From the Sector

Reset
32 results
22.03.2024

Fashion for Good: Ten new innovators for 2024 programme

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

  • Algreen Ltd: Algreen co-develops alternative materials from algae and biobased sources that can replace fossil-based products such as PU.
  • Balena: Balena creates biodegradable partly biobased polymers for footwear outsoles.
  • Epoch Biodesign: Epoch Biodesign is an enzymatic recycler of PA66 and PA6 textile waste.
  • Fibre52: Fibre52 is a bio-based solution replacing traditional bleach prepared-for-dyeing and dye processes.
  • Gencrest BioProducts Pvt Ltd: Gencrest works with various agri-residues to convert them into textile-grade fibres using their enzymatic technology.
  • HeiQ AeoniQ: HeiQ AeoniQ™ is a continuous cellulose filament yarn with enhanced tensile properties.
  • Nanollose - Nullabor: Nullarbor™Lyocell is developed from microbial cellulose which is converted into pulp pulp to produce a lyocell fibre with their partner Birla Cellulose.  
  • REGENELEY:  REGENELEY pioneers advanced shoe sole recycling technologies by separating and recycling EVA, TPU, and rubber components found in footwear.
  • Samsara Eco: Samsara Eco is an enzymatic recycler of PA66 and PET textile waste.
  • SEFF: SEFF Fibre produces cottonised fibres and blends of hemp fabrics utilising a patented HVPED process.
Source:

Fashion for Good

Stefano Pigozzi Photo RadiciGroup
Stefano Pigozzi
30.01.2024

Stefano Pigozzi: New member at Board of Directors of Radici Partecipazioni SpA

RadiciGroup announced the appointment of Stefano Pigozzi to the Board of Directors of Radici Partecipazioni SpA, the parent company overseeing all the Group's business activities in the chemicals, engineering polymers and advanced textile solutions sectors.
 
A professional with proven experience in the chemical industry, Mr. Pigozzi will complement the Board with his strategic vision acquired in international organizations.
 
Stefano Pigozzi graduated from the University of St. Gallen in Switzerland with a degree in Business Administration and started his work experience in the finance division of BASF in the late 1980s. Since then, chemistry has remained at the centre of his career: over the years, he has held marketing and sales positions of increasing responsibility in various business sectors (plastics and inorganics), moving up to more strategic and managerial roles within BASF, including president of the Monomers Division and, most recently, head of the Group Global Purchasing Division at the Ludwigshafen headquarters.
 

RadiciGroup announced the appointment of Stefano Pigozzi to the Board of Directors of Radici Partecipazioni SpA, the parent company overseeing all the Group's business activities in the chemicals, engineering polymers and advanced textile solutions sectors.
 
A professional with proven experience in the chemical industry, Mr. Pigozzi will complement the Board with his strategic vision acquired in international organizations.
 
Stefano Pigozzi graduated from the University of St. Gallen in Switzerland with a degree in Business Administration and started his work experience in the finance division of BASF in the late 1980s. Since then, chemistry has remained at the centre of his career: over the years, he has held marketing and sales positions of increasing responsibility in various business sectors (plastics and inorganics), moving up to more strategic and managerial roles within BASF, including president of the Monomers Division and, most recently, head of the Group Global Purchasing Division at the Ludwigshafen headquarters.
 
During his more than 30-year career at BASF, Mr. Pigozzi has consistently demonstrated his leadership capability, his financial analysis skills and his dedication to corporate business success. He has also contributed significantly to the positioning of BASF as a global leader in the chemical industry.
 
Mr. Pigozzi’s appointment to the Board of Directors of Radici Partecipazioni is aimed at strengthening RadiciGroup's presence in the market and helping to guide the company towards new goals.

 

Source:

RadiciGroup

Celanese and Under Armour introduce elastane alternative (c) Celanese Corporation
24.01.2024

Celanese and Under Armour introduce elastane alternative

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

NEOLAST™ fibers will be produced using recyclable elastoester polymers. As end users transition to a more circular economy, Celanese and Under Armour are exploring the potential of the fibers to improve the compatibility of stretch fabrics with future recycling systems and infrastructure.

In addition to the sustainability benefits, the new NEOLAST™ fibers deliver increased production precision, allowing spinners to dial power-stretch levels up or down and engineer fibers to meet a broader array of fabric specifications.

Source:

Celanese Corporation

24.01.2024

ECHA: Hazardous chemicals found in coating products and polymers

The European Chemicals Agency (ECHA) has added five new chemicals to the Candidate List. One of them is toxic for reproduction, three are very persistent and very bioaccumulative and one is toxic for reproduction and persistent, bioaccumulative and toxic. They are found in products such as inks and toners, adhesives and sealants and washing and cleaning products.

The Agency has also updated the existing Candidate List entry for dibutyl phthalate to include its endocrine disrupting properties for the environment.

ECHA’s Member State Committee has confirmed the addition of these substances to the Candidate List. The list now contains 240 entries – some are groups of chemicals so the overall number of impacted chemicals is higher.

 

The European Chemicals Agency (ECHA) has added five new chemicals to the Candidate List. One of them is toxic for reproduction, three are very persistent and very bioaccumulative and one is toxic for reproduction and persistent, bioaccumulative and toxic. They are found in products such as inks and toners, adhesives and sealants and washing and cleaning products.

The Agency has also updated the existing Candidate List entry for dibutyl phthalate to include its endocrine disrupting properties for the environment.

ECHA’s Member State Committee has confirmed the addition of these substances to the Candidate List. The list now contains 240 entries – some are groups of chemicals so the overall number of impacted chemicals is higher.

 

Source:

European Chemicals Agency

15.11.2023

ECHA: Research needs for regulating hazardous chemicals

The European Chemicals Agency (ECHA) has published a new report on ‘Key areas of regulatory challenge 2023’ that identifies areas where research is needed to protect people and the environment from hazardous chemicals. It also highlights where new methods, that support the shift away from animal testing, are needed.

To further improve chemical safety in the EU, scientific research needs to deliver data that is relevant to regulating chemicals. In order to enhance the regulatory relevance of scientific data, ECHA has identified the following areas as priorities for research:

The European Chemicals Agency (ECHA) has published a new report on ‘Key areas of regulatory challenge 2023’ that identifies areas where research is needed to protect people and the environment from hazardous chemicals. It also highlights where new methods, that support the shift away from animal testing, are needed.

To further improve chemical safety in the EU, scientific research needs to deliver data that is relevant to regulating chemicals. In order to enhance the regulatory relevance of scientific data, ECHA has identified the following areas as priorities for research:

  • Hazard identification for critical biological effects that currently lack specific and sensitive test methods: i.e. developmental and adult neurotoxicity, immunotoxicity and endocrine disruption
  • Chemical pollution in the natural environment (bioaccumulation, impact on biodiversity, exposure assessment)
  • Shift away from animal testing (read across under REACH, move away from fish testing, mechanistic support to toxicology studies e.g. carcinogenicity)
  • New information on chemicals (polymers, nanomaterials, analytical methods in support of enforcement)

Background
The European Partnership for the Assessment of Risks from Chemicals (PARC), is a seven-year EU-wide research and innovation programme under Horizon Europe which aims to advance research, share knowledge and improve skills in chemical risk assessment.

ECHA’s role in PARC is to make sure that the funded scientific research addresses current challenges related to chemical risk assessment and adds value to the EU’s regulatory processes.

The key areas of regulatory challenge report can be seen as an evolving research and development agenda aiming to support and inspire the Partnership for the Assessment of Risks from Chemicals (PARC) and the wider research community. The list of research needs is not exhaustive. The next update to the report is expected in spring 2024.

More information:
ECHA chemicals polymers
Source:

The European Chemicals Agency (ECHA)

Trumpler and Archroma launch tanning process for leather production Photo: Archroma
06.11.2023

Trumpler and Archroma launch tanning process for leather production

Trumpler has teamed up with Archroma to offer a leather production process that can be used to produce high-performance leather in a more eco-friendly and cost-efficient way.

The new process DyTan®combines offers an alternative to existing metal-free and chrome-tanned leather. It enables the reliable production of leather with great shavability, color depth and migration and abrasion resistance. Free from metal salts and reactive aldehydes, DyTan® is suitable for a wide range of leather applications, from garment and footwear to automotive and furniture upholstery, for today’s eco-conscious leather producers and consumers.

At the core of the DyTan® process is Archroma’s patented AVICUERO® System, which is based on novel molecules that enable more sustainable leather tanning and dyeing, developed by Archroma in cooperation with leather technology consultant Dr Leather. It enables collagen fibers in the leather to be covalently cross-linked through a simplified process at low temperatures. As a result, the system shows strong potential to save energy and water, while also reducing process time and CO2 emissions by up to 23%.*

Trumpler has teamed up with Archroma to offer a leather production process that can be used to produce high-performance leather in a more eco-friendly and cost-efficient way.

The new process DyTan®combines offers an alternative to existing metal-free and chrome-tanned leather. It enables the reliable production of leather with great shavability, color depth and migration and abrasion resistance. Free from metal salts and reactive aldehydes, DyTan® is suitable for a wide range of leather applications, from garment and footwear to automotive and furniture upholstery, for today’s eco-conscious leather producers and consumers.

At the core of the DyTan® process is Archroma’s patented AVICUERO® System, which is based on novel molecules that enable more sustainable leather tanning and dyeing, developed by Archroma in cooperation with leather technology consultant Dr Leather. It enables collagen fibers in the leather to be covalently cross-linked through a simplified process at low temperatures. As a result, the system shows strong potential to save energy and water, while also reducing process time and CO2 emissions by up to 23%.*

The DyTan® process combines the AVICUERO® System with Trumpler’s bio-based fatliquors and retanning agents based on functional biopolymers produced from hydrolyzed shavings – resource-saving technology that Trumpler has been refining for 15 years.

As a global partner of Archroma, the Trumpler Group is responsible for the distribution of the AVICUERO® System worldwide. Delivering technical support and first-class customer care, Trumpler will help leather manufacturers and brands to implement sustainable tanning and draw on its comprehensive product portfolio and process knowledge of tanning, retanning and fatliquoring processes.
 

* Estimations carried out with the Archroma ONE WAY Impact Calculator show energy savings of up to 25% and reduced process time leading to a reduction in CO2 emissions of up to 23%, compared to traditional chrome tanning. They also show significant water savings compared to other metal-free tanning systems1. With the ONE WAY Impact Calculator, customers will be offered personalized calculations for their specific processes.

1 Trials made at Trumpler GmbH application lab.

Source:

Archroma

DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

30.06.2023

RadiciGroup closes 2022 with positive results

With total sales of EUR 1,543 million, generated by over 30 production and sales units in Europe, Asia, and America, Radici Group closed its 2022 financial year with slight growth over 2021. EBITDA reached EUR 157 million in 2022, and net income for the year was EUR 80 million.

With total sales of EUR 1,543 million, generated by over 30 production and sales units in Europe, Asia, and America, Radici Group closed its 2022 financial year with slight growth over 2021. EBITDA reached EUR 157 million in 2022, and net income for the year was EUR 80 million.

“We are moderately pleased with the 2022 figures,” Angelo Radici, president of RadiciGroup, commented. “Despite an unpredictable and challenging year, we were able to achieve positive results. Although the rise in energy costs began to be felt in January, we managed to maintain our position in the first three months of the year due to a significant increase in demand. From the second quarter onwards, the European market experienced a significant slowdown due to the outbreak of war in Ukraine, which exacerbated the already soaring costs of energy and raw materials. The situation was completely out of hand and made worse by the fact that some raw materials were not available. This created significant challenges for us, especially in the chemical sector. We even had to stop operations at our Novara plant in the latter part of the year. Products similar to ours in the nylon supply chain from China and the US were being sold at a price lower than our variable cost.”

The president continues: “At Group level, our internationalisation strategy helped us mitigate geopolitical risks in various countries. As a result, we were able to offset the challenges in the European chemicals and textile markets by leveraging our global presence in High Performance Polymers, where our numbers have held strong. As we began 2023, we regained our footing. However, the global economic and industrial scenario for the rest of the year remains highly uncertain, and forecasts are notably cautious.”

Even in these difficult times, the Group has continued to invest. In 2022, the High Performance Polymers Business Area completed the acquisition in India of the engineering plastics branch of Ester Industries Ltd, a listed company. Additionally, it began installing two new production lines in Mexico and Brazil, and confirmed plans to install a new extrusion line at the Villa d’Ogna production site in the province of Bergamo. These choices align with the Group’s goal of enhancing its worldwide presence and boosting competitiveness in high-potential growth markets. In a year where energy and raw material costs were certainly problematic, operating in geographically diverse markets and with varied applications proved to be an important tool in addressing the challenges. In this vein, a new production site spanning over 36,000 square metres has recently been inaugurated in China. The move is aimed at doubling the production capacity in line with the market’s growth expectations.

Extending the time horizon to 2018-2022, the Group has invested over EUR 277 million to enhance the competitiveness of its companies, implement Best Available Techniques, improve energy efficiency, reduce emissions, and conduct research and development activities aimed at introducing sustainable processes and solutions. These efforts include the research and development activities of Radici InNova, which are heavily focused on the circular economy.

More information:
RadiciGroup financial year 2022
Source:

RadiciGroup

07.06.2023

DyStar Africa sells Manufacturing Site to Oakland Polymers

DyStar, a specialty chemical company with a heritage of more than a century in product development and innovation, is announcing the sale of its auxiliary manufacturing site located at Pietermaritzburg, South Africa.

Oakland Polymers Pty Ltd, a local manufacturer, has acquired DyStar’s manufacturing facility and will take over the site to expand their polymer business. Under the sale and purchase agreement, DyStar divested the entire facility, which is approximately 12,000 sqm, to Oakland Polymers and Oakland Properties. DyStar Africa’s operations will continue to lease part of the premises from Oakland for office and warehousing use.

Mr. Xu Yalin, Managing Director, and President of DyStar Group said, “The sale of the manufacturing site at DyStar Africa is part of our ongoing efforts to reconsolidate our business resources in Turkey, Africa & Middle East (TAME) region, with a focus on improving productivity and utilization rates.”

As a result of the acquisition, all employees at the manufacturing site have already been informed. Compensation packages are offered to affected colleagues as well.

DyStar, a specialty chemical company with a heritage of more than a century in product development and innovation, is announcing the sale of its auxiliary manufacturing site located at Pietermaritzburg, South Africa.

Oakland Polymers Pty Ltd, a local manufacturer, has acquired DyStar’s manufacturing facility and will take over the site to expand their polymer business. Under the sale and purchase agreement, DyStar divested the entire facility, which is approximately 12,000 sqm, to Oakland Polymers and Oakland Properties. DyStar Africa’s operations will continue to lease part of the premises from Oakland for office and warehousing use.

Mr. Xu Yalin, Managing Director, and President of DyStar Group said, “The sale of the manufacturing site at DyStar Africa is part of our ongoing efforts to reconsolidate our business resources in Turkey, Africa & Middle East (TAME) region, with a focus on improving productivity and utilization rates.”

As a result of the acquisition, all employees at the manufacturing site have already been informed. Compensation packages are offered to affected colleagues as well.

Customers have also been informed of undisrupted supply to their orders during the transition period and are further assured of a seamless customer journey going forward when the acquisition is completed.

Source:

DyStar

(c) TNO/Fraunhofer UMSICHT
02.06.2023

Fraunhofer: New guide to the future of plastics

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

Versatile and inexpensive materials with low weight and very good barrier properties: That's what plastics are. In addition to their practical benefits, however, the materials are also associated with a significant share of mankind's greenhouse gas emissions. The production and use of plastics cause environmental pollution and microplastics, deplete fossil resources and lead to import dependencies. At the same time, alternatives - such as glass packaging - could cause even more environmental burden or have poorer product properties.

Researchers from TNO and Fraunhofer UMSICHT have elaborated a white paper that provides a basis for the transformation of plastics production and use. They consider the integration of the perspectives of all stakeholders and their values and the potential of current and future technologies. In addition, the functional properties of the target product, the comparison with alternative products without plastics, and their impact in a variety of environmental, social and economic categories over the entire life cycle are crucial. In this way, a systematic assessment and ultimately a systematic decision as to where we can use, reject or replace plastics can be realized.

Strategies for the Circular Economy
As a result, the researchers describe four strategic approaches for transforming today's largely linear plastics economy into a fully circular future: Narrowing the Loop, Operating the Loop, Slowing the Loop, and Closing the Loop. By Narrowing the Loop, the researchers recommend, as a first step, to reduce the amount of materials mobilized in a circular economy. Operating the Loop refers to using renewable energy, minimizing material losses, and sourcing raw materials sustainably. For Slowing the Loop, measures are needed to extend the useful lifetime of materials and products. Finally, for Closing the Loop, plastics must be collected, sorted and recycled to high standards.

Individual strategies fall under each of the four approaches. While the ones under Operating the Loop (O strategies) should be applied in parallel and as completely as possible. According to the researchers, the decision for the strategies in the other fields (R strategies) requires a complex process: “Usually, more than one R-strategy can be considered for a given product or service. These must be carefully compared in terms of their feasibility and impact in the context of the status quo and expected changes”, explains Jürgen Bertling from Fraunhofer UMSICHT. The project partners have therefore developed a guiding principle for prioritization based on the idea of the waste hierarchy.

A holistic change, as we envision it, can only succeed if science, industry, politics and citizens work together across sectors. “This implies several, partly quite drastic changes at 4 levels: legislation and policy, circular chain collaboration, design and development, and education and information. For instance, innovations in design and development include redesign of polymers to more oxygen rich ones based on biomass and CO2 utilisation. Current recycling technologies have to be improved for high quantity and quality recycling,” explains Jan Harm Urbanus from TNO.

Hands-on platform for cross-sector collaboration
“Therefore, in a next step, TNO and Fraunhofer UMSICHT are building a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP," explains Esther van den Beuken, Principal Consultant from TNO. It will give companies, associations and non-governmental organizations the opportunity to work together on existing barriers and promising solutions for a Circular Plastics Economy. The platform will also offer its members regular hands-on workshops on plastics topics, roundtable discussions on current issues, and participation in multi-client studies on pressing technical challenges. Regular meetings will be held in the cross-border region of Germany and the Netherlands as well as online. The goal is to bring change to the public and industry.

Source:

Fraunhofer UMSICHT

(c) INDA
10.05.2023

Four Nonwoven Industry Professionals honored with INDA Lifetime Awards

NDA, the Association of the Nonwoven Fabrics Industry, announced four recipients for the Lifetime Service Award and Lifetime Technical Achievement Awards. Jan O’Regan, Seshadri Ramkumar, Jim Robinson, and Ed Thomas are being recognized for their key contributions to the growth of the nonwovens industry and INDA.

NDA, the Association of the Nonwoven Fabrics Industry, announced four recipients for the Lifetime Service Award and Lifetime Technical Achievement Awards. Jan O’Regan, Seshadri Ramkumar, Jim Robinson, and Ed Thomas are being recognized for their key contributions to the growth of the nonwovens industry and INDA.

Jan O’Regan: INDA Lifetime Service Award
Jan O’Regan was the Director, Strategic Initiatives and Nonwovens Marketing, for Cotton Incorporated and retired in 2022. In this capacity, she uncovered new opportunities for cotton to bring value into the nonwovens industry. Her work included leading efforts in strategic planning, technical and market project management, and sharing new ideas and results with the global supply chain.
O’Regan spent over four decades in the nonwovens industry in various roles, including sales, marketing, strategic planning and business management. Market responsibilities included consumer and industrial markets on regional, national, and global teams. Over the most recent years, she applied these broad experiences to new markets for cotton in nontraditional applications.
Serving and volunteering with INDA for decades, O’Regan most recently chaired the World of Wipes® committee, which she efficiently organized to produce innovative conferences for the wipes industry.  She was a frequent speaker at INDA, INSIGHT, EDANA, and other events, and for nearly two decades was a go to source of information for cotton fibers in nonwovens and hygiene. O’Regan earned a BS in Textiles and Business, summa cum laude, from Penn State University and an MBA from New York University’s Stern School of Business.

Seshadri Ramkumar: INDA Lifetime Technical Achievement Award
Seshadri Ramkumar has over twenty-five years of experience within the technical nonwovens space, conducting industry leading research and educating nonwovens professionals at Texas Tech University (TTU).  At TTU, he established the Nonwovens Laboratory. Many of Ramkumar’s students have gone on to become technical leaders within their organizations and the nonwovens industry.
Ramkumar has numerous patent and invention disclosures, including Fibertect® toxic chemical decontamination wipes which have been recognized by the American Chemical Society as a notable success of federally supported innovation, endorsed by Lawrence Livermore National Laboratory, and adopted by multiple branches of the military.
In addition to many peer-reviewed publications, articles, and columns collectively over 500, including one on nanofibers that has been cited over 2,100 times, Ramkumar has contributed his expertise on the editorial boards of multiple fiber, nonwoven, and textile journals. Ramkumar has also organized conferences for nonwovens and textiles and actively promoted INDA and its technical training offerings for over 20 years.
He is a longtime member of the INDA Technical Advisory Board, been recognized by TAPPI, Society of Dyers and Colorists (UK), the Textile Institute (UK), and the Textile Association (INDIA), and received numerous awards from TTU.
Ramkumar holds a Bachelors of Technology (Textiles), Graduated with Distinction, and a Masters of Technology (Textiles), University First Rank in the Discipline, Anna University, and a Ph.D. (Textile Materials) from the University of Leeds, UK.

Jim Robinson: INDA Lifetime Technical Achievement Award
Jim Robinson has 33 years in the absorbent hygiene industry, including 28 years as a Technical Service Manager at BASF. He led technical teams that focused on the application of superabsorbent polymers (SAP) in hygiene products. Robinson has extensive knowledge of SAP applications, absorbent core formation, and hygiene article design, performance and testing. While with BASF, Robinson led efforts with multiple external companies to provide co-supplier solutions to hygiene converters.
Robinson’s extensive understanding of test methods and test method development led to his coordinating the establishment of fitness for use standards of adult incontinent products with the National Association for Continence and involvement in development and review of absorbent product test methods with INDA/EDANA. He is also an active contributor to INDA’s Technical Advisory Board and Hygienix organizing committee and was a contributing developer in establishing the INDA Absorbent Hygiene Training Course. Robinson has provided numerous presentations at INSIGHT, Hygienix, and RISE on performance and interactions of absorbent system components.
Recently, Robinson has been consulting and contributing to the success of multiple start-ups including those having been nominated for INDA product awards. Robinson has a BS in Chemistry from Hampden-Sydney College and an MS in Chemistry from Duke University.

Ed Thomas: INDA Lifetime Technical Achievement Award
Ed Thomas retired after 39 years, with 32 years in the nonwovens industry, and has remained active teaching the Intermediate Nonwovens Training Course for INDA and The Nonwovens Institute at North Carolina State University, as well as providing consulting services to the industry.
Thomas’ experience includes Process Engineering Manager and Plant Management, DuPont; Technical Director, Reemay; VP of Research and Operations, VP of Operations and Technology, and Global VP of Research and Development for Fiberweb/BBA Nonwovens; and Head of Research and Product Development, First Quality Nonwovens.
Thomas holds 10 U.S. nonwoven patents and he and his teams have been awarded more than 250 patents for numerous and diverse innovations that have played significant roles in the success of the nonwovens industry. These include applications for the global hygiene market, industrial nonwovens, and filtration media.
During his career, Thomas has presented several keynote addresses and papers to industry conferences, participated in North Carolina State University’s Nonwovens Cooperative Research Center (NCRC) prior to it becoming The Nonwovens Institute (NWI), INDA’s Technical Advisory Board, INDA’s Sustainability Committee, and was Vice Chair of NWI’s Industrial Advisory Board prior to retirement and remains an Emeritus member.
Thomas received his mechanical engineering degree from SUNY Buffalo.

26.04.2023

STFI: Bionanopolis Open Call to support companies

The international association that will manage the Single-Entry-Point (SEP) of the BIONANOPOLYS project has been formally constituted and will be able to support companies across the European Union in the market introduction of bionanomaterials through technical, legal, regulatory, safety, economic and financial support services.

The SEP was established as an AISBL (non-profit entity) on 17 February 2023 in the framework of the European project BIONANOPOLYS, funded by the Horizon 2020 programme. The technical director of ITENE and coordinator of this project, Carmen Sánchez, is the president of this association in which representatives of other project partners also act as directors. Specifically, the CTP (Centre Technique du Papier) from France; CIDAUT (Fundación para la Investigación y Desarrollo en Transporte y Energía), from Spain; CENTI (Centre for Nanotechnology and Smart Materials), from Portugal, and the law firm Gil & Robles - San Bartolome & Associés, from Luxembourg.

The international association that will manage the Single-Entry-Point (SEP) of the BIONANOPOLYS project has been formally constituted and will be able to support companies across the European Union in the market introduction of bionanomaterials through technical, legal, regulatory, safety, economic and financial support services.

The SEP was established as an AISBL (non-profit entity) on 17 February 2023 in the framework of the European project BIONANOPOLYS, funded by the Horizon 2020 programme. The technical director of ITENE and coordinator of this project, Carmen Sánchez, is the president of this association in which representatives of other project partners also act as directors. Specifically, the CTP (Centre Technique du Papier) from France; CIDAUT (Fundación para la Investigación y Desarrollo en Transporte y Energía), from Spain; CENTI (Centre for Nanotechnology and Smart Materials), from Portugal, and the law firm Gil & Robles - San Bartolome & Associés, from Luxembourg.

The BIONANOPOLYS SEP will reduce the risks and barriers to the commercial exploitation of bio-based materials and polymeric bionanocomposites with nanotechnology and accelerate market penetration and innovation processes. SMEs, large companies, and potential customers who are users of the BIONANOPOLYS OITB (Open Innovation Test Bed) will be able to access the services offered by the project partners through this entity, which will act as a one-stop shop, at affordable costs and conditions.

The test bed consists of 14 enhanced pilot plants and complementary services to support technological and commercial breakthroughs. Collaboration between all the partners that make up BIONANOPOLYS and access through the SEP allows joint access to all the services offered by the partners and helps to drive collaborative open innovation.

Call for access to the BIONANOPOLYS OITB
The SEP and the project partners will be in charge of evaluating the projects submitted to the BIONANOPOLYS platform once the open call launched last February to select five projects from different European countries that will be able to access its services free of charge to develop, test or scale-up bionanomaterials in the BIONANOPOLYS OITB closes.

Companies wishing to access the services to develop or test nanomaterials can submit their applications until 30 April.

The BIONANOPOLYS test bed could benefit companies involved in the production of biopolymers, cellulose paper, nonwovens, foams, or coatings, as well as the packaging, agriculture, food, cosmetics, pharmaceuticals, hygiene, textiles and 3D printing sectors.

Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

24.03.2023

RadiciGroup: Zeta Polimeri becomes Radici EcoMaterials Srl

A little over three years have passed since RadiciGroup announced the acquisition of Zeta Polimeri, an Italian company headquartered in Buronzo (VC) with over 30 years' experience in the recovery of pre- and post-consumer synthetic fibres and thermoplastic materials. Today, the company has become a full member of the Group with its new name Radici EcoMaterials Srl.

The new company’s long-standing know-how, combined with RadiciGroup’s as a whole, will create a virtuous production system that recovers worn-out materials (fabric, yarn and granules), or otherwise unusable materials, and processes them into raw materials available for other production cycles by taking advantage of industrial synergy.

A little over three years have passed since RadiciGroup announced the acquisition of Zeta Polimeri, an Italian company headquartered in Buronzo (VC) with over 30 years' experience in the recovery of pre- and post-consumer synthetic fibres and thermoplastic materials. Today, the company has become a full member of the Group with its new name Radici EcoMaterials Srl.

The new company’s long-standing know-how, combined with RadiciGroup’s as a whole, will create a virtuous production system that recovers worn-out materials (fabric, yarn and granules), or otherwise unusable materials, and processes them into raw materials available for other production cycles by taking advantage of industrial synergy.

Radici EcoMaterials is a strategic production site because it handles all the preliminary recovery stages: the sorting, processing and pre-treatment of materials, including those used for the production of post-consumer yarns and engineering polymers. In this sense, Radici EcoMaterials is in line with the most recent European policies on sustainable textiles, which address minimizing the share of materials destined for disposal sites, favouring instead more structured recycling solutions.

Radici EcoMaterials is also GRS certified. GRS certification ensures the complete traceability of its materials, which are made in a safe plant that meets the highest environmental and social certification standards.

The company is also equipped with a photovoltaic system and, for the portion of its energy needs not covered by the photovoltaic source, it partially relies on renewable energy. The goal is to use 100% green energy in the next few years, in accord with RadiciGroup's goals.

Source:

RadiciGroup

(c) FET Ltd
17.01.2023

FET looks forward following sucessful year

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

FET is now looking forward to 2023 with a record order book. The company’s newly opened Fibre Development Centre features over £1.5 million investment in customer laboratory systems that will further enable fibre trials and product R&D. Three new polymer types were developed with clients in 2022 and several more are lined up in 2023, which is expected to bring the total of different polymer types to more than 40 in multifilament, monofilament and nonwoven formats.

FET will be exhibiting at two major exhibitions in 2023; INDEX 23, a leading Nonwovens show at Geneva in April; and ITMA, Milan, an international textile and garment technology exhibition in June.

Source:

FET Ltd

(c) SANITIZED AG
Dr. Martin Čadek, CTO SANITIZED AG
02.12.2022

SANITIZED AG stärkt Innovationskompetenz mit neuem CTO

Swiss-based SANITIZED AG is increasing its innovation expertise by appointing a new CTO, Dr. Martin Čadek, who will oversee global technological activities for the specialist antimicrobial hygiene brand. Dr. Čadek will lead the company’s Competence Centre for Technology Innovation and will focus on breaking new ground to develop innovations in sustainability.

Dr. Čadek is a graduate physicist with a master’s degree in polymer science with many years’ experience in the industry working with polymers, fibres, industrial textiles, and extruded polymers. He is joining SANITIZED AG from his most recent role as Managing Director for German subsidiary the Flint Group. His previous roles include the Global Head of Innovation for Energy and Polymer Systems at Evonik/Orion, the Head of Extrusion Technology Business Unit in Europe for Emerell AG, and work with the SGL Group.

Swiss-based SANITIZED AG is increasing its innovation expertise by appointing a new CTO, Dr. Martin Čadek, who will oversee global technological activities for the specialist antimicrobial hygiene brand. Dr. Čadek will lead the company’s Competence Centre for Technology Innovation and will focus on breaking new ground to develop innovations in sustainability.

Dr. Čadek is a graduate physicist with a master’s degree in polymer science with many years’ experience in the industry working with polymers, fibres, industrial textiles, and extruded polymers. He is joining SANITIZED AG from his most recent role as Managing Director for German subsidiary the Flint Group. His previous roles include the Global Head of Innovation for Energy and Polymer Systems at Evonik/Orion, the Head of Extrusion Technology Business Unit in Europe for Emerell AG, and work with the SGL Group.

The Competence Centre for Technology & Innovation will provide services to all three of SANITIZED’s business units: Textiles, Polymer Additives, and Coatings and Preservation. It will be built on top of SANITIZED’s TecCenter for Analytics, Microbiology and Applications and its regulatory department.

More information:
Sanitized AG CTO Hygiene
Source:

SANITIZED AG

08.11.2022

Ascend buys majority stake in recycler Circular Polymers

Ascend Performance Materials has purchased a majority stake in California-based Circular Polymers, a recycler of post-consumer, high-performance polymers including polyamide 6 and 66, polypropylene and polyester (PET). The deal provides Ascend with a consistent supply of high-quality PCR materials for its ReDefyne™ sustainable polyamides, launched at K 2022.

Circular Polymers, which as part of the deal is renamed Circular Polymers by Ascend, reclaims and processes post-consumer carpet via a unique technology and has redirected approximately 85 million pounds of waste from landfills into new goods since 2018.

“We are focused on helping our customers reach their sustainability goals and Circular Polymers by Ascend provides materials that offer strong performance with a considerably smaller environmental footprint, compared to other technologies like pyrolysis,” said Phil McDivitt, president and CEO of Ascend. “Since we launched ReDefyne, the demand for our circular products has been significant across all segments of our business, including automotive, consumer, electronics and high-performance fibers and textiles.”

Ascend Performance Materials has purchased a majority stake in California-based Circular Polymers, a recycler of post-consumer, high-performance polymers including polyamide 6 and 66, polypropylene and polyester (PET). The deal provides Ascend with a consistent supply of high-quality PCR materials for its ReDefyne™ sustainable polyamides, launched at K 2022.

Circular Polymers, which as part of the deal is renamed Circular Polymers by Ascend, reclaims and processes post-consumer carpet via a unique technology and has redirected approximately 85 million pounds of waste from landfills into new goods since 2018.

“We are focused on helping our customers reach their sustainability goals and Circular Polymers by Ascend provides materials that offer strong performance with a considerably smaller environmental footprint, compared to other technologies like pyrolysis,” said Phil McDivitt, president and CEO of Ascend. “Since we launched ReDefyne, the demand for our circular products has been significant across all segments of our business, including automotive, consumer, electronics and high-performance fibers and textiles.”

Ascend has a sustainability strategy based on three pillars: empowering people, innovating solutions and operating without compromise. Ascend has committed to reducing its greenhouse gas emissions by 80% by 2030 and recently announced two new efforts to reduce the carbon footprint of its products.

Source:

Ascend Performance Materials / EMG

(c) INDA
07.10.2022

INDA: Highlights of the 12th edition of RISE®

  • DiaperRecycle Wins RISE® Innovation Award for Technology that Transforms Used Diapers into Cat Litter

Product development and innovators in nonwovens & engineered materials gained expert insights on material science innovation and sustainability at the 12th edition of RISE® — Research, Innovation & Science for Engineered Fabrics conference, organized by INDA, the Association of the Nonwoven Fabrics Industry, and The Nonwovens Institute, North Carolina State University, Sept. 27-28 at North Carolina State University in Raleigh, NC.

More than 20 industry, academic, and government experts from across the globe presented technical developments in sessions focused on circularity and sustainable inputs from such sources as Polylactic Acid Polymers (PLA), natural fibers, biofibers, and waste products.

  • DiaperRecycle Wins RISE® Innovation Award for Technology that Transforms Used Diapers into Cat Litter

Product development and innovators in nonwovens & engineered materials gained expert insights on material science innovation and sustainability at the 12th edition of RISE® — Research, Innovation & Science for Engineered Fabrics conference, organized by INDA, the Association of the Nonwoven Fabrics Industry, and The Nonwovens Institute, North Carolina State University, Sept. 27-28 at North Carolina State University in Raleigh, NC.

More than 20 industry, academic, and government experts from across the globe presented technical developments in sessions focused on circularity and sustainable inputs from such sources as Polylactic Acid Polymers (PLA), natural fibers, biofibers, and waste products.

Highlights included presentations on Achieving Supply Chain Circularity, by Kat Knauer, Ph.D., Program Manager – V Research, National Renewable Energy Laboratory, NREL; The Global Plastic Crisis: Winners/Losers in the Marketplace, by Bryan Haynes, Ph.D., Senior Technical Director, Global Nonwovens, Kimberly-Clark Corporation; Sustainable Fibers – Development and the Future by Jason Locklin, Ph.D. Director, University of Georgia – New Materials Institute; PLA & PLA Blends: Practical Aspects of Extrusion by Behnam Pourdeyhimi, Ph.D., William A. Klopman Distinguished Professor, and Executive Director, The Nonwovens Institute, North Carolina State University; and Mitigation of Quat Incompatibility with Cotton and other Cellulosic-based Substrates, by Doug Hinchliffe, Ph.D., Research Molecular Biologist, USDA-ARS.

RISE® Innovation Award Winner
DiaperRecycle was awarded the RISE® Innovation Award for its innovative technology to recycle used diapers into absorbent and flushable cat litter. The annual award recognizes innovation in areas within and on the periphery of the nonwovens industry that use advanced science and engineering principles to develop unique or intricate solutions to problems and advance  nonwovens usage.

By diverting used diapers from households and institutions, and separating the plastic and fiber, DiaperRecycle strives to decrease the climate-changing emissions of diapers from landfills.  “I am thrilled and grateful to win this award — as it proves we are on the right track,” said Cynthia Wallis Barnicoat, CEO of DiaperRecycle.

Other award finalists included Binder BioHook® by Gottlieb Binder GmbH & Co. KG and Sero® hemp fibers from Bast Fibre Technologies, Inc. (BFT).

The 13th edition of RISE® — Research, Innovation & Science for Engineered Fabrics conference will be held Sept. 12-13, 2023 at North Carolina State University in Raleigh, NC.

Source:

INDA

(c) Borealis
08.09.2022

Borealis and Trexel develop fully recyclable lightweight bottle

  • Monomaterial solution contains renewably-sourced polypropylene from the Bornewables™ portfolio of circular polyolefins
  • Trexel employs its proprietary MuCell® technology to deliver a range of lightweighting benefits
  • EverMinds™ in action: reuse and design for recycling are focus of value chain collaboration

Borealis and Trexel, an expert in foaming injection and blow moulded parts, announce that they have co-developed a new plastic bottle based on a grade from the Bornewables™ portfolio of polyolefins made using renewable feedstocks derived 100% from waste and residue streams. The lightweight bottle – which will be showcased at the Borealis stand at the K 2022 (from 19 to 26 October 2022 in Düsseldorf) – is reusable and fully recyclable. It boasts a significantly lower overall CO2 footprint because it is composed of renewably-sourced feedstock and produced in the foaming process.

  • Monomaterial solution contains renewably-sourced polypropylene from the Bornewables™ portfolio of circular polyolefins
  • Trexel employs its proprietary MuCell® technology to deliver a range of lightweighting benefits
  • EverMinds™ in action: reuse and design for recycling are focus of value chain collaboration

Borealis and Trexel, an expert in foaming injection and blow moulded parts, announce that they have co-developed a new plastic bottle based on a grade from the Bornewables™ portfolio of polyolefins made using renewable feedstocks derived 100% from waste and residue streams. The lightweight bottle – which will be showcased at the Borealis stand at the K 2022 (from 19 to 26 October 2022 in Düsseldorf) – is reusable and fully recyclable. It boasts a significantly lower overall CO2 footprint because it is composed of renewably-sourced feedstock and produced in the foaming process.

The Bornewables™ portfolio of circular polyolefins helps reduce the carbon footprint while offering material performance equal to virgin polymers. Using Bornewables grades allows for design freedom and colour flexibility, and helps retain a premium look and feel. The grades – which are commercially available in Europe – help conserve natural resources because they are derived solely from waste and residue streams, for example from used cooking oil. Reusing waste already in circulation instead of fossil fuel-based feedstocks enhances the sustainability of applications made using the Bornewables grades.

The reusable new bottle developed by Borealis and Trexel retains its value over many life cycles thanks to the use of Trexel’s proprietary technology in tandem with Bornewables grades; as a material solution, the new bottle minimises the use of valuable raw materials. Moreover, converters consume less energy in the production process when using the MuCell® technology. The bottle thus helps close the loop on plastics circularity by way of design for recycling, the use of renewable feedstocks, and excellent material performance across multiple life cycles.

Source:

Borealis

(C) INDA
17.08.2022

RISE® – Research, Innovation & Science for Engineered Fabrics Conference in September

  • Focus on Rethinking, Reusing and Recycling Nonwovens this September
  • Industry Experts Present Material Science Innovations & Sustainability

More than 20 industry experts will present their views on how material science innovations can create a more sustainable future for the nonwovens industry at the Research, Innovation & Science for Engineered Fabrics (RISE®) Conference, Sept. 27-28 in Raleigh, at North Carolina State University, co-organized by INDA and The Nonwovens Institute at North Carolina State University.

Starting with responsible sourcing of nonwoven inputs to developing realistic end-of-life options and circularity opportunities, RISE will focus on rethinking, reusing and recycling nonwovens and engineered materials at the Talley Student Union in Raleigh.    

Participants will learn what’s coming next with sessions on the following six themes: Towards a More Circular Industry; Advancement in Sustainable Inputs; Development in Natural Fibers; Sustainable Inputs: Fibers and Biofibers; Waste Not, Want Not, Sustainable Inputs from Waste Products; and Economic Insights and Market Intelligence.

  • Focus on Rethinking, Reusing and Recycling Nonwovens this September
  • Industry Experts Present Material Science Innovations & Sustainability

More than 20 industry experts will present their views on how material science innovations can create a more sustainable future for the nonwovens industry at the Research, Innovation & Science for Engineered Fabrics (RISE®) Conference, Sept. 27-28 in Raleigh, at North Carolina State University, co-organized by INDA and The Nonwovens Institute at North Carolina State University.

Starting with responsible sourcing of nonwoven inputs to developing realistic end-of-life options and circularity opportunities, RISE will focus on rethinking, reusing and recycling nonwovens and engineered materials at the Talley Student Union in Raleigh.    

Participants will learn what’s coming next with sessions on the following six themes: Towards a More Circular Industry; Advancement in Sustainable Inputs; Development in Natural Fibers; Sustainable Inputs: Fibers and Biofibers; Waste Not, Want Not, Sustainable Inputs from Waste Products; and Economic Insights and Market Intelligence.

The 12th edition of RISE® will bring together thought leaders in product development, materials science, and new technologies to connect and convene for the industry’s premier nonwovens science and technology conference.

Expert speakers will address the latest trends and innovations around circularity – an important component of sustainability strategies that aims to return a product into the supply chain, instead of the landfill, after users are done consuming it.

RISE® session highlights include:

  • The Global Plastic Crisis: Who Will Be the Winners/Losers in The Marketplace?
    Bryan Haynes, Ph.D., Senior Technical Director, Global Nonwovens, Kimberly-Clark Corporation
  • Sustainable Fibers – Developments and the Future
    Jason Locklin, Ph.D., Director, University of Georgia, New Materials Institute and David Grewell, Ph.D., Center Director, Center for Bioplastics and Biocomposites
  • Thinking Differently: In a Changing World What’s Next for NatureWorks and Polylactic Acid Polymers (PLA)
    Liz Johnson, Ph.D., Vice President of Technology, NatureWorks LLC
  • PLA and PLA Blends: Practical Aspects of Extrusion
    Behnam Pourdeyhimi, Ph.D., William A. Klopman Distinguished Professor and Executive Director, The Nonwovens Institute, North Carolina State University
  • Hemp is Strong – Are You?
    Olaf Isele, Strategic Product Development Director, Trace Femcare, Inc.
  • Exploring Natural Fibers in Nonwovens
    Paul Latten, Director of Research and Development & New Business, Southeast Nonwovens, Inc.
  • Potential Nonwoven Applications of Tree-Free Fibers Made from Microbial Cellulose –
    Heidi Beatty, Chief Executive Officer, Crown Abbey, LLC
  • Ultra Fine Fibers Made from Recycled Materials
    Takashi Owada, General Manager, Teijin Frontier (U.S.A.), Inc.

The event also will feature the presentation of the RISE® Innovation Award, a special opportunity to tour the Nonwovens Institute’s state-of-the-art facilities with advance registration required, and poster presentations by North Carolina State University graduate students.

Source:

INDA, Association of the Nonwoven Fabrics Industry

25.07.2022

Carbios: Strengthening its leadership in the biorecycling of plastics and textiles

  • Exceptional achievement of research work on the use of Nuclear Magnetic Resonance (NMR) spectroscopy for understanding PET depolymerization enzymes

Carbios (Euronext Growth Paris: ALCRB), a pioneer in the development of enzymatic solutions dedicated to the end-of-life of plastic and textile polymers, announces the publication of an article entitled “An NMR look at an engineered PET depolymerase” in the scientific journal Biophysical Journal.

The article describes the use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the thermal stability of PET depolymerization enzymes and the mechanism of adsorption of the enzyme on the polymer. This innovative approach, which required months of development, is a world first and opens up new ways of improving these enzymes. This publication confirms Carbios' international lead in the development of the most efficient enzymes for the depolymerization and recycling of plastics.

  • Exceptional achievement of research work on the use of Nuclear Magnetic Resonance (NMR) spectroscopy for understanding PET depolymerization enzymes

Carbios (Euronext Growth Paris: ALCRB), a pioneer in the development of enzymatic solutions dedicated to the end-of-life of plastic and textile polymers, announces the publication of an article entitled “An NMR look at an engineered PET depolymerase” in the scientific journal Biophysical Journal.

The article describes the use of Nuclear Magnetic Resonance (NMR) spectroscopy to study the thermal stability of PET depolymerization enzymes and the mechanism of adsorption of the enzyme on the polymer. This innovative approach, which required months of development, is a world first and opens up new ways of improving these enzymes. This publication confirms Carbios' international lead in the development of the most efficient enzymes for the depolymerization and recycling of plastics.

Prof. Alain Marty, Chief Scientific Officer of Carbios and co-author of the article, explains: “ Nearly 25 researchers are currently working on our unique enzymatic technology. It is based on academic collaborations with the world's leading experts in their fields..”

Dr. Guy Lippens, CNRS Research Director and co-author of the artcle, adds: “Nuclear Magnetic Resonance (NMR) is an extraordinary biophysical technique for visualizing an enzyme directly in solution. Our study is the first to use NMR as a complementary technique to crystallography and molecular modeling to observe a PETase. This gives new perspectives to better understand the functioning of these enzymes and it makes it possible to imagine new ways of improving these enzymes. ”

More information:
Carbios de-polymerization
Source:

Carbios