From the Sector

Reset
123 results
FET-200LAB wet spinning system Photo: Fibre Extrusion Technology Limited (FET)
21.11.2022

FET wet spinning system selected for major fibre research programme

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

FET-200 Series wet spinning systems complement FET’s renowned range of melt spinning equipment. The FET-200LAB is a laboratory scale system, which is especially suitable for the early stages of formulation and process development. It is used for processing new functional textile materials in a variety of solvent and polymer combinations.

In particular, the FET-200LAB will be utilised in trials for a family of fibres made from wood pulp, a sustainable resource rather than the usual fossil fuels. Bio-based polymers are produced from biomass feedstocks such as cellulose and are commonly used in the manufacture of high end apparel. The key to cellulose and other materials like lyocell and viscose is that they can be recycled, treated and fed back into the wet spinning system for repeat manufacture.

Established in 1998, FET is a leading supplier of laboratory and pilot melt spinning systems with installations in over 35 countries and has now successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

Source:

DAVID STEAD PROJECT MARKETING LTD

Graphic NatureWorks
16.11.2022

CJ Biomaterials and NatureWorks: Joint commercialization of novel biopolymer solutions

  • Future plans for the nonwovens market

The two companies will develop sustainable materials solutions based on CJ Biomaterials’ PHACT™ PHA and NatureWorks’ Ingeo™ PLA technologies NTR and CJ Biomaterials

CJ Biomaterials, Inc., a division of South Korea-based CJ CheilJedang and leading producer of polyhydroxyalkanoate (PHA), and NatureWorks, an advanced materials company that is the world’s leading producer of polylactic acid (PLA), have signed a Master Collaboration Agreement (MCA) that calls for the two organizations to collaborate on the development of sustainable materials solutions based on CJ Biomaterials’ PHACT™ Biodegradable Polymers and NatureWorks’ Ingeo™ biopolymers. The companies will develop high-performance biopolymer solutions that will replace fossil-fuel based plastics in applications ranging from compostable food packaging and food serviceware to personal care, films, and other end products.

  • Future plans for the nonwovens market

The two companies will develop sustainable materials solutions based on CJ Biomaterials’ PHACT™ PHA and NatureWorks’ Ingeo™ PLA technologies NTR and CJ Biomaterials

CJ Biomaterials, Inc., a division of South Korea-based CJ CheilJedang and leading producer of polyhydroxyalkanoate (PHA), and NatureWorks, an advanced materials company that is the world’s leading producer of polylactic acid (PLA), have signed a Master Collaboration Agreement (MCA) that calls for the two organizations to collaborate on the development of sustainable materials solutions based on CJ Biomaterials’ PHACT™ Biodegradable Polymers and NatureWorks’ Ingeo™ biopolymers. The companies will develop high-performance biopolymer solutions that will replace fossil-fuel based plastics in applications ranging from compostable food packaging and food serviceware to personal care, films, and other end products.

The initial focus of this joint agreement will be to develop biobased solutions that create new performance attributes for compostable rigid and flexible food packaging and food serviceware. The new solutions developed will also aim to speed up biodegradation to introduce more “after-use” options consistent with a circular economy model. The focus on compostable food packaging and serviceware will create more solutions for keeping methane-generating food scraps out of landfills, which are the third largest source of methane emissions globally, according to World Bank. Using compostable food packaging and serviceware, we can divert more food scraps to composting where they become part of a nutrient-rich, soil amendment that improves soil health through increased biodiversity and sequestered carbon content.

CJ Biomaterials and NatureWorks plan to expand their relationship beyond cooperative product development for packaging to create new applications in the films and nonwoven markets.  For these additional applications, the two companies will enter into strategic supply agreements to support development efforts.

More information:
NatureWorks Biopolymere packaging
Source:

NatureWorks

Photo: Reifenhäuser
26.10.2022

Reifenhäuser Extrusion Systems and maku AG cooperate

  • Strategic partnership for automation system in the field of slot dies and coextrusion adapters

Reifenhäuser Extrusion Systems (RES) - the Reifenhäuser Group's business unit specializing in extrusion components - announces a strategic partnership with maku AG at K 2022, the world's largest plastics trade fair. The aim of the cooperation is the joint marketing and further development of the automation system designed by maku for coextrusion adapters and slot dies.

  • Strategic partnership for automation system in the field of slot dies and coextrusion adapters

Reifenhäuser Extrusion Systems (RES) - the Reifenhäuser Group's business unit specializing in extrusion components - announces a strategic partnership with maku AG at K 2022, the world's largest plastics trade fair. The aim of the cooperation is the joint marketing and further development of the automation system designed by maku for coextrusion adapters and slot dies.

The so-called PAM system (precise, autonomous, mechatronic) is available immediately and exclusively as an automation option for new Reifenhäuser dies and adapters, as well as for aftermarket dies across all manufacturers. PAM enables producers in the field of flat film and sheet production as well as extrusion coating to precisely control the entire hot part (coextrusion adapter and die) via the line's control panel. This is significantly faster and more accurate than conventional control by hand or expansion bolt automation. It enables faster start-up of good production, higher output with lower energy consumption, and thus significantly improved overall equipment efficiency (OEE). The decisive advantage lies in the use of motorized manual adjustment bolts that replace conventional thermal expansion bolts. Reifenhäuser presented the system for the first time at the K 2022.

Source:

Reifenhäuser GmbH & Co. KG Maschinenfabrik
 

Photo: EREMA
21.10.2022

EREMA: Circular economy for PET fibres

The textile industry is the third largest consumer of plastics. While growth rates in the production of fibres and textiles are high, the circular economy has hardly become established in this segment. The EREMA Group is now intensifying development of recycling solutions for this application with their new fibres and textiles business unit. Currently, the focus is on PET fibre materials from fibre production and subsequent processing steps. Technologies for recycling mixed fibre textiles from textile collection sources are to follow in a follow-up project phase.

The textile industry is the third largest consumer of plastics. While growth rates in the production of fibres and textiles are high, the circular economy has hardly become established in this segment. The EREMA Group is now intensifying development of recycling solutions for this application with their new fibres and textiles business unit. Currently, the focus is on PET fibre materials from fibre production and subsequent processing steps. Technologies for recycling mixed fibre textiles from textile collection sources are to follow in a follow-up project phase.

"With EREMA's VACUREMA® and INTAREMA® technology and PURE LOOP's ISEC evo technology, our company group already has an extensive range of machines for fibre and PET recycling applications. For ecologically and economically sound recycling, however, new technological solutions are needed to use the recycled fibres in higher-value end applications and to achieve a functioning circular economy," explains Wolfgang Hermann, Business Development Manager Application Fibres & Textiles, EREMA Group GmbH. The initial focus will be on PET, regarded as a key material for the production of synthetic fibres. The aim is to find recycling solutions that allow PET fibre materials to be prepared for reuse in PET fibre production processes. This is a significant step for the circular economy because PET fibres in textiles account for about two-thirds of the total volume of PET.

In this development work, the EREMA Group can build on existing know-how. Proven recycling technologies have been combined with a new IV optimiser. "This extends the residence time of the PET melt, which is particularly necessary in fibre recycling to efficiently remove spinning oils. Our recycling process also increases the IV value of the PET melt after extrusion back to the specific level that is essential for production of the fibre," explains Hermann. Waste PET fibre from production processes can therefore be further processed into rPET filament fibre, carpet yarn and staple fibre.

Fibre test centre with plant to test customers' materials
In order to accelerate development work, EREMA opened its own fibre test centre a few months ago, where a cross-company team is working on recycling solutions for fibre-to-fibre applications.

Source:

EREMA Gruppe

(c) Carbios
20.10.2022

Carbios publishes results of consumer research study about plastic circularity

  • Carbios’ biorecycling and biodegradation technologies internationally recognized by consumers as promising answers to their top environmental concerns
  • Carbios’ innovations considered one of the best for solving recycling effectively and achieving a real plastic circularity
  • Consumer research including qualitative and quantitative fields was conducted between March and August 2022. The research institute, Strategic Research, conducted 6000 interviews in Europe and USA

Carbios’ biorecycling and biodegradation technologies acclaimed by consumers
During the first research field study, respondents were exposed to Carbios’ biorecycling process; a new enzyme-based biotechnology that enables biological recycling of all types of PET plastic waste (including bottles, packaging and textiles), and pushes the boundaries of recycling in terms of the number of cycles.

  • Carbios’ biorecycling and biodegradation technologies internationally recognized by consumers as promising answers to their top environmental concerns
  • Carbios’ innovations considered one of the best for solving recycling effectively and achieving a real plastic circularity
  • Consumer research including qualitative and quantitative fields was conducted between March and August 2022. The research institute, Strategic Research, conducted 6000 interviews in Europe and USA

Carbios’ biorecycling and biodegradation technologies acclaimed by consumers
During the first research field study, respondents were exposed to Carbios’ biorecycling process; a new enzyme-based biotechnology that enables biological recycling of all types of PET plastic waste (including bottles, packaging and textiles), and pushes the boundaries of recycling in terms of the number of cycles.

The research results demonstrated that European and US respondents find Carbios’ biorecycling technology more unique and innovative than traditional PET recycling (i.e. thermo-mechanical recycling), as well as more relevant in its ability to address their concerns and challenges regarding recycling.

In the second research study, conducted in the US, respondents were also exposed to Carbios’ biodegradation technology: an innovative enzymatic solution by which an enzyme is incorporated into plastics during the production process of bio-sourced PLA plastics (corn, sugar cane). This approach makes the material made from plants 100% compostable at ambient temperatures and degradable like plants with the built-in enzyme biologically breaking the bioplastic down in less than eight weeks without microplastics or toxic residues; creating a fully organic circularity.

Similarly to Carbios’ biorecycling technology, Carbios’ PLA biodegradation innovation caught US respondents’ attention with 64% overall liking it. Additionally, 93% of the respondents sampled described the concept as innovative, unique, easy to understand (49%), and believable (43%). Up to 82% of the most environmentally engaged respondents declared they would definitely buy more products made with Carbios’ fully circular biodegradable bioplastic.

Consumers: No other choice but to make plastic fully circular
The research says 99% of the respondents consider it important to protect the environment, while plastic pollution is now ranked the third most-concerning environmental issues after climate change and ocean pollution.

This awareness brings most of these consumers to be environmentally active when it comes to purchasing goods and sorting. For the US respondents, eco-friendly packaging comes in the fourth place in terms of purchase drivers for packaged goods and 65% of them declare sorting plastic from general waste on a regular basis, which makes plastic the most sorted type of waste.

Nevertheless, for a vast majority of the respondents across geographies, even if they would like to reduce their plastic consumption most of the time there is no suitable alternative that is as convenient, light, and cost-efficient as plastics. Hence in an ideal world, consumers would like all plastic waste in landfills and oceans to be collected, cleaned, reused and recycled.

More information:
Carbios study circularity plastics
Source:

Carbios

04.10.2022

Carbios appoints new Director of Operations and Expertise Team

  • Stéphane Ferreira joined Carbios as Director of Operations and Executive Committee Member, on October 10, 2022.
  • Frédéric Alarcon appointed Licensing Manager
  • Arnaud Tillon appointed Group Marketing Director
  • New areas of expertise complete the seniority of Carbios’ leadership team, following June appointments of Mathieu Berthoud as Sourcing and Public Affairs Director, Lionel Arras as Industrial Director, and Pascal Bricout as Strategy and Finance Director.
  • Departure of Martin Stephan, Deputy CEO

Carbios strengthens its organization with the appointment of Stéphane Ferreira as Director of Operations. He will be in charge of the business’ global development and will steer the relationship with Carbios’ industrial and commercial partners.

Stéphane Ferreira's team will be reinforced by two new members, including:

  • Stéphane Ferreira joined Carbios as Director of Operations and Executive Committee Member, on October 10, 2022.
  • Frédéric Alarcon appointed Licensing Manager
  • Arnaud Tillon appointed Group Marketing Director
  • New areas of expertise complete the seniority of Carbios’ leadership team, following June appointments of Mathieu Berthoud as Sourcing and Public Affairs Director, Lionel Arras as Industrial Director, and Pascal Bricout as Strategy and Finance Director.
  • Departure of Martin Stephan, Deputy CEO

Carbios strengthens its organization with the appointment of Stéphane Ferreira as Director of Operations. He will be in charge of the business’ global development and will steer the relationship with Carbios’ industrial and commercial partners.

Stéphane Ferreira's team will be reinforced by two new members, including:

  • Frédéric Alarcon, Licensing Manager, who joined Carbios on September 5. His role is to build and deploy the process licensing model that is at the heart of Carbios’ business model;
  • Arnaud Tillon, Group Marketing Director, who joined the firm on September 12. He will support the company’s development by defining and deploying the marketing strategy. He is also in charge of reinforcing the customer culture within the organization.

Martin Stephan will leave his position as Deputy CEO on October 15, 2022, after nearly six years at Carbios.

Emmanuel Ladent, Carbios’ Chief Executive Officer: "The appointment of Stéphane Ferreira as Director of Operations is excellent news for Carbios. His extensive experience in global markets will help Carbios reach a new level, by deploying the company’s proprietary technologies on a large scale. I am also very pleased with the recent arrivals of Frédéric Alarcon and Arnaud Tillon, whose respective expertise in licenses and mass-market offers will be invaluable. Lastly, on behalf of all Carbios’ teams, I want to salute and thank Martin Stephan for his continued commitment to the company’s development. His experience, expertise and skills have been key to developing partnerships which have enabled Carbios to be so close to industrial deployment and recognized as the future worldwide leader of plastics and fibers in the circular economy."

More information:
Carbios Managing Director
Source:

Carbios

04.10.2022

Carbios appoints Pascal Bricout as Chief Strategy and Financial Officer

Carbios announced the appointment of Pascal Bricout as Chief Strategy and Financial Officer and a member of the Company’s Executive Committee.

Mr. Bricout will oversee the management and organization of Carbios’ Finance division. He will also steer the Group’s Strategy, investor relations and the launch of the company’s Corporate Social Responsibility policy. He joins the company with over 30 years’ experience in finance, strategy and international mergers and acquisitions.
 
Prior to joining Carbios, Mr. Bricout served as Chief Financial Officer for Michelin in Asia, which is a major area of growth and development for the company. Over the past 10 years, he has focused primarily on major strategic mergers and acquisitions.

Mr. Bricout holds a Master Degree in Finance from Université Paris-Dauphine. He began his career at PwC, as a manager in the International Transactions Services teams in Paris and London.

Carbios announced the appointment of Pascal Bricout as Chief Strategy and Financial Officer and a member of the Company’s Executive Committee.

Mr. Bricout will oversee the management and organization of Carbios’ Finance division. He will also steer the Group’s Strategy, investor relations and the launch of the company’s Corporate Social Responsibility policy. He joins the company with over 30 years’ experience in finance, strategy and international mergers and acquisitions.
 
Prior to joining Carbios, Mr. Bricout served as Chief Financial Officer for Michelin in Asia, which is a major area of growth and development for the company. Over the past 10 years, he has focused primarily on major strategic mergers and acquisitions.

Mr. Bricout holds a Master Degree in Finance from Université Paris-Dauphine. He began his career at PwC, as a manager in the International Transactions Services teams in Paris and London.

Mr. Bricout, Carbios’ Chief Strategy & Financial Officer noted: “I am thrilled to be joining Carbios and proud to take part in this concrete, meaningful advance toward circular economy. Having developed unparalleled breakthrough technologies in plastic and textile biodegradation and biorecycling, Carbios now needs to execute a successful industrial and commercial phase. This is crucial for companies using PET to achieve, from 2025, their sustainable development goals. Within this dynamic context, Carbios and its subsidiary, Carbiolice, are poised to become global leaders in the development and industrialization of innovative bioprocesses to revolutionize the life cycles of plastics and textiles.”

More information:
Carbios green chemistry polymer
Source:

Carbios

(c) JEC Group
23.09.2022

JEC Forum DACH 2022 announces program

This year’s JEC forum DACH, taking place from November 29 to 30, 2022, is strategically located in a composites « golden triangle », between Munich, Augsburg and Ingelstadt. This dynamic area, at the heart of the Bavarian region is known to be hosting major companies such as Airbus, Faurecia, Kuka, Siemens, Voith Composites, KraussMaffei Technologies, Cevotec, Munich Composites, or Premium Aerotec, thus promising a two-days opportunity to meet with key decision makers.

The digital platform available to all participants prior to the event enables to schedule one to one business meetings between buyers and suppliers from the whole value chain of composites, as well as informal networking during breaks, lunches and evening event.

In total, 500 attendees, suppliers and buyers, from Germany, Austria and Switzerland, are expected to participate to JEC Forum DACH 2022.

Business meetings event*
DAY 1 – November 29, 2022:

This year’s JEC forum DACH, taking place from November 29 to 30, 2022, is strategically located in a composites « golden triangle », between Munich, Augsburg and Ingelstadt. This dynamic area, at the heart of the Bavarian region is known to be hosting major companies such as Airbus, Faurecia, Kuka, Siemens, Voith Composites, KraussMaffei Technologies, Cevotec, Munich Composites, or Premium Aerotec, thus promising a two-days opportunity to meet with key decision makers.

The digital platform available to all participants prior to the event enables to schedule one to one business meetings between buyers and suppliers from the whole value chain of composites, as well as informal networking during breaks, lunches and evening event.

In total, 500 attendees, suppliers and buyers, from Germany, Austria and Switzerland, are expected to participate to JEC Forum DACH 2022.

Business meetings event*
DAY 1 – November 29, 2022:

  • 10.15 – 11.45 am – “Keynote and Plenary Conference Session : Market Developments
  • Moderator: Dr. Michael Effing, AVK
  • 4.0 – 5.30 pm – “Keynote and Plenary Conference Session: Recycling of Composites

DAY 2 – November 30, 2022:

  • 9.00– 10.30 am – “Keynote and Plenary Conference Session: Sustainability of Composites
  • 3.15 – 4.45 pm – “Keynote and Plenary Conference Session: Innovations: Raw Materials, Processes and Applications

Celebrating composites innovation through awards and startup competition

  • The AVK Innovation Awards: Goal is to promote and give prominence to new products/components and applications made from fiber-reinforced plastics (FRP) and promote new processes and methods for manufacturing FRP products.
  • Startup Booster competition: The contest is open to entrepreneurs, SMEs, startups and academic spinoffs building innovative composite and advanced materials projects that are based in Germany, Austria or Switzerland (the DACH region).

*You can view the full program here.

Source:

JEC Group

(c) Fraunhofer CCPE
19.09.2022

Fraunhofer CCPE on the way to an international circular plastics economy

More than 350 million tons of plastic are produced worldwide every year, and vast amounts of plastic waste simply end up in the environment. The circular economy offers enormous potential for keeping plastics in the loop and thus conserving resources and the environment. Since 2018, six Fraunhofer institutes in the Fraunhofer CCPE cluster have been researching how to make the plastics value chain circular, and Prof. Manfred Renner has been the new head of the cluster since August 2022. Research results, implementation projects and strategies to accelerate the transformation to a circular plastics economy will be presented by Fraunhofer CCPE at the first international Fraunhofer CCPE Summit on February 8 and 9, 2023 in Munich.

More than 350 million tons of plastic are produced worldwide every year, and vast amounts of plastic waste simply end up in the environment. The circular economy offers enormous potential for keeping plastics in the loop and thus conserving resources and the environment. Since 2018, six Fraunhofer institutes in the Fraunhofer CCPE cluster have been researching how to make the plastics value chain circular, and Prof. Manfred Renner has been the new head of the cluster since August 2022. Research results, implementation projects and strategies to accelerate the transformation to a circular plastics economy will be presented by Fraunhofer CCPE at the first international Fraunhofer CCPE Summit on February 8 and 9, 2023 in Munich.

In a circular plastics economy, resources can be saved, products can be intelligently designed for long service life, and end-of-life losses can be reduced. Systemic, technical and social innovations are needed to make the transition from a linear to a circular economy a success. This is what the Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE is researching in the three divisions “Materials”, “Systems” and “Business”. The cooperation of the six Fraunhofer institutes IAP, ICT, IML, IVV, LBF and UMSICHT enables a multi-stakeholder approach in which the appropriate R&D competencies are bundled.

Fraunhofer CCPE would like to present and discuss successful projects and research approaches on an international scale at the Fraunhofer CCPE Summit on February 8 and 9, 2023 in Munich. The summit is to become an international forum for exchanging ideas for solutions and innovations for a circular plastics economy.

Cross-industry collaboration - local, regional and international
Since August 2022, Prof. Manfred Renner, Institute Director of Fraunhofer UMSICHT, is the new head of Fraunhofer CCPE. He succeeds Prof. Eckhard Weidner, who has retired. “Cross-industry cooperation - very local, but also regional and international - is the elementary prerequisite for a functioning circular plastics economy. At the summit, players from all points of the compass will meet and network in order to rethink the plastics value chain together," explains Prof. Manfred Renner, adding, “We want to provide answers to the following questions:  How can we make all Circular Economy principles, i.e. the ten R-strategies, known? How can industry, science and society best cooperate in a transformation to a circular plastics economy for the greatest possible impact?”

Results of the Fraunhofer CCPE cluster so far are innovative approaches for circular business models, intelligent collection, sorting, and recycling technologies, but also new formulations for circular polymers and compounds to enable multiple recycling cycles. With the newly developed assessment tool CRL® , companies can, for example, self-assess the maturity of products or product systems with regard to the circular economy. The tool checks the extent to which a product already takes into account circular economy principles in the areas of product design, product service system, end-of-life management and circular economy, and where there is still potential for improvement.

Source:

Fraunhofer UMSICHT

Photo: Reifenhäuser GmbH & Co. KG Maschinenfabrik
08.09.2022

Ulrich Reifenhäuser receives the Georg Menges Award

Ulrich Reifenhäuser, CSO of the Reifenhäuser Group, was awarded the prestigious Georg Menges Prize 2022 at the 31st International Colloquium on Plastics Technology in Aachen from September 7-8, 2022. The prize recognizes individuals or groups who have rendered outstanding services to the transfer of research results into industrial practice. The sponsors of the award are the Plastics and Rubber section of Germany's Mechanical Engineering Industry Association (VDMA), together with PlasticsEurope Deutschland and the Association of Sponsors of the Institute for Plastics Processing (IKV) in Industry and Craft at RWTH University. The award is traditionally presented every two years during the colloquium organized by the IKV. Ulrich Reifenhäuser is the first businessman to receive the Georg Menges Award.

Ulrich Reifenhäuser, CSO of the Reifenhäuser Group, was awarded the prestigious Georg Menges Prize 2022 at the 31st International Colloquium on Plastics Technology in Aachen from September 7-8, 2022. The prize recognizes individuals or groups who have rendered outstanding services to the transfer of research results into industrial practice. The sponsors of the award are the Plastics and Rubber section of Germany's Mechanical Engineering Industry Association (VDMA), together with PlasticsEurope Deutschland and the Association of Sponsors of the Institute for Plastics Processing (IKV) in Industry and Craft at RWTH University. The award is traditionally presented every two years during the colloquium organized by the IKV. Ulrich Reifenhäuser is the first businessman to receive the Georg Menges Award.

The award was presented by Professor Dr.-Ing. Christian Hopmann, Director of the IKV and Dr.-Ing. Herbert Müller, Chairman of the Board of the IKV Sponsors' Association. In his laudatory speech, Professor Hopmann highlighted Ulrich Reifenhäuser's great and successful commitment to the industry and his tireless search for optimal solutions that are sustainable in the best sense of the word, and praised him as a personality of integrity and integration. "The Georg Menges Prize is awarded for the consistent implementation of research and innovation in industry. The previously described achievements of our prizewinner would certainly have been enough to receive the award but, for the sponsors of the Prize, what was especially important and the key argument for their decision was Ulrich Reifenhäuser’s honorary dedication to the K tradefair," explained Professor Hopmann.

Ulrich Reifenhäuser has been a member of the Reifenhäuser Group management since 1992 and is responsible for international line sales. Together with his brother Bernd Reifenhäuser, he manages the company in the third generation. Ulrich Reifenhäuser has been a board member of the VDMA Plastics and Rubber Machinery Association for more than 25 years and has been its chairman since 2010. In 2020, he was inducted into the Plastics Hall of Fame, as was the award's namesake, and in 2022 he will be co-chairing the world's leading plastics trade fair in Düsseldorf for the seventh time in a row as "President of K show."

Source:

Reifenhäuser GmbH & Co. KG Maschinenfabrik

(c) Borealis
08.09.2022

Borealis and Trexel develop fully recyclable lightweight bottle

  • Monomaterial solution contains renewably-sourced polypropylene from the Bornewables™ portfolio of circular polyolefins
  • Trexel employs its proprietary MuCell® technology to deliver a range of lightweighting benefits
  • EverMinds™ in action: reuse and design for recycling are focus of value chain collaboration

Borealis and Trexel, an expert in foaming injection and blow moulded parts, announce that they have co-developed a new plastic bottle based on a grade from the Bornewables™ portfolio of polyolefins made using renewable feedstocks derived 100% from waste and residue streams. The lightweight bottle – which will be showcased at the Borealis stand at the K 2022 (from 19 to 26 October 2022 in Düsseldorf) – is reusable and fully recyclable. It boasts a significantly lower overall CO2 footprint because it is composed of renewably-sourced feedstock and produced in the foaming process.

  • Monomaterial solution contains renewably-sourced polypropylene from the Bornewables™ portfolio of circular polyolefins
  • Trexel employs its proprietary MuCell® technology to deliver a range of lightweighting benefits
  • EverMinds™ in action: reuse and design for recycling are focus of value chain collaboration

Borealis and Trexel, an expert in foaming injection and blow moulded parts, announce that they have co-developed a new plastic bottle based on a grade from the Bornewables™ portfolio of polyolefins made using renewable feedstocks derived 100% from waste and residue streams. The lightweight bottle – which will be showcased at the Borealis stand at the K 2022 (from 19 to 26 October 2022 in Düsseldorf) – is reusable and fully recyclable. It boasts a significantly lower overall CO2 footprint because it is composed of renewably-sourced feedstock and produced in the foaming process.

The Bornewables™ portfolio of circular polyolefins helps reduce the carbon footprint while offering material performance equal to virgin polymers. Using Bornewables grades allows for design freedom and colour flexibility, and helps retain a premium look and feel. The grades – which are commercially available in Europe – help conserve natural resources because they are derived solely from waste and residue streams, for example from used cooking oil. Reusing waste already in circulation instead of fossil fuel-based feedstocks enhances the sustainability of applications made using the Bornewables grades.

The reusable new bottle developed by Borealis and Trexel retains its value over many life cycles thanks to the use of Trexel’s proprietary technology in tandem with Bornewables grades; as a material solution, the new bottle minimises the use of valuable raw materials. Moreover, converters consume less energy in the production process when using the MuCell® technology. The bottle thus helps close the loop on plastics circularity by way of design for recycling, the use of renewable feedstocks, and excellent material performance across multiple life cycles.

Source:

Borealis

(c) INDA
23.08.2022

INDA Announces the 2022 RISE® Innovation Award Finalists

  • Innovations in Recycling and Sustainability: Sustainable Diaper Components, Natural Fibers, and Kitty Litter from Recycled Nappies

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists that will present their innovative material science solutions as they compete for the prestigious RISE® Innovation Award during the 12th edition of the Research, Innovation & Science for Engineered Fabrics Conference (RISE®) to be held in person September 27-28, 2022 at North Carolina State University.  The award recognizes novel innovations within and on the periphery of the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics.

  • Innovations in Recycling and Sustainability: Sustainable Diaper Components, Natural Fibers, and Kitty Litter from Recycled Nappies

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists that will present their innovative material science solutions as they compete for the prestigious RISE® Innovation Award during the 12th edition of the Research, Innovation & Science for Engineered Fabrics Conference (RISE®) to be held in person September 27-28, 2022 at North Carolina State University.  The award recognizes novel innovations within and on the periphery of the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics.

Finalists for the 2022 RISE® Innovation Award:
Cat Litter Made from Recycled Nappies – DiaperRecycle
DiaperRecycle has developed technology to recycle used diapers into cat litter. The aim of the company is to make an environmental impact and decrease the climate changing emissions of diaper waste. They’re diverting used diapers (used in households and businesses such as elder care) from landfill, separating the plastic and fiber and making cat litter. The plastic is prepared for recycling by plastics recyclers. The cat litter product is made by DiaperRecycle from the super absorbent fiber of diapers; it’s highly absorbent and flushable.

Biodegradable Diaper Components – Gottlieb Binder GmbH & Co. KG
Together, Avgol and Binder take on the challenge of disposable absorbent articles for the good of future generations and came up with sustainable diaper components. The technologies used are based on biotransformation technology, which makes it possible to achieve more sustainable products by supporting recycling and providing an alternative route for non-recyclable/fugitive waste management.

sero® hemp fibers – Bast Fibre Technologies, Inc.
Bast Fibre Technologies’ sero® hemp fibers offer the nonwoven industry an all-natural substitute for plastic fibers. From dedicated European- and US-based production facilities, BFT transforms raw bast fibers into premium natural fibers for applications ranging from single-use and durable wipes to industrial applications. Suitable for minority or majority blends, sero® hemp combines easily with standard nonwoven fibers to produce fabrics that meet the industry requirements for strength, uniformity, and processing efficiency.

RISE® conference attendees, technology scouts and product developers in the nonwoven/engineered fabrics industry seeking new developments to advance their businesses, will electronically vote for the recipient of the 2022 RISE® Innovation Award. The winner will be announced Wed., Sept. 28th.

Technical experts on INDA’s Technical Advisory Board selected three finalists from among 12 nominations.  The 22-member board of technical professionals is represented by companies such as Absorbent Hygiene Insights LLC, Attindas Hygiene Partners, Berry Global, Cotton Incorporated, Crown Abbey, LLC, The DAK Group, Fi-Tech, Inc. Freudenberg Performance Materials, Glatfelter Sontara Old Hickory, Inc., Lenzing Fibers, Inc., Natureworks LLC, Nice-Pak Products, Inc./PDI, Nonwovens by Design, Norafin (Americas) Inc., The Nonwovens Institute at North Carolina State University, Poccia Consulting, LLC, The Procter & Gamble Company, RKW North America, Inc., Rockline Industries, Smith, Johnson & Associates, Suominen Corporation, and Texas Tech University.

“The RISE Conference recognizes and promotes innovation across the nonwoven and engineered material industry. Technology leaders will share invaluable information on innovative new approaches and concepts to resolve material science challenges. For any technical leader, technology scout or new product innovator, RISE is an event not to be missed,” said Tony Fragnito, INDA’s President.

The conference program will cover relevant and timely topics including: Creating a Circular Industry, Advancements in Sustainable Inputs in PLA, Developments in Natural Fibers I and II, Sustainable Inputs in Fibers and Biofibers, Sustainable Inputs from Waste Products, and Economic Insights and Market Intelligence.

More information:
INDA RISE®
Source:

INDA

Fashion Revolution
19.08.2022

Results of the FASHION TRANSPARENCY INDEX 2022

The world’s largest fashion brands and retailers must increase transparency to tackle the climate crisis and social inequality, according to the latest Fashion Transparency Index.

The seventh edition of the Fashion Transparency Index ranks 250 of the world’s largest fashion brands and retailers based on their public disclosure of human rights and environmental policies, practices, and impacts, across their operations and supply chains.

  • Brands achieved an average score of just 24%, with nearly a third of brands scoring less than 10%
  • The majority of brands (85%) do not disclose their annual production volumes despite mounting evidence of clothing waste around the world
  • Most major brands and retailers (96%) do not publish the number of workers in their supply chain paid a living wage

The Index reveals insights into the most pressing issues facing the fashion industry, like:

The world’s largest fashion brands and retailers must increase transparency to tackle the climate crisis and social inequality, according to the latest Fashion Transparency Index.

The seventh edition of the Fashion Transparency Index ranks 250 of the world’s largest fashion brands and retailers based on their public disclosure of human rights and environmental policies, practices, and impacts, across their operations and supply chains.

  • Brands achieved an average score of just 24%, with nearly a third of brands scoring less than 10%
  • The majority of brands (85%) do not disclose their annual production volumes despite mounting evidence of clothing waste around the world
  • Most major brands and retailers (96%) do not publish the number of workers in their supply chain paid a living wage

The Index reveals insights into the most pressing issues facing the fashion industry, like:

  • As new and proposed legislation focuses on greenwashing claims, almost half of major brands (45%) publish targets on sustainable materials yet only 37% provide information on what constitutes a sustainable material.
  • Only 24% of major brands disclose how they minimise the impacts of microfibres despite textiles being the largest source of microplastics in the ocean.
  • The vast majority of major brands and retailers (94%) do not disclose the number of workers in their supply chains who are paying recruitment fees. This paints an unclear picture of the risks of forced labour as workers may be getting into crippling debt to accept jobs paying poverty wages.
  • While many brands use their channels to talk about social justice, they need to go beyond lip service. Just 8% of brands publish their actions on racial and ethnic equality in their supply chains.

Despite these results, Fashion Revolution is encouraged by increasing supply chain transparency among many major brands, primarily with first-tier manufacturers where the final stage of production occurs, e.g. cutting, sewing, finishing and packing. Nine brands have disclosed their first-tier manufacturers for the first time this year. It is encouraging to see significant progress across market segments including luxury, sportswear, footwear and accessories and across different geographies.

Fashion Revolution’s co-founder and Global Operations Director Carry Somers says: “In 2016, only 5 out of 40 major brands (12.5%) disclosed their suppliers. Seven years later, 121 out of 250 major brands (48%) disclose their suppliers. This clearly demonstrates how the Index incentivises transparency but it also shows that brands really are listening to the millions of people around the world who keep asking them #WhoMadeMyClothes? Our power is in our persistence.”

More key findings from the Fashion Transparency Index 2022:

Progress on transparency in the global fashion industry is still too slow among 250 of the world’s largest fashion brands and retailers, with brands achieving an overall average score of just 24%, up 1% from last year
For another year, the initiative has seen major brands and retailers publicly disclose the most information about their policies, commitments and processes on human rights and environmental topics and significantly less about the results, outcomes and impacts of their efforts.

Most (85%) major brands still do not disclose their annual production volumes despite mounting evidence of overproduction and clothing waste
Thousands of tonnes of clothing waste are found globally. However, brands have disclosed more information about the circular solutions they are developing (28%) than on the actual volumes of pre- (10%) and post-production waste they produce (8%). Brands have sat by as waste importing countries foot the bill, resulting in serious human rights and environmental implications.

Just 11% of brands publish a responsible purchasing code of conduct indicating that most are still reluctant to disclose how their purchasing practices could be affecting suppliers and workers
Greater transparency on how brands interact with their suppliers ought to be a first step towards eliminating harmful practices and promoting fair purchasing practices. The poor performance on transparency in this vital area is a missed opportunity for brands to demonstrate they are serious about addressing the root causes of harmful working conditions, including the instances where they themselves are the key driver.

Despite the urgency of the climate crisis, less than a third of major brands disclose a decarbonisation target covering their entire supply chain which is verified by the Science-Based Targets Initiative
Many brands and retailers rely heavily on garment producing countries that are vulnerable to the impacts of the climate crisis, yet our research shows that only 29% of major brands and retailers publish a decarbonisation target covering their operations and supply chain which is verified by the Science Based Targets Initiative.

Only 11% of brands publish their supplier wastewater test results, despite the textile industry being a leading contributor to water pollution
The fashion industry is a major contributor to water pollution and one of the most water intensive industries on the planet. Only 11% of major brands publish their wastewater test result, and only 25% of brands disclose the process of conducting water-related risk assessments in their supply chain. Transparency on wastewater test results is key to ensuring that brands are held accountable for their potentially devastating impacts on local biodiversity, garment workers and their communities.

Most major brands and retailers (96%) do not publish the number of workers in their supply chain paid a living wage nor do they disclose if they isolate labour costs
Insufficient progress is being made by most brands towards ensuring that the workers in their supply chain are paid enough to cover their basic needs and put aside some discretionary income. Just 27% of brands disclose their approach to achieving living wages for supply chain workers and 96% do not publish the number of workers in their supply chain paid a living wage. In response, we have joined forces with allies across civil society to launch Good Clothes, Fair Pay. The campaign demands groundbreaking living wage legislation across the garment, textile and footwear sector.

 

Source:

Fashion Revolution

11.08.2022

BB Engineering at the K Show 2022

As a sub-exhibitor of Oerlikon, BB Engineering will present its product range in the fields of extrusion, mixing and filtration as well as PET recycling with the VacuFil and VarioFil R+ systems at the K show 2022.

BB Engineering has been focusing its development work increasingly on recycling technologies for several years. In addition to extruders, filters and mixers that are suitable for both recycling processes and the processing of recyclate, BB Engineering offers a complete PET recycling plant called VacuFil.

As a sub-exhibitor of Oerlikon, BB Engineering will present its product range in the fields of extrusion, mixing and filtration as well as PET recycling with the VacuFil and VarioFil R+ systems at the K show 2022.

BB Engineering has been focusing its development work increasingly on recycling technologies for several years. In addition to extruders, filters and mixers that are suitable for both recycling processes and the processing of recyclate, BB Engineering offers a complete PET recycling plant called VacuFil.

With VacuFil, BB Engineering has developed an innovative PET LSP recycling process. The process combines gentle large-scale filtration and targeted IV regulation for consistently outstanding rPET melt quality. Thus, much more than simple "downcycling" is possible with VacuFil. VacuFil processes a wide range of input materials - post-production and post-consumer. The patented key component Visco+ vacuum filter removes volatile impurities quickly and reliably. VacuFil is a modular system that can be designed for different recycling applications. Simple granulation is possible, but also direct feeding into further processing, e.g. in the synthetic fiber spinning mill. BBE offers VacuFil in combination with its own VarioFil compact spinning plant to produce polyester yarn.

At the K show 2022, visitors can experience the VacuFil Visco+ recycling technology in operation with a connected VarioFil spinning plant and see live how recycling yarn is produced from PET waste.

Source:

BB Engineering GmbH

(c) Fraunhofer UMSICHT/Mike Henning
Prof. Christian Doetsch (l.) and Prof. Manfred Renner (r.)
09.08.2022

Fraunhofer UMSICHT: New institute directors

Prof. Manfred Renner and Prof. Christian Doetsch will take joint leadership of the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT from August 2022. As renowned scientists, they have most recently shaped the direction of the institute as heads of the Products division and Energy division respectively, and will now follow in the footsteps of Prof. Eckhard Weidner, who has entered retirement.

This is the first time in its history that Fraunhofer UMSICHT is led by two directors. Both institute directors began their professional careers at the institute and from August they will have a joint hand in its future.

Prof. Manfred Renner and Prof. Christian Doetsch will take joint leadership of the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT from August 2022. As renowned scientists, they have most recently shaped the direction of the institute as heads of the Products division and Energy division respectively, and will now follow in the footsteps of Prof. Eckhard Weidner, who has entered retirement.

This is the first time in its history that Fraunhofer UMSICHT is led by two directors. Both institute directors began their professional careers at the institute and from August they will have a joint hand in its future.

Prof. Manfred Renner holds a doctorate in mechanical engineering, specializing in process engineering and business development. Since 2006, he has held various roles at Fraunhofer UMSICHT, most recently heading up the Products division and overseeing its 126 employees and its budget of 14.8 million euros. He has set international standards through his award-winning research into a free of water tanning leather tanning process that uses compressed carbon dioxide. With the development of innovative aerogel-based insulation materials for building facades, he has made a significant contribution to environmentally friendly, circular applications in the construction industry and initiated a number of industrial projects. One of the notable technological breakthroughs made by his team was the development of a new type of fire-resistant glass, which can withstand even the most extreme heat. This won his development team the Joseph von Fraunhofer Prize in October 2020.

Alongside becoming institute director, Prof. Renner will also take over the leadership of the Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE in August 2022. In this role, he will represent the Fraunhofer-Gesellschaft on a national and international level with regard to the transformation of industry and society to a circular economy. In addition, he will start his professorship in Responsible Process Engineering at the Faculty of Mechanical Engineering of the Ruhr-Universität Bochum. Over the course of his professorship, he will shape the systemic development of the circular economy at a corporate, regional and European level.

Prof. Christian Doetsch has worked in energy research for more than 25 years, spending most of this time at Fraunhofer UMSICHT. As head of the Energy division, he managed a team of around 145 employees and was responsible for a budget of approximately 10.4 million euros. His technological focal points are energy storage, Power-to-X technologies including hydrogen electrolysis and chemical conversion, catalysts, and energy system modeling and optimization. His overarching aim is the integration of renewable energies into a cross-sectoral, resilient energy system.

In 2015, Doetsch co-founded the award-winning start-up Volterion GmbH & Co. KG, which develops redox flow batteries. He attained high visibility on a global scale by redesigning stacks, one of the main components of redox flow batteries, an achievement for which he, his team and Volterion representatives were awarded the Joseph von Fraunhofer Prize in May 2021. The energy expert also acts as deputy spokesperson for the Fraunhofer Energy Alliance and task manager for the energy storage group at the International Energy Agency (IEA). He also co-founded the “Open District Hub e. V.,” an association that promotes the energy transition in the sector by means of energy systems integration.

Since January 2020, he has been Professor of Cross Energy Systems at the Faculty of Mechanical Engineering of the Ruhr-Universität Bochum. In this role, he conducts research into ecological evaluation and resilience of cross-sectoral energy systems.

Source:

Fraunhofer UMSICHT

25.07.2022

Carbios: Strengthening its leadership in the biorecycling of plastics and textiles

  • Exceptional achievement of research work on the use of Nuclear Magnetic Resonance (NMR) spectroscopy for understanding PET depolymerization enzymes

Carbios (Euronext Growth Paris: ALCRB), a pioneer in the development of enzymatic solutions dedicated to the end-of-life of plastic and textile polymers, announces the publication of an article entitled “An NMR look at an engineered PET depolymerase” in the scientific journal Biophysical Journal.

The article describes the use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the thermal stability of PET depolymerization enzymes and the mechanism of adsorption of the enzyme on the polymer. This innovative approach, which required months of development, is a world first and opens up new ways of improving these enzymes. This publication confirms Carbios' international lead in the development of the most efficient enzymes for the depolymerization and recycling of plastics.

  • Exceptional achievement of research work on the use of Nuclear Magnetic Resonance (NMR) spectroscopy for understanding PET depolymerization enzymes

Carbios (Euronext Growth Paris: ALCRB), a pioneer in the development of enzymatic solutions dedicated to the end-of-life of plastic and textile polymers, announces the publication of an article entitled “An NMR look at an engineered PET depolymerase” in the scientific journal Biophysical Journal.

The article describes the use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the thermal stability of PET depolymerization enzymes and the mechanism of adsorption of the enzyme on the polymer. This innovative approach, which required months of development, is a world first and opens up new ways of improving these enzymes. This publication confirms Carbios' international lead in the development of the most efficient enzymes for the depolymerization and recycling of plastics.

Prof. Alain Marty, Chief Scientific Officer of Carbios and co-author of the article, explains: “ Nearly 25 researchers are currently working on our unique enzymatic technology. It is based on academic collaborations with the world's leading experts in their fields..”

Dr. Guy Lippens, CNRS Research Director and co-author of the artcle, adds: “Nuclear Magnetic Resonance (NMR) is an extraordinary biophysical technique for visualizing an enzyme directly in solution. Our study is the first to use NMR as a complementary technique to crystallography and molecular modeling to observe a PETase. This gives new perspectives to better understand the functioning of these enzymes and it makes it possible to imagine new ways of improving these enzymes. ”

More information:
Carbios de-polymerization
Source:

Carbios

Geno and Aquafil
21.07.2022

Geno and Aquafil: Pre-commercial production for plant-based nylon-6

Genomatica (Geno) alongside longtime collaborator Aquafil [ECNL:IM] successfully completed the first demonstration scale production runs for plant-based nylon-6. The material is intended to reshape the $22B nylon industry, enabling brands to meet demand from consumers for sustainable everyday materials from apparel to automotive parts to carpets. Geno and Aquafil have produced the first several tons of plant-based nylon-6 building block caprolactam, have converted it to nylon-6 polymer, and are now in the process of transforming it for evaluation in nylon applications such as yarns for textile and carpet and engineering plastics as part of pre-commercial quantities from demonstration production taking place in Europe.

The companies have been collaborating to first produce pilot-scale quantities of plant-based nylon-6 and have now advanced to produce pre-commercial quantities at demonstration scale which will help determine the final design of future commercial plants. The material will go to leading global brands and their value chain partners who are eager to explore and develop renewable products, create showcase goods and test feedback with customers.

Genomatica (Geno) alongside longtime collaborator Aquafil [ECNL:IM] successfully completed the first demonstration scale production runs for plant-based nylon-6. The material is intended to reshape the $22B nylon industry, enabling brands to meet demand from consumers for sustainable everyday materials from apparel to automotive parts to carpets. Geno and Aquafil have produced the first several tons of plant-based nylon-6 building block caprolactam, have converted it to nylon-6 polymer, and are now in the process of transforming it for evaluation in nylon applications such as yarns for textile and carpet and engineering plastics as part of pre-commercial quantities from demonstration production taking place in Europe.

The companies have been collaborating to first produce pilot-scale quantities of plant-based nylon-6 and have now advanced to produce pre-commercial quantities at demonstration scale which will help determine the final design of future commercial plants. The material will go to leading global brands and their value chain partners who are eager to explore and develop renewable products, create showcase goods and test feedback with customers.

Plant-based nylon-6 is Geno’s third major product line on a path to commercialization. The company has executed high impact deals with a range of brands to accelerate the global commercialization of sustainable materials, with the potential to reduce greenhouse gas emissions by 100 million tons in upcoming years. Recent milestones advancing the sustainable materials transition include: a collaboration with lululemon (NASDAQ: LULU) to bring plant-based materials into lululemon’s products, a production milestone with partner Covestro (OTCMKTS: COVTY) for plant-based HMD used in sustainable coatings, and a partnership with Asahi Kasei (OTCMKTS: AHKSY) and a newly formed venture with Unilever (NASDAQ: UL) to commercialize and scale plant-based alternatives to feedstocks like palm oil or fossil fuels, to make key ingredients used in everyday cleaning and personal care products.

Source:

method communications

07.07.2022

Carbios, On, Patagonia, PUMA and Salomon team up to advance circularity

Carbios has signed an agreement with On, Patagonia, PUMA, and Salomon, to develop solutions that will enhance the recyclability and circularity of their products.
 
An important element of the two-year deal will be to speed up the introduction of Carbios’ biorecycling technology, which constitutes a breakthrough for the textile industry. Carbios and the four companies will also research how products can be recycled, develop solutions to take-back worn polyester items, including sorting and dismantling technologies, and gather data on fiber-to-fiber recycling as well as circularity models.
 
The challenge the four brands share, is that their ambitious sustainable development goals can only partially be met by conventional recycling technologies which mostly target bottle-to-fiber recycling. Future regulations will require more circularity in packaging and textile. Yet the market consensus is that there will soon be a shortage of PET bottles, as they will be used for circular production methods in the Food & Beverage Industry.   
 

Carbios has signed an agreement with On, Patagonia, PUMA, and Salomon, to develop solutions that will enhance the recyclability and circularity of their products.
 
An important element of the two-year deal will be to speed up the introduction of Carbios’ biorecycling technology, which constitutes a breakthrough for the textile industry. Carbios and the four companies will also research how products can be recycled, develop solutions to take-back worn polyester items, including sorting and dismantling technologies, and gather data on fiber-to-fiber recycling as well as circularity models.
 
The challenge the four brands share, is that their ambitious sustainable development goals can only partially be met by conventional recycling technologies which mostly target bottle-to-fiber recycling. Future regulations will require more circularity in packaging and textile. Yet the market consensus is that there will soon be a shortage of PET bottles, as they will be used for circular production methods in the Food & Beverage Industry.   
 
Carbios’ innovative process constitutes a technological breakthrough for the recycling of polyester (PET) fibers, which are widely used in apparel, footwear and sportswear, on their own or together with other fibers. PET polyester is the most important fiber for the textile industry with 52 MT produced, even surpassing cotton at 23MT. The biorecycling process uses an enzyme capable of selectively extracting the polyester, recovering it to recreate a virgin fiber. This revolutionary technology makes it possible to recover the PET polyester present in all textile waste that cannot be recycled using traditional technologies.
 
PET plastics and fibers are used to make everyday consumer goods such as bottles, packaging and textiles. Today, most PET is produced from fossil resources, then used and discarded according to a wasteful linear model. By creating a circular economy from used plastics and fibers, Carbios’ biorecycling technology offers a sustainable and more responsible solution.

More information:
Carbios PET circularity
Source:

Carbios

06.07.2022

DOMO Chemicals und Hynamics: Production of polyamides from low-carbon hydrogen

DOMO Chemicals, a producer of engineered polyamide materials, and Hynamics, a 100% subsidiary of EDF Group specializing in the production of low-carbon hydrogen, have entered into a partnership project with the objective of achieving zero-carbon for 100% of the hydrogen used at the Belle-Étoile industrial site, in Saint-Fons (south of Lyon, France), in the heart of the French Vallée de la Chimie (“Chemistry Valley”).

For the first time in France, the “HyDom” project will enable the installation of an 85-megawatt (MW) hydrogen production plant using the water electrolysis process at the Belle-Étoile site, with a production capacity of 11,000 metric tons of low-carbon hydrogen per year. The plant will be powered by the French low-carbon electric power mix. By 2027, it will supply 100% of the annual production of hexamethylene diamine, a key component used in the production of plastics.

DOMO Chemicals, a producer of engineered polyamide materials, and Hynamics, a 100% subsidiary of EDF Group specializing in the production of low-carbon hydrogen, have entered into a partnership project with the objective of achieving zero-carbon for 100% of the hydrogen used at the Belle-Étoile industrial site, in Saint-Fons (south of Lyon, France), in the heart of the French Vallée de la Chimie (“Chemistry Valley”).

For the first time in France, the “HyDom” project will enable the installation of an 85-megawatt (MW) hydrogen production plant using the water electrolysis process at the Belle-Étoile site, with a production capacity of 11,000 metric tons of low-carbon hydrogen per year. The plant will be powered by the French low-carbon electric power mix. By 2027, it will supply 100% of the annual production of hexamethylene diamine, a key component used in the production of plastics.

The project will eventually prevent the emission of 84 kilotons of carbon dioxide (CO2) each year. Hexamethylene diamine, and ultimately, durable and low-carbon polyamides, will be used in various applications in major industry sectors, such as automotive, electronics, and heating & cooling.
This project is a major step towards the decarbonization of industrial sites that use grey hydrogen (produced from fossil fuels). The location in the Vallée de la Chimie within the vicinity of major transport routes opens up opportunities for the creation of a more complete hydrogen ecosystem.

The first phase of the project will consist of building up and ascertaining technical concepts and integrating the low-carbon hydrogen production plant within the larger production process of hexamethylene diamine.

Considering the high-power scale of the future electrolytic hydrogen production facility, the HyDom project is being developed in close collaboration with RTE (an organization in charge of managing the French power grid), to solve connection issues. As a priority project for the industry's zero-carbon strategy and for the “France 2030” investment plan, HyDom is supported by the French government and has been presented to the European Commission for public funding.

Source:

DOMO Chemicals / Marketing Solutions NV

05.07.2022

ROICA™ partners at Première Vision

ROICA™ strengthens its presence in the apparel segment thanks to its established network of partners, who will present their latest innovations at the upcoming Première Vision.

ROICA™ partners are the “artists” and “heartists” of premium stretch in fabrics: because they have at heart all the values for which ROICA™ stands for. These partners presenting at Première Vision are:

ROICA™ strengthens its presence in the apparel segment thanks to its established network of partners, who will present their latest innovations at the upcoming Première Vision.

ROICA™ partners are the “artists” and “heartists” of premium stretch in fabrics: because they have at heart all the values for which ROICA™ stands for. These partners presenting at Première Vision are:

  • Iluna Group, whose journey into the new dimension of responsibility continues with developments in GRS (Global Recycled Standard) certified recycled yarns aimed at unprecedented effects in looks, performance and hands. Brand new for this edition of Première Vision is the inclusion of GOTS-certified organic cotton in GRS-certified galloons and allover lace containing ROICA™ EF, so as to meet market demands for natural comfort in the underwear sphere.
  • Innova Fabrics, which recently enhanced its smart offering by launching the RF (Residual Free) line, with the goal of reducing the impact of microplastics derived from the fashion industry. This is made possible by mixing two responsible ingredients, SENSIL® BioCare by Nilit and ROICA™ V550 by Asahi Kasei, which give birth to both sporty and casual fabrics.
  • Inplet, which enriched its production of smart elastic and rigid knitted fabrics with three new products: a powernet fabric in 77% polyamide RECO and 23% ROICA™ EF with good recovery; a net fabric in 55% polyamide RECO and 45% ROICA™ EF characterized by a soft hand and good elasticity; and a 79% polyamide and 21% ROICA™ V550 good power, good recovery and a soft touch.
  • Penn Textile Solutions/Penn Italia, whose highlights of the new collection are on one side fabrics developed with the use of Neride eco yarns by Nurel with ROICA™ V550, characterized by restraining lace effect, soft touch and breathable, in combination with tulle as a sustainable basic, and on the other side charmeuses with soft hand, raw cut in combination with a band fabric from the dreamshape family with reinforced gripping edge, made again in Neride eco yarns by Nurel with ROICA™ V550
  • Tessitura Colombo Antonio, which in its new A/W 23-24 collection expands its proposal of regenerated lace from the ECO-LACE line: new designs inspired by fashion trends using ROICA™ EF. Also, in its BIODEGRADABLE line it uses ROICA™ V550 for the realization of new designs. The new MICROMODAL line uses ROICA™ V550; the effect of this lace range is softness, elegance and relief effect.
Source:

ROICA™ by Asahi Kasei / C.L.A.S.S.