From the Sector

Reset
82 results
Lenzing: Sustainable geotextiles as glacier protection and jacket (c) UN Nations
22.03.2024

Lenzing: Sustainable geotextiles as glacier protection and jacket

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The covering of a small area with the new material made from LENZING™ fibers was tested for the first time during a field test on the Stubai Glacier. Four meters of ice were saved from melting. This was confirmed in a study conducted by the University of Innsbruck and the Austrian glacier lift operators on the Stubai Glacier in Tyrol (Austria). In 2023, the pilot project was successfully extended to all Austrian glaciers used by tourists.

Last year, the project was also awarded first place in the prestigious Swiss BIO TOP Awards for wood and material innovations.

Lenzing takes this innovation project as an opportunity to inspire collaborative action towards sustainable practices and circularity in the textile value chain. Together with a network of innovative partners, Lenzing is working on processing geotextiles into new textile fibers giving them a second life as a garment. The use of geotextiles is usually limited to two years, after which the nonwovens would be disposed of. In the first phase of the pilot project, the recycling of nonwovens made for geotextiles use has been successfully tested and a fashionable “Glacier Jacket” has been produced, showcasing that the recycling of geotextiles is viable. Next to Lenzing, the network includes Marchi & Fildi Spa, a specialist in the field of mechanical recycling, the denim fabric manufacturer Candiani Denim and the fashion studio Blue of a Kind.

DITF: Biopolymers from bacteria protect technical textiles Photo: DITF
Charging a doctor blade with molten PHA using a hot-melt gun
23.02.2024

DITF: Biopolymers from bacteria protect technical textiles

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

These biopolymers have the advantage that they can be produced in anything from small laboratory reactors to large production plants. The most promising biopolymers include polysaccharides, polyamides from amino acids and polyesters such as polylactic acid or polyhydroxyalkanoates (PHAs), all of which are derived from renewable raw materials. PHAs is an umbrella term for a group of biotechnologically produced polyesters. The main difference between these polyesters is the number of carbon atoms in the repeat unit. To date, they have mainly been investigated for medical applications. As PHAs products are increasingly available on the market, coatings made from PHAs may also be increasingly used in technical applications in the future.

The bacteria from which the PHAs are obtained grow with the help of carbohydrates, fats and an increased CO2 concentration and light with suitable wavelength.

The properties of PHA can be adapted by varying the structure of the repeat unit. This makes polyhydroxyalkanoates a particularly interesting class of compounds for technical textile coatings, which has hardly been investigated to date. Due to their water-repellent properties, which stem from their molecular structure, and their stable structure, polyhydroxyalkanoates have great potential for the production of water-repellent, mechanically resilient textiles, such as those in demand in the automotive sector and for outdoor clothing.

The DITF have already carried out successful research work in this area. Coatings on cotton yarns and fabrics made of cotton, polyamide and polyester showed smooth and quite good adhesion. The PHA types for the coating were both procured on the open market and produced by the research partner Fraunhofer IGB. It was shown that the molten polymer can be applied to cotton yarns by extrusion through a coating nozzle. The molten polymer was successfully coated onto fabric using a doctor blade. The length of the molecular side chain of the PHA plays an important role in the properties of the coated textile. Although PHAs with medium-length side chains are better suited to achieving low stiffness and a good textile handle, their wash resistance is low. PHAs with short side chains are suitable for achieving high wash and abrasion resistance, but the textile handle is somewhat stiffer.

The team is currently investigating how the properties of PHAs can be changed in order to achieve the desired resistance and textile properties in equal measure. There are also plans to formulate aqueous formulations for yarn and textile finishing. This will allow much thinner coatings to be applied to textiles than is possible with molten PHAs.

Other DITF research teams are investigating whether PHAs are also suitable for the production of fibers and nonwovens.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

Graphic Toray
20.12.2023

Recycled carbon fiber: When a Boeing 787 turns into a Lenovo ThinkPad

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

TORAYCA™ is an established aerospace material known for its high strength, stiffness, and lightweighting properties. These qualities have led to its adoption in other applications such as electrical and electronic equipment housings, sports equipment, and other industrial applications.

A key advantage of carbon fiber is the ability to retain its primary mechanical properties even after the recycling process. Toray is actively advancing recycling technologies and establishing a strategic business model for rCF. Given that the carbon footprint of rCF is lower than that of virgin carbon fiber, Toray is proactively recommending the adoption of rCF to reduce the environmental impact of customers’ products. This commitment aligns with Toray’s dedication to fostering a circular economy, thereby reducing landfill waste.

Source:

Toray Industries

Hologenix: CELLIANT® as a printed coating (c) Hologenix
18.12.2023

Hologenix: CELLIANT® as a printed coating

Hologenix has announced that its flagship product CELLIANT® infrared (IR) technology, a natural blend of IR-generating bioceramic minerals, is now more widely available from the company as a printed coating, expanding the uses of the technology and increasing the number of prospective partners. The innovation has already been named a Selection in the Fibers & Insulations Category of the ISPO Textrends Awards just last month.

Traditionally, CELLIANT has been embedded directly into fibers and yarns. However, for its print applications, CELLIANT fine mineral powder can be easily added directly onto the surface of all different fabric types. The company is particularly energized about how this expands the array of sustainable offerings that CELLIANT can be incorporated into, and is looking forward to partnering with brands to print CELLIANT on their ecofriendly fabrics. CELLIANT Print may be a cost-effective alternative to in-yarn solutions and allows for a more efficient supply chain.

Hologenix has announced that its flagship product CELLIANT® infrared (IR) technology, a natural blend of IR-generating bioceramic minerals, is now more widely available from the company as a printed coating, expanding the uses of the technology and increasing the number of prospective partners. The innovation has already been named a Selection in the Fibers & Insulations Category of the ISPO Textrends Awards just last month.

Traditionally, CELLIANT has been embedded directly into fibers and yarns. However, for its print applications, CELLIANT fine mineral powder can be easily added directly onto the surface of all different fabric types. The company is particularly energized about how this expands the array of sustainable offerings that CELLIANT can be incorporated into, and is looking forward to partnering with brands to print CELLIANT on their ecofriendly fabrics. CELLIANT Print may be a cost-effective alternative to in-yarn solutions and allows for a more efficient supply chain.

fabrics or to a new fabric to create a variety of different product applications. For brands who are seeking a smaller pattern roller for apparel, orthopedic products or other close-to-skin projects, CELLIANT Print can accommodate this. There is also a larger pattern roller for bedding and larger-scale applications. As long as the print covers 80% of the fabric’s surface, the design possibilities for the print itself are virtually endless. CELLIANT Print has undergone mechanical testing for wash tests and can be confirmed to last the useful life of the product, for 50+ washes.

By applying CELLIANT Print directly onto the fabric, brand partners are able to use CELLIANT with a higher loading of bioceramic minerals than what would otherwise be possible with an in-yarn solution. This makes it ideal for recovery and performance purposes. In fact, an example of a CELLIANT Print application on kinesiology tape, KT Tape® PRO Oxygen™ was launched in April to great success.

Source:

Hologenix, LLC

Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right. Source: ITMF
Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right.
01.12.2023

Faster and cheaper carbon fibre production with CarboScreen

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Both types of damage cannot be optimally detected by current means or only become apparent after production, to name just two examples. This leads to higher production costs. In an emergency, faulty production can even lead to plant fires. For this reason, and to ensure good production quality, the system is run at 15 m/min below its production capacity for safety reasons. However, 30 m/min or more would be possible. With the sensor-based online monitoring of CarboScreen, the production capacity can be doubled to 30 /min. This would lead to higher production, resulting in lower manufacturing costs and wider use of carbon fibres in mass markets such as automotive, aerospace and wind energy.

More information:
carbon fibers sensors Startup
Source:

ITA – Institut für Textiltechnik of RWTH Aachen University
 

26.09.2023

ECHA: More than 5 600 comments on PFAS restriction proposal

More than 4 400 organisations, companies and individuals submitted comments and information on the proposal to restrict per- and polyfluoroalkyl substances (PFAS) in the European Economic Area.

At the end of the consultation on 25 September, ECHA had received more than 5 600 comments from more than 4 400 organisations, companies and individuals.

The comments will be checked by ECHA's scientific committees for Risk Assessment (RAC) and Socio-Economic Analysis (SEAC), and those providing relevant evidence-based information will be considered in the opinion making process.

The five countries who prepared the initial proposal will also review the consultation input and may update their initial proposal based on it.

Many comments submitted during the consultation are already published on ECHA’s website. Information indicated as confidential by the consultee is not made public. Comments received very close to the deadline are currently being processed and will be published shortly.

More than 4 400 organisations, companies and individuals submitted comments and information on the proposal to restrict per- and polyfluoroalkyl substances (PFAS) in the European Economic Area.

At the end of the consultation on 25 September, ECHA had received more than 5 600 comments from more than 4 400 organisations, companies and individuals.

The comments will be checked by ECHA's scientific committees for Risk Assessment (RAC) and Socio-Economic Analysis (SEAC), and those providing relevant evidence-based information will be considered in the opinion making process.

The five countries who prepared the initial proposal will also review the consultation input and may update their initial proposal based on it.

Many comments submitted during the consultation are already published on ECHA’s website. Information indicated as confidential by the consultee is not made public. Comments received very close to the deadline are currently being processed and will be published shortly.

Next steps
RAC and SEAC are evaluating the proposed restriction and considering the relevant information received through the consultation. The committees develop their independent, scientific opinions over a series of meetings, where draft opinions are discussed. Attention is given to all aspects and impacted sectors.

ECHA will deliver the final opinions to the European Commission in the shortest possible timeframe, while ensuring proper scrutiny by the scientific committees. Once the committees adopt their opinions, they will be communicated to the public.

The Commission, together with the EU Member States, will decide on the restriction.

Background
The restriction proposal was prepared by authorities in Denmark, Germany, the Netherlands, Norway and Sweden. It was submitted to ECHA on 13 January 2023. It aims to reduce PFAS emissions into the environment and make products and processes safer for people. The six-month consultation ran from 22 March to 25 September 2023.

Further information
•    Consultation comments
•    Restriction on the manufacture, placing on the market and use of PFAS
•    Topical page on PFAS
•    REACH restriction process

More information:
ECHA PFAS
Source:

ECHA

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

05.09.2023

Beaulieu International Group at International Conference on Geosynthetics

Beaulieu International Group will turn the spotlight on geotextile products with sustainability benefits to support progress in resilient civil engineering projects at the 12th ICG Rome from 18th -21st September 2023, presenting options to target fossil carbon reduction by choosing PP-based staple fibres or woven geotextiles that are among the lowest in carbon footprint for geosynthetics.

For manufacturers of nonwoven geotextiles, Beaulieu Fibres International (BFI) offers PP fibres with > 25% carbon footprint reduction compared to the European standard PP fibres, generating 1.48 kg CO2/kg PP fibres. A step further is to accelerate the replacement of fossil carbon in engineered fibre applications by choosing its ISCC Plus certified bio-attributed MONO-PP with a negative carbon footprint.

For construction projects, nonwoven geotextiles made with high-tenacity HT8 fibres are proven to secure a longer service lifetime and reduce the environmental impact, as they offer high mechanical performance at a reduced weight.

Beaulieu International Group will turn the spotlight on geotextile products with sustainability benefits to support progress in resilient civil engineering projects at the 12th ICG Rome from 18th -21st September 2023, presenting options to target fossil carbon reduction by choosing PP-based staple fibres or woven geotextiles that are among the lowest in carbon footprint for geosynthetics.

For manufacturers of nonwoven geotextiles, Beaulieu Fibres International (BFI) offers PP fibres with > 25% carbon footprint reduction compared to the European standard PP fibres, generating 1.48 kg CO2/kg PP fibres. A step further is to accelerate the replacement of fossil carbon in engineered fibre applications by choosing its ISCC Plus certified bio-attributed MONO-PP with a negative carbon footprint.

For construction projects, nonwoven geotextiles made with high-tenacity HT8 fibres are proven to secure a longer service lifetime and reduce the environmental impact, as they offer high mechanical performance at a reduced weight.

Beaulieu Technical Textiles' (BTT) woven geotextiles provide a wide range of functions, including separation, filtration, reinforcement and erosion control, and are among the most sustainable in the industry. Depending on weight, the carbon footprint of its woven geotextiles (m²) ranges between 0.37 and 1.40 kg CO2 eq./m². They also minimize the use of natural resources for more sustainable infrastructure development. Case studies such as at the Ostend-Bruges airport highlight significant CO2 reduction on the jobsite by replacing the transport of 960 trucks of gravel with 3 trucks of woven geotextiles, and by extending the runway’s life span.

The ICG launch of its new line Terralys MF woven filtration geotextiles with monofilament boosts the performance of a common solution in building layers that require high water flow rates. High-tenacity extruded polypropylene tapes and monofilaments are interwoven to form dimensionally stable and highly permeable geotextiles. These new filtration geotextiles provide greater resistance to dirt and biological clogging. They allow water to travel freely while reducing soil erosion when employed as a separation and stabilizing layer.

As of September 2023, all PP staple fibres and woven geotextiles will have Environmental Product Declarations (EPD) based on LCAs. Each EPD is an essential tool for communicating and reporting on the sustainability performance and helps carbon-conscious customers in their purchasing and decision making. Registered EPDs are globally recognized, publicly available and free to download through EPD Libraries.

Source:

Beaulieu International Group

ElasTool in a lifting unit, e.g. for logistics, transport or mining Grafik JUMBO-Textil
ElasTool in a lifting unit, e.g. for logistics, transport or mining
22.08.2023

JUMBO-Textil: Lubricant-free tensioning and clamping system

From mechanical engineering to the construction industry, from logistics to rescue technology – tensioning and clamping systems fulfil important tasks in a number of industries. The possible uses of technical textiles for industrial applications of this kind are manifold.

Patented and precisely configured
The ElasTool system from the elastics expert consists of a connection tool and a rubber rope connected to this tool via integrated locking elements. The stainless steel, aluminium or plastic connection tool and the rubber rope – with a thickness of between 12 and 38 mm – are each configured to fit precisely. The highlight of the patented connection solution: the more tensile force is exerted, the more the rope is jammed. Thanks to the locking system, ElasTool still provides a secure hold even when the diameter of the rubber rope narrows to up to 60 percent due to the tensile load. A crucial advantage over conventional end connections by pressing.

From mechanical engineering to the construction industry, from logistics to rescue technology – tensioning and clamping systems fulfil important tasks in a number of industries. The possible uses of technical textiles for industrial applications of this kind are manifold.

Patented and precisely configured
The ElasTool system from the elastics expert consists of a connection tool and a rubber rope connected to this tool via integrated locking elements. The stainless steel, aluminium or plastic connection tool and the rubber rope – with a thickness of between 12 and 38 mm – are each configured to fit precisely. The highlight of the patented connection solution: the more tensile force is exerted, the more the rope is jammed. Thanks to the locking system, ElasTool still provides a secure hold even when the diameter of the rubber rope narrows to up to 60 percent due to the tensile load. A crucial advantage over conventional end connections by pressing.

Economical and low maintenance
The system has further advantages: the textile solution runs quietly. Unlike clamping systems with steel cable springs, there is no creaking here. In addition, textiles, plastic and aluminium are particularly lightweight materials. ElasTool therefore saves energy. Another benefit: the connection system works without lubricating oil. While conventional tensioning and clamping solutions in industrial plants and products have to be oiled regularly, the JUMBO textile system works completely maintenance-free.

Versatile and easily interchangeable
Depending on the area of application of the ElasTool, the interchangeable head can be exchanged: Plastic hook instead of aluminium eyelet, stainless steel flange instead of aluminium hook – for example. The interchangeable head can be replaced effortlessly and without special tools.

"A lifting system in a high-bay warehouse, a trolley in a crane, damping for compressors or crash systems – these are just three of the many possible applications. We adapt the dimensions, material, force-stretch behaviour, flame retardancy – like all properties – specifically to the respective project," emphasises Carl Mrusek, Chief Sales Officer of JUMBO-Textil. "Thus, with ElasTool, we offer a safe load connection for a wide variety of applications in industry."

ElasTool from JUMBO-Textil

  • Lightweight and flexible alternative to conventional tensioning and clamping systems
  • Suitable even in small installation spaces
  • With individual specifications and infinitely customisable dimensions
  • Connection tool optionally made of plastic, aluminium or stainless steel
  • Rubber rope in a thickness of 12 to 38 mm
  • Rubber rope made of polyamide, polyester, recycled PES, polypropylene, aramid, Dyneema, monofilament, natural fibres
  • Different interchangeable head shapes possible
  • As an end connection or for coupling with other machine elements
  • Tensile load up to 600 N, in individual cases more than this
  • Individually configurable e.g. with hook, eyelet or flange
Source:

JUMBO-Textil

Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz Hanns-Voith-Stiftung, Oliver Voge
Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz
11.07.2023

Future cost reduction through ultra-thin PE carbon fibres

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

The use of carbon fibres in highly stressed lightweight construction solutions, such as today's growth applications of wind turbines or pressure tanks, has become indispensable due to their excellent mechanical properties and low density. High manufacturing costs of conventional PAN precursor-based carbon fibres make the material very cost-intensive. In addition, it is not sufficiently available. New manufacturing approaches that develop alternative raw materials and manufacturing processes can be a key and growth engine for further industrial composites applications.

The aim of the work was to develop a new and cost-effective manufacturing process for high-quality ultra-thin carbon fibres using a polyethylene precursor. For this purpose, the sulphonisation process, which is time-consuming today, was to be significantly shortened. As a result, Mr. Marter Diniz produced novel ultra-thin polyethylenebased carbon fibres with a filament diameter < 3 μm with an excellent surface quality of the fibres without detectable structural defects. The fibre diameter is 2-3 times smaller than that of conventional PANbased CF. This provides the basis for mechanically high-quality material properties. At the same time, Mr. Marter Diniz was able to reduce the sulphonisation time by 25 percent. The developed material and technology set important milestones on the way to cheaper carbon fibres. With PE-based precursors, the price of CF can be reduced by 50 percent compared to conventional PAN-based CF.  

A total of five other young scientists were awarded in six categories (Drive Technology, Innovation & Technology/Artificial Intelligence, New Materials, Paper, Hydropower and Economic Sciences. This year, for the 10th time, the Hanns Voith Foundation awarded the Hanns Voith Prize to outstanding young scientists.

Source:

ITA Institut für Textiltechnik of RWTH Aachen University

(c) KARL MAYER GROUP
02.06.2023

KARL MAYER GROUP with sustainable technical textiles at ITMA

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

The KARL MAYER GROUP also supports its customers with well thought-out Care Solutions. The new support offers include retrofit packages for retrofitting control and drive technology for weft insertion and composite machines, and service packages that bundle various services. These include machine inspections and the replacement of all drive belts. The customer benefits from fixed prices that cover the costs of technician assignments, various discount options and transparent services.

A new solution for the vertical greening of cities is presented from the field of application for technical textiles. The core of the innovation is a grid textile produced on warp knitting machines with weft insertion by KARL MAYER Technische Textilien GmbH. The knitted lattice fabric is made of flax. It is used as a climbing aid for fast-growing plants, and after the greening phase, in autumn, it can be recycled together with these plants as biomass in pyrolysis plants to produce electricity and activated carbon. In summer, the planted sails lower the ambient temperature through evaporation effects. In addition, photosynthesis creates fresh air and binds CO2. Other important advantages are low soil requirements and flexible placement in public spaces. The greening system was developed by the company Micro Climate Cultivation, OMC°C, with the support of KARL MAYER Technische Textilien.

The KARL MAYER GROUP will also be exhibiting a sustainable composite solution made from natural fibres. The reinforcing textile of the innovative lightweight material is a multiaxial non-crimp fabric, which was also produced from the bio-based raw material flax on a COP MAX 4 from KARL MAYER Technische Textilien. The boatbuilding specialist GREENBOATS uses natural fibre composites to achieve sustainable products. The fact that it succeeds in this is shown, for example, by the Global Warming Potential (GWP): 0.48 kg of CO2 per kilogram of flax reinforcement compares with 2.9 kg of CO2 per kilogram of glass textile.

Source:

KARL MAYER Verwaltungsgesellschaft mbH

06.04.2023

Autoneum: Acquisition of Borgers Automotive successfully completed

The acquisition of the automotive business of Borgers, announced in January 2023, has been completed with effect from April 1, 2023, following receipt of all antitrust approvals. As a result, Autoneum now operates 67 production facilities worldwide and employs around 16 100 people in 24 countries. With the acquisition of the long-established German company, Autoneum is further expanding its global market leadership in sustainable acoustic and thermal management of vehicles. For the planned capital increase of around CHF 100 million for the long-term financing of the acquisition, the shareholders approved the creation of a capital band.

The purchase agreement signed on January 6, 2023, to acquire the assets of the insolvent Borgers companies by Autoneum could be completed. As a result, Autoneum will take over the assets of the Borgers companies in Germany and the shares in the subsidiaries in France, Poland, Sweden, Spain, the Czech Republic, the United Kingdom and the USA as well as in the company in Shanghai, China, with effect from April 1, 2023. As already communicated, the enterprise value paid amounts to EUR 117 million.

The acquisition of the automotive business of Borgers, announced in January 2023, has been completed with effect from April 1, 2023, following receipt of all antitrust approvals. As a result, Autoneum now operates 67 production facilities worldwide and employs around 16 100 people in 24 countries. With the acquisition of the long-established German company, Autoneum is further expanding its global market leadership in sustainable acoustic and thermal management of vehicles. For the planned capital increase of around CHF 100 million for the long-term financing of the acquisition, the shareholders approved the creation of a capital band.

The purchase agreement signed on January 6, 2023, to acquire the assets of the insolvent Borgers companies by Autoneum could be completed. As a result, Autoneum will take over the assets of the Borgers companies in Germany and the shares in the subsidiaries in France, Poland, Sweden, Spain, the Czech Republic, the United Kingdom and the USA as well as in the company in Shanghai, China, with effect from April 1, 2023. As already communicated, the enterprise value paid amounts to EUR 117 million.

The product and customer range of Borgers Automotive, the specialist for textile acoustics protection, insulation and trim for vehicles, ideally complements Autoneum’s sustainable product portfolio. Particularly with the wheel arch liner and trunk lining product lines as well as the truck business, Autoneum’s global presence offers further potential for profitable growth also outside Europe. In addition, Borgers has more than 150 years of experience in recycling textile materials. In the 2022 financial year, the Borgers Group – excluding the mechanical engineering division which was already sold in the summer of 2022 – generated expected annual revenue of around EUR 700 million and employed around 4 500 employees worldwide. Autoneum has agreed new pricing and delivery terms with Borgers’ customers, which will ensure both sustainable profitability and the further development of technologies and processes.

From April 1, the former Borgers sites in Germany will be part of Autoneum Germany GmbH, which has been in existence for many years. The other subsidiaries worldwide will gradually be renamed Autoneum.

More information:
Autoneum Borgers
Source:

Autoneum Management AG

(c) Freudenberg Performance Materials Holding SE & Co. KG
13.02.2023

Freudenberg Performance Materials presents range of solutions for the composites industry at JEC 2023

Freudenberg Performance Materials (Freudenberg) will present surfacing veils and core materials for lightweight fiber reinforced plastic (FRP) parts at JEC in Paris, France. Freudenberg will also be showcasing Enka® Solutions flow media and spacers for efficient vacuum infusion, resin transfer and foam injection molding processes for applications in the composites industry, etc. at the international composites show.
 
Freudenberg’s solutions for the FRP industry include a variety of glass, PAN and PET nonwovens, as well as core materials for the production of lightweight fiber reinforced plastic parts. These products are designed for anti-corrosion coatings in piping and tank construction, smooth UV resistant surfaces for facade panels, and other applications for a diverse range of end products. Products made from fiber reinforced plastics must be equipped with surfacing veils to provide abrasion resistance, corrosion resistance, smooth surfaces and mechanical strength. Freudenberg offers high-tech nonwovens that can meet these challenges.
 

Freudenberg Performance Materials (Freudenberg) will present surfacing veils and core materials for lightweight fiber reinforced plastic (FRP) parts at JEC in Paris, France. Freudenberg will also be showcasing Enka® Solutions flow media and spacers for efficient vacuum infusion, resin transfer and foam injection molding processes for applications in the composites industry, etc. at the international composites show.
 
Freudenberg’s solutions for the FRP industry include a variety of glass, PAN and PET nonwovens, as well as core materials for the production of lightweight fiber reinforced plastic parts. These products are designed for anti-corrosion coatings in piping and tank construction, smooth UV resistant surfaces for facade panels, and other applications for a diverse range of end products. Products made from fiber reinforced plastics must be equipped with surfacing veils to provide abrasion resistance, corrosion resistance, smooth surfaces and mechanical strength. Freudenberg offers high-tech nonwovens that can meet these challenges.
 
Enka® Solutions products are characterized by their typical 3D entangled polymeric filament structures. Thanks to this structure, they are exceptionally suitable as flow media and spacers when producing composite materials.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

(c) Baldwin Technology Company Inc.
08.02.2023

Majocchi uses Baldwin’s Corona Treatment Technology

Majocchi, an Italian textile manufacturer, reports that it has achieved functional and visual appeal with its key fabrics since installing Baldwin Technology Co. Inc.’s corona surface treatment technology.  

Based in Tavernerio (Como), Majocchi has a history of being a technological innovator in the textile industry. Within a decade of its conception in 1941, Majocchi became a global supplier of waterproof cotton for rainwear manufacturers. In the 1960s, the company began producing nylon and technical fabrics, which paved the way for it to become a leading provider of textiles for urban fashion, technical workwear and the military today.

Majocchi has partnered with U.S -based Baldwin Technology Co. to utilize its unrivaled corona surface-treatment technology to produce superior wettability and adhesion.  

Majocchi, an Italian textile manufacturer, reports that it has achieved functional and visual appeal with its key fabrics since installing Baldwin Technology Co. Inc.’s corona surface treatment technology.  

Based in Tavernerio (Como), Majocchi has a history of being a technological innovator in the textile industry. Within a decade of its conception in 1941, Majocchi became a global supplier of waterproof cotton for rainwear manufacturers. In the 1960s, the company began producing nylon and technical fabrics, which paved the way for it to become a leading provider of textiles for urban fashion, technical workwear and the military today.

Majocchi has partnered with U.S -based Baldwin Technology Co. to utilize its unrivaled corona surface-treatment technology to produce superior wettability and adhesion.  

Corona treatment is a technique that temporarily modifies a substrate’s surface tension  properties. The corona oxidation process improves the penetration and absorption of liquids on cellulosic and synthetic fabrics. Utilizing corona treatment before resin application on fabrics such as lycra and nylon facilitates superior adhesion and resin distribution. As a result, corona-treated fabrics provide exceptional color and tonal quality.  

Majocchi uses Baldwin’s Corona Pure Model to apply polyurethane and acrylic-based coatings to its fabrics. The system allows Majocchi to administer a controllable, uniform coating to achieve the desired functionality and aesthetics.

The system is 2,000 millimeters wide with a discharging station and four ceramic electrodes designed for textile applications with the flexibility of customizing plasma dosage for a given fabric structure, width and process speed. The Corona Pure model allows for fabric treatment up to 300 gr/m² in thickness. The system is customizable, with single-sided and dual-sided treatment capabilities. The “Easy Change” feature allows for a seamless replacing of electrodes and rapid cleaning and removal of fiber and dust residue, maintaining optimal exhaust air flow. The treatment system is built with a swiveling housing mechanism, which provides clearance for changes in textile thickness and protects the ceramic electrodes.

More information:
Baldwin Majocchi Coatings Covid-19
Source:

Baldwin Technology Company Inc.

(c) Fraunhofer ICT
06.01.2023

Fraunhofer CPM develop programmable material for ergonomic lying position

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Materials and microstructuring
Materials for applications requiring specific changes to stiffness or shape are being developed by researchers from Fraunhofer CPM, which is formed of six core institutes with the aim of designing and producing programmable materials. So, how can we program materials? “Essentially, there are two key areas where adjustments can be made: the base material – thermoplastic polymers in the case of mattresses and metallic alloys for other applications, including shape memory alloys – and, more specifically, the microstructure,” explains Dr. Heiko Andrä, spokesperson on the topic at the Fraunhofer Institute for Industrial Mathematics ITWM, one of the Fraunhofer CPM core institutes. “The microstructure of these metamaterials is made up of unit cells that consist of structural elements such as small beams and thin shells.” While the size of each unit cell and its structural elements in conventional cellular materials, like foams, vary randomly, the cells in the programmable materials are also variable – but can be precisely defined, i.e., programmed. This programming can be made, for example, in such a way that pressure on a particular position will result in specific changes at other regions of the mattress, i.e., increase the size of the contact surface and provide optimal support to certain areas of the body.

Materials can also react to temperature or humidity
The change in shape that the material should exhibit and the stimuli to which it reacts - mechanical stress, heat, moisture or even an electric or magnetic field - can be determined by the choice of material and its microstructure.

The journey to application
A single piece of material can take the place of entire systems of sensors, regulators and actuators. The goal of Fraunhofer CPM is to reduce the complexity of systems by integrating their functionalities into the material and reducing material diversity. We always have industrial products in mind when developing the programmable materials. As such, we take mass production processes and material fatigue into account, among other things,” says Franziska Wenz, deputy spokesperson on the topic at the Fraunhofer Institute for Mechanics of Materials IWM, another core institute of Fraunhofer CPM. The initial pilot projects with industry partners are also already underway. The research team expects that initially, programmable materials will act as replacements for components in existing systems or be used in special applications such as medical mattresses, comfortable chairs, variable damping shoe soles and protective clothing. “Gradually, the proportion of programmable materials used will increase,” says Andrä. Ultimately, they can be used everywhere – from medicine and sporting goods to soft robotics and even space research.

Source:

Fraunhofer ITWM

Photo: Messe Düsseldorf, Constanze Tillmann
21.12.2022

WearRAcon Europe Conference to be held at A+A 2023

Under the motto “People Matter” A+A 2023, a Trade Fair for Safety, Security and Health at Work, will revolve around the most important trends of our time: sustainability and digitalisation. Here, exoskeletons also play a prominent role as tomorrow’s ergonomic tools. An important conference in this field is WearRAcon Europe which will be held at A+A from 25 – 26 October 2023 for the first time.

The Conference will be organised by the Fraunhofer Institute IPA in cooperation with the Stuttgart University and the Wearable Robotics Association (WearRA). The 38th A+A Congress, which is held by Bundesarbeitsgemeinschaft für Sicherheit und Gesundheit bei der Arbeit (German Federal Association for Occupational Safety and Health - Basi) will be closely dovetailed thematically and in terms of content with it.

Under the motto “People Matter” A+A 2023, a Trade Fair for Safety, Security and Health at Work, will revolve around the most important trends of our time: sustainability and digitalisation. Here, exoskeletons also play a prominent role as tomorrow’s ergonomic tools. An important conference in this field is WearRAcon Europe which will be held at A+A from 25 – 26 October 2023 for the first time.

The Conference will be organised by the Fraunhofer Institute IPA in cooperation with the Stuttgart University and the Wearable Robotics Association (WearRA). The 38th A+A Congress, which is held by Bundesarbeitsgemeinschaft für Sicherheit und Gesundheit bei der Arbeit (German Federal Association for Occupational Safety and Health - Basi) will be closely dovetailed thematically and in terms of content with it.

Being able to walk again despite a serious injury, handle heavy parts without outside help or simply do overhead work comfortably and for extended periods of time - the advantages of exoskeletons have already convinced numerous industries. Exoskeletons and wearables are now already being used successfully in industry and commerce, and major machine builders and automakers as well as the medical sector are continuing to experiment with man-machine connections. Currently, the global market volume for exoskeletons is valued by leading analysts at over US$20 billion by 2030.1

The WearRAcon Europe Conference 2023 will provide new insights into the promising world of exoskeleton systems from different perspectives and, in conjunction with the A+A Congress, set future-oriented impulses. Lectures by renowned exoskeleton pioneers combined with testimonials presented by users from a variety of industries and keynotes by experts will round off the programme. And, like at the previous A+A, a Self-Experience Space will again be set up so that the exoskeleton systems of various manufacturers can be tested in realistic work scenarios.

In parallel with the Self-Experience Space, the large live study Exoworkathlon will also take place again. Trainees from various mechatronic training courses have to complete a concourse and perform holding, lifting and assembling tasks, which have been specially developed with the industry. Data is prospectively collected with different measuring sensors to measure the effects of exoskeletons. In the Exoworkathlon, the IPA focuses especially on prevention for young employees in order to raise awareness of the issue and counteract ailments at an early stage.

1 (Interview Trans.INFO mit Armin G. Schmidt, CEO von German Bionic (01/2021).

Source:

Messe Düsseldorf GmbH

12.12.2022

ANDRITZ recycling line for agricultural plastic waste nets

RecyOuest, France, has successfully started up the world's first recycling line for agricultural plastic waste nets at its mill in Argentan. The innovative recycling line featuring a unique dry-cleaning system was delivered, installed and commissioned by the international technology group ANDRITZ in August 2022.

RecyOuest, based in Argentan, France, is a green economy company that handles the recycling contaminated filamentary thermoplastics such as round bale nets and twines. With its recycling process, RecyOuest is part of a circular economy approach.

The ANDRITZ recycling line can process up to 8,000 tons of waste and produce recycling fibers for nonwoven applications and also for pellets made of waste from agricultural single-use plastic nets and twines. These pellets are then returned to the plastics industry by mixing both recycled and virgin raw materials, thus reducing the amount of virgin plastic used.

RecyOuest, France, has successfully started up the world's first recycling line for agricultural plastic waste nets at its mill in Argentan. The innovative recycling line featuring a unique dry-cleaning system was delivered, installed and commissioned by the international technology group ANDRITZ in August 2022.

RecyOuest, based in Argentan, France, is a green economy company that handles the recycling contaminated filamentary thermoplastics such as round bale nets and twines. With its recycling process, RecyOuest is part of a circular economy approach.

The ANDRITZ recycling line can process up to 8,000 tons of waste and produce recycling fibers for nonwoven applications and also for pellets made of waste from agricultural single-use plastic nets and twines. These pellets are then returned to the plastics industry by mixing both recycled and virgin raw materials, thus reducing the amount of virgin plastic used.

This line, inspired by the techniques from textile wastes recycling, is equipped with a unique mechanical dry-cleaning system that allows resource savings by avoiding the use of water and chemicals. This state-of-the-art ANDRITZ equipment allows RecyOuest to produce recycling fibers for nonwoven applications and also pellets for ever new eco-designed nets and twines for the agricultural sector, with the lowest possible environmental impact.

Source:

ANDRITZ AG

Photo: OCSiAl
24.11.2022

OCSiAl: Graphene nanotubes expand textiles’ functionality

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 
In applications where multifunctionality of textile is required, graphene nanotubes overcome the limitations of other conductive materials such as unstable anti-static properties; degradation of strength, or chemical or fire resistance; complicated manufacturing processes; dusty production; carbon contamination on the material’s surface; or limited color options. Recent developments show that graphene nanotubes provide ESD protection to textiles in full compliance with safety standards and without degrading the textile’s resistance to harsh environments, greatly enhancing the value of textiles.
 
One such example is textiles coated with fluoroelastomer (a polymer that is highly resistant to chemicals) augmented with graphene nanotubes from OCSiAl. Nanotubes provide the material with surface resistivity of 10^6–10^8 Ω/sq compliant with EN, ISO, and ATEX standards for personal protective equipment. This new technology opens the door for the fabric to be used in high-level protective suits, combining exceptional protection from chemicals with electrostatic discharge protection.
 
Another example is how graphene nanotube technology is being acknowledged as a replacement for metal yarns in fireproof and anti-static textiles, protecting against sparks, splashes of molten metal, high temperatures, and the risk of sudden electrostatic discharge. While metal yarns require a specific knitting process and storage conditions, incorporating nanotubes in a fabric does not require any changes in the manufacturing process as the water-based dispersion is introduced into the fabric at the fluoro-organic treatment stage. The fabric with OCSiAl’s graphene nanotubes has been proven to maintain the pre-set level of ESD protection (surface resistance of 10^7 Ω) after numerous washes.
 
Permanent and stable electrical conductivity, facilitated by graphene nanotubes, is not only a matter of safety but brings additional value in augmenting dust-repellent properties and touchscreen compatibility for comfort and time savings. At the same time, the ultralow nanotube concentrations result in maintained manufacturing processes and mechanical properties, and improve product aesthetics by making it possible to use a wide range of colors. Altogether, these benefits allow textile manufacturers to create next-generation special textiles with expanded functionality.

 

(c) PURE LOOP
07.09.2022

PURE LOOP: High-strength synthetic nonwoven made with a recycled content of 10 percent

Geosynthetics have become an indispensable part of the construction industry. PP nonwovens, for example - mechanically bonded continuous fibres made from specially UV-stabilised polypropylenes - are often used in blanket form as barriers, screens and filters, and their strength extends the service life of construction projects. Whether for road construction, or as barrier on glaciers or against weeds - there are myriad applications.

TenCate Geosynthetics uses the PURE LOOP ISEC evo technology to recycle this type of PP nonwoven. The European company, with locations in Austria, France and the Netherlands, is specialised in the development and production of geotextiles for modern civil engineering applications. The edge trimmings and production rejects generated during manufacturing used to be recycled at the Linz site, but not fed back into the company's own production process.

Geosynthetics have become an indispensable part of the construction industry. PP nonwovens, for example - mechanically bonded continuous fibres made from specially UV-stabilised polypropylenes - are often used in blanket form as barriers, screens and filters, and their strength extends the service life of construction projects. Whether for road construction, or as barrier on glaciers or against weeds - there are myriad applications.

TenCate Geosynthetics uses the PURE LOOP ISEC evo technology to recycle this type of PP nonwoven. The European company, with locations in Austria, France and the Netherlands, is specialised in the development and production of geotextiles for modern civil engineering applications. The edge trimmings and production rejects generated during manufacturing used to be recycled at the Linz site, but not fed back into the company's own production process.

"The demands on us were high," recalls Patrick Wiesinger, project manager at PURE LOOP. "The PP nonwoven is highly tear resistant, which means its a very challenging recycling process. Our ISEC evo machine conserves the quality of the production waste really well during recycling, so we were able to achieve the specified increase in quality for the recyclates."

Another advantage of PURE LOOP technology is the wide range of shapes in which the production scrap can be delivered for processing. "Our ifeed technology with double feed ram system and singleshaft shredder offers the ideal conditions for direct processing of these large rolls - and without the need for prior preparation of the input material by employees before the material is fed into the recycling process", emphasizes Patrick Wiesinger. With the ISEC evo recycling machine TenCate can now manufacture its high-strength PP nonwoven product with a recyclate content of up to 10 percent.

Source:

PURE LOOP, EREMA Group GmbH