly in the coming decade. Solvay and SGL Carbon are uniquely positioned to develop solutions to address the needs of this market.

More information:
Solvay SGL Carbon Carbonfaser
Source:

SGL CARBON SE

(c) Eric RAZ, Airbus Helicopters
25.11.2019

SGL Carbon serially delivers composite materials for rotor blades to Airbus Helicopters

  • Glass fiber textiles for helicopter type H145
  • First ever material supply for primary structural components in the aerospace segment

Since August of this year, SGL Carbon delivers two special glass fiber textiles, so-called non-crimped fabrics, for the new version of helicopter model H145 from Airbus Helicopters. These materials are used in the new, especially efficient five-blade rotor. Developed in close collaboration with Airbus Helicopters, the material has been qualified for the application for the next years to come.  

Thanks to their unidirectional fiber orientation, the fabrics are extremely resistant, providing optimal support for the new geometry of the especially long H145 rotor blades. The fabrics are manufactured at the SGL Carbon site in Willich near Düsseldorf in a multi-stage process and delivered to Airbus Helicopters in Paris.  

  • Glass fiber textiles for helicopter type H145
  • First ever material supply for primary structural components in the aerospace segment

Since August of this year, SGL Carbon delivers two special glass fiber textiles, so-called non-crimped fabrics, for the new version of helicopter model H145 from Airbus Helicopters. These materials are used in the new, especially efficient five-blade rotor. Developed in close collaboration with Airbus Helicopters, the material has been qualified for the application for the next years to come.  

Thanks to their unidirectional fiber orientation, the fabrics are extremely resistant, providing optimal support for the new geometry of the especially long H145 rotor blades. The fabrics are manufactured at the SGL Carbon site in Willich near Düsseldorf in a multi-stage process and delivered to Airbus Helicopters in Paris.  

“The order emphasizes our growing presence in the aerospace business. With the fabrics for Airbus Helicopters, we have realized, qualified, and started serial production for a material concept for primary structural components for the first time,” underscores Dr. Andreas Erber, Head of the Aerospace segment in the business unit Composites – Fibers & Materials at SGL Carbon.

The current deliveries are part of a framework contract with Airbus Helicopters, intended to gradually intensify collaboration. Besides the current development of materials for helicopter components, Airbus Helicopters and SGL Carbon have worked together in the area of component material processing for Airbus group aircraft doors for years. In addition, Airbus and SGL Carbon are jointly involved in various associations and research projects in the area of components, such as Carbon Composites e.V.

 

More information:
SGL Carbon
Source:

SGL CARBON SE

Porcher Industries presents the future of quiet and clean mobility solutions with materials that offer high-performance thermal and acoustical insulation. (c) Porcher Industries
Thermal acoustical insulation materials
18.11.2019

Porcher Industries at the Annual Automotive Exhaust Systems Summit

  • Porcher Industries presents the future of quiet and clean mobility solutions with materials that offer high-performance thermal and acoustical insulation.

The 5th Edition of the Annual Automotive Exhaust Systems Summit, to be held in Dusseldorf on November 28th-29th, will see Porcher Industries showcase the market’s most complete range of high performance thermal and acoustical insulation products.

With a key strategic thrust targeting quiet and clean mobility by developing new insulation applications, Porcher Industries’ range of textiles meet the demands and requirements of the Automotive, Aerospace and other transport sectors by delivering unsurpassed levels of thermal and acoustical management.

On display the group will showcase its Techmat®, SilcoSoft® and ThermoShield® materials – all highly functional non-woven textiles that can be found in key areas of both the hot and cold ends of vehicle exhaust systems.

  • Porcher Industries presents the future of quiet and clean mobility solutions with materials that offer high-performance thermal and acoustical insulation.

The 5th Edition of the Annual Automotive Exhaust Systems Summit, to be held in Dusseldorf on November 28th-29th, will see Porcher Industries showcase the market’s most complete range of high performance thermal and acoustical insulation products.

With a key strategic thrust targeting quiet and clean mobility by developing new insulation applications, Porcher Industries’ range of textiles meet the demands and requirements of the Automotive, Aerospace and other transport sectors by delivering unsurpassed levels of thermal and acoustical management.

On display the group will showcase its Techmat®, SilcoSoft® and ThermoShield® materials – all highly functional non-woven textiles that can be found in key areas of both the hot and cold ends of vehicle exhaust systems.

Produced from 100% non-respirable fibres, these binder free non-wovens are safe to handle and can be tailored to provide application specific thermal insulation and heat shields at temperatures ranging from 650˚C to 1150˚C (1200°F to 2100°F).

Porcher Industries is able to deliver its Techmat®, SilcoSoft® and ThermoShield® materials in a wide range of formats from roll goods, flat or formed shapes through to sub-assemblies and finished parts that combine metallic layers with their insulation materials.

Porcher Industries’ thermal and acoustical insulation solutions will also be on show in Dusseldorf: technical textiles that blend chemistry and fibre processing technology to produce a powerful range of non-woven and glass mat thermoplastics (GMT) materials that can be tailored to a customer’s specific acoustical and thermal insulation requirements.

In addition, Andreas Stoeferle, Technical Support Engineer, EMEA, Porcher Industries, will present a detailed view of the group’s expertise in high performance insulations, their global reach, products and delivery formats on the opening day of the conference.

“As one of the leading manufacturers of specialist technical textiles within the Automotive sector, we have responded to demand and placed significant development time and resource into developing our range of thermal and acoustical material solutions for Automotive and Aerospace.” commented Pierre-Yves Quéfélec, Global Aerospace & Automotive BU Head.