From the Sector

Reset
16 results
07.02.2024

RadiciGroup’s roadmap to a sustainable future

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

In the context of a complex and constantly changing scenario, the Group has therefore decided to capitalize on the goals achieved and look beyond them with a plan defining the medium-term targets and the actions to be taken to fulfil them and covering all areas considered to be "material”, i.e., relevant from the point of view of ESG and financial risks, opportunities and impacts. Indeed, the ultimate goal of "From Earth to Earth" is to support business continuity and the growth of the company and all its stakeholders.

The project was the result of a multi-year collaboration with Deloitte, which contributed an external and objective viewpoint on the definition of the material targets and themes. However, it was not an armchair exercise, but the result of an extensive listening process involving internal and external stakeholders, all of whom were sustainability experts who helped define a shortlist of strategic themes for both the Group and its main stakeholders. These issues were then analysed in detail using working tables on the different themes to identify the objectives in Environmental, Social and Governance areas and the related concrete actions needed to achieve them, in line with the European decarbonization and energy transition policies and the
United Nations Sustainable Development Goals, a global blueprint for sustainable growth.

In particular, RadiciGroup’s environmental goals include: a 20% increase and differentiation in renewable source electricity consumption, an 80% reduction in total direct greenhouse gas emissions by 2030 compared to 2011, attention to water consumption to limit the impact on local communities and biodiversity, the extension of Life Cycle Assessment (LCA) methodology to measure the environmental impact of 70% of the products (in terms of weight) manufactured by the entire Group, collaboration among the various actors in the supply chain from an ecodesign perspective and the search for increasingly more sustainable and circular packaging solutions.

04.01.2024

The climate-friendly carbon fiber - up to 50% less CO2 emissions

SGL Carbon relies on climate-friendly manufacturing processes in the production of its own carbon fibers. By using renewable energy, the carbon footprint of SGL fiber can be reduced by up to 50% compared to a conventional fiber.  

SGL carbon fiber is produced at the Lavradio (Portugal) and Moses Lake (USA) sites. When the Moses Lake site was selected in the 1990s, the use of hydropower as an energy source played a particularly decisive role. As a result, around 75,000 tonnes of CO2 can be saved in Moses Lake by purchasing electricity from hydropower plants compared to a fossil fuel-based electricity mix.

As part of the consistent implementation of its climate strategy, SGL Carbon will be using a CO2-neutral biomass system to generate energy from the beginning of 2024, which will make the production system, which was previously based on natural gas, more flexible and climate-friendly. At full capacity, the biomass system in Lavradio can save more than 90,000 tons of CO2.

The raw material used is wood pellets, which are sourced from a radius of 250 kilometres via short transport routes.

SGL Carbon relies on climate-friendly manufacturing processes in the production of its own carbon fibers. By using renewable energy, the carbon footprint of SGL fiber can be reduced by up to 50% compared to a conventional fiber.  

SGL carbon fiber is produced at the Lavradio (Portugal) and Moses Lake (USA) sites. When the Moses Lake site was selected in the 1990s, the use of hydropower as an energy source played a particularly decisive role. As a result, around 75,000 tonnes of CO2 can be saved in Moses Lake by purchasing electricity from hydropower plants compared to a fossil fuel-based electricity mix.

As part of the consistent implementation of its climate strategy, SGL Carbon will be using a CO2-neutral biomass system to generate energy from the beginning of 2024, which will make the production system, which was previously based on natural gas, more flexible and climate-friendly. At full capacity, the biomass system in Lavradio can save more than 90,000 tons of CO2.

The raw material used is wood pellets, which are sourced from a radius of 250 kilometres via short transport routes.

The climate-friendly energy supply at the site in Moses Lake (USA) combined with the new biomass plant in Lavradio (Portugal) lead to a reduction in CO2 emissions of up to 50% in the production of SGL's own carbon fibers compared to conventional fibers. With the investment in the biomass system, SGL Carbon is pursuing its climate strategy. The target is to save 50% CO2 emissions by the end of 2025 compared to the base year 2019 and to be climate-neutral by the end of 2038. In the period 2019 to 2022, SGL Carbon has reduced its CO2 emissions by 17%.

Source:

SGL Carbon SE

Lenzing relies on wind power in the fiber and pulp production (c) Lenzing AG
At the ground-breaking ceremony, from left to right: Josef Reiter (Mayor of Engelhartstetten) Thomas Östros (Vice-President of the European Investment Bank) Helga Krismer-Huber (Green Party Lower Austria LAbg) Stephan Pernkopf (Deputy Governor of Lower Austria) Leonore Gewessler (Minister for Climate Protection) Gregor Erasim (owner of WLK energy) Gerda Holzinger-Burgstaller (Chairwoman of the Management Board of Erste Bank Österreich) Bianca Flesch (Environmental Management Messer Austria GmbH) Mario Wohanka (WLK Chief Financial Officer) Christian Skilich (CTO Lenzing AG)
10.11.2023

Lenzing relies on wind power in the fiber and pulp production

The Lenzing Group has concluded a supply contract with the Austrian electricity producer WLK energy for the purchase of around 13 megawatts of wind power. Lenzing is thus not only underlining its commitment to climate protection and the energy transition, but is also making a long-term investment in a price-stable and diversified electricity supply. The contract has a term of 15 years and provides for supply from the new wind farm in Engelhartstetten from the first quarter of 2025.

The construction of the wind farm is a joint project involving several partners, including the operator and electricity supplier WLK energy, based in Untersiebenbrunn (Lower Austria). The total output of the wind farm with a total of eleven wind turbines will be around 45 megawatts. The share of around 13 megawatts, which will be produced exclusively for the needs of the Lenzing site (Upper Austria), corresponds to the average electricity requirements of around 10,000 households per year in Austria. The ground-breaking ceremony to mark the start of construction took place on November 09, 2023 with representatives from politics and business.

The Lenzing Group has concluded a supply contract with the Austrian electricity producer WLK energy for the purchase of around 13 megawatts of wind power. Lenzing is thus not only underlining its commitment to climate protection and the energy transition, but is also making a long-term investment in a price-stable and diversified electricity supply. The contract has a term of 15 years and provides for supply from the new wind farm in Engelhartstetten from the first quarter of 2025.

The construction of the wind farm is a joint project involving several partners, including the operator and electricity supplier WLK energy, based in Untersiebenbrunn (Lower Austria). The total output of the wind farm with a total of eleven wind turbines will be around 45 megawatts. The share of around 13 megawatts, which will be produced exclusively for the needs of the Lenzing site (Upper Austria), corresponds to the average electricity requirements of around 10,000 households per year in Austria. The ground-breaking ceremony to mark the start of construction took place on November 09, 2023 with representatives from politics and business.

In 2019, Lenzing was the first fiber manufacturer to set itself the goal of reducing its CO2 emissions by 50 percent by 2030 and becoming carbon-neutral by 2050. This CO2 reduction target was recognized by the Science Based Targets Initiative. In 2022, Lenzing opened Upper Austria's largest open-space photovoltaic plant together with Verbund and also signed an electricity supply contract for photovoltaic energy with the green electricity producer Enery and Energie Steiermark.

Source:

Lenzing AG

31.08.2023

Lenzing's Indonesian site turns into a supplier of specialty viscose fibers

The Lenzing Group, a leading provider of specialty fibers for the textile and nonwoven industries, has made significant technical improvements to its Purwakarta site (PT. South Pacific Viscose). Lenzing has invested more than EUR 100 million since 2021 to convert existing production capacity to specialty viscose. With the imminent completion of the investment, Lenzing is in a better position to serve the strongly growing demand for specialty fibers.

Lenzing is striving for certification according to the standard of the internationally recognized EU Ecolabel1. The product portfolio would thus include LENZING™ ECOVERO™ branded fibers for textiles and VEOCEL™ branded fibers for nonwoven applications. In the course of these substantial investments, Lenzing has set the goal of significantly reducing emissions at the site. Moreover, the site started to obtain renewable grid electricity and promotes a changeover to biomass in line with Lenzing's goals of reducing carbon emissions per ton of product by 50 percent by 2030 and achieving carbon-neutral production by 2050.

The Lenzing Group, a leading provider of specialty fibers for the textile and nonwoven industries, has made significant technical improvements to its Purwakarta site (PT. South Pacific Viscose). Lenzing has invested more than EUR 100 million since 2021 to convert existing production capacity to specialty viscose. With the imminent completion of the investment, Lenzing is in a better position to serve the strongly growing demand for specialty fibers.

Lenzing is striving for certification according to the standard of the internationally recognized EU Ecolabel1. The product portfolio would thus include LENZING™ ECOVERO™ branded fibers for textiles and VEOCEL™ branded fibers for nonwoven applications. In the course of these substantial investments, Lenzing has set the goal of significantly reducing emissions at the site. Moreover, the site started to obtain renewable grid electricity and promotes a changeover to biomass in line with Lenzing's goals of reducing carbon emissions per ton of product by 50 percent by 2030 and achieving carbon-neutral production by 2050.

“Demand for specialty fibers with low environmental impacts continues to grow structurally. We see enormous growth potential in Asia in particular. Through our investments in Indonesia and also at other Lenzing sites worldwide, we are in a better position to serve this growing demand. At the same time, we continue working tirelessly to make the industries in which we operate even more sustainable and to drive the transformation of the textile business model from linear to circular,” says Stephan Sielaff, Chief Executive Officer of the Lenzing Group.

More information:
Lenzing speciality fibers indonesia
Source:

Lenzing AG

Photo Pure Denim
03.01.2023

PureDenim & Bemberg ™: “Blue di Cupro” collection at Pitti Uomo

In occasion of the next edition of Pitti Uomo, Bemberg™ by Asahi Kasei – the unique fiber with a circular economy footprint obtained from cotton linters through a closed-loop process ensuring certified sustainability credentials through its transparent and traceable approach- reveals a very special Bemberg™ fabrics smart range dedicated to premium denimwear.

In occasion of the next edition of Pitti Uomo, Bemberg™ by Asahi Kasei – the unique fiber with a circular economy footprint obtained from cotton linters through a closed-loop process ensuring certified sustainability credentials through its transparent and traceable approach- reveals a very special Bemberg™ fabrics smart range dedicated to premium denimwear.

This has been made possible thanks to the partnership with PureDenim, a leading Italian company whose strategy since 10 years is based on an entire re-design of the production system, inspired by circular economy principles that combines technology and innovative materials in order to offer the highest levels of design, innovation and real responsible values derived from an holistic approach to sustainability.
The “Blue di Cupro” collection is made with seven fabrics made with Bemberg™, either 100% Bemberg™ or in blend with cotton, wool, and it applies the most advanced Pure Denim Technologies. The Blue di cupro fabrics made with Bemberg™ will also be dyed with “Smart Indigo” an indigo dye technology internally produced by PureDenim, through a chemical-free production. The only elements involved are: water, indigo pigments, and electricity. In terms of finishing, fabrics’ looks and performances are enhanced by the “Eco Sonic” ultrasounds finishing technology which brings significant reduction of water used, increased aesthetic features and controlled discoloration. And last but not least every yarn used at PureDenim is protected by NaturalReco® a 100% natural product that completely SUBSTITUTE the use of plastic films that are one of the key causes of microplastic emission for denim application.

“Blue” seems to be the new colour of Bemberg™, in fact, the company in early November 2022 announced, at the Blue Friday initiative by UNESCO's Intergovernmental Oceanographic Commission (IOC), the achievement of the OK biodegradable MARINE certification, which guarantees the biodegradability of its products even in the marine environment, as certified by TÜV AUSTRIA, meaning a lot in the context of microplastics in water issue solutions. This Bemberg™ certification’s achievement comes on top of other key ones such as the INNOVHUB report that confirms Bemberg™ biodegradability in soil without releasing hazardous substances, the RCS by Textile Exchange, and the Oeko-Tex Standard 100 and ISO 14001 corporate certifications.

Source:

C.L.A.S.S.

Photo: Freudenberg Performance Apparel
24.11.2022

Freudenberg Performance Materials Apparel: Rooftop photovoltaic coverage at Nantong

Freudenberg recently completed the installation of 13,000m2 of photovoltaic cells on the roof of its new Nantong factory. With a total capacity of 1.6 MW, the new rooftop installation is projected to produce 1.5 million kWh of green electricity each year. In addition to reduced energy consumption from the grid, this new installation will lower CO2 emissions by approximately 1,200 tons/year.

Freudenberg recently completed the installation of 13,000m2 of photovoltaic cells on the roof of its new Nantong factory. With a total capacity of 1.6 MW, the new rooftop installation is projected to produce 1.5 million kWh of green electricity each year. In addition to reduced energy consumption from the grid, this new installation will lower CO2 emissions by approximately 1,200 tons/year.

Beyond the photovoltaic installation, Freudenberg has integrated sustainability into the Nantong factory’s design, with advances in energy conservation and emissions and loss reduction.
The factory uses valley voltage to cool water in its reservoir that is applied to A/C and machine temperature management during working hours. The new waste gas treatment technology enables hot water collected by heat exchangers to be directly reused in production, thereby reducing thermal energy waste. Furthermore, the factory applies a new multi-phase waste gas treatment technology to reduce volatile organic compounds (VOC) emissions. The factory has also incorporated new methods to improve the A-grade rates of bi-elastic interlinings and shirt interlinings, further reducing waste while improving garment quality.

As part of the Group’s sustainable development strategy, Freudenberg Apparel has also launched its House of Sustainability to minimize the impact of production processes on the environment and help customers achieve their sustainability goals, with responsible products across the seasons.

Source:

Freudenberg Performance Apparel

Infinited Fiber Company
14.10.2022

Infinited Fiber Company accelerates scaling plans amid turbulence

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 
“We are not immune to the global market context in which we operate. The supply chain issues stemming from the Covid-19 pandemic are still wreaking havoc, and the ongoing war in Ukraine has dealt a heavy blow to the global utility, commodity, and financial markets – and to us. We are satisfied with the progress at the site of our planned commercial-scale factory and the opening of the factory remains our key priority. The current, unstable market environment has highlighted the need for us to also accelerate efforts to simultaneously pursue other avenues for scaling production, with the ultimate aim of serving our customers in the best possible way in the long run,” said Infinited Fiber Company CEO and cofounder Petri Alava.
 
Infinited Fiber Company said in June that it planned to build a factory to produce Infinna™, a textile fiber that can be created 100% from cotton-rich textile waste, at the site of a discontinued paper mill in Kemi, Finland. The factory is expected to create around 270 jobs in the area and to have an annual production capacity of 30,000 metric tons, equivalent to the fiber needed for about 100 million T-shirts. The future factory’s customer-base includes several of the world’s leading apparel companies, with most of the future production capacity already sold out for several years.
 
Since June, Infinited Fiber Company has advanced the site-specific basic engineering, recruitment planning, vendor selection, and permit processes according to plan. The limited component availability caused by the continuing impacts of the Covid-19 pandemic and the war in Ukraine have, however, prolonged significantly the delivery times for some of the key equipment and machinery needed for the factory. As a result of these developments, Infinited Fiber Company has re-evaluated its overall factory project timeline. The first commercial fiber deliveries from Kemi are now expected to begin in January 2026. The scope of the project remains unchanged and construction work at the site is expected begin during 2023 as previously communicated.
 
In addition, the European energy crisis sparked by the war in Ukraine has caused the electricity prices in Finland to roughly triple, and the prices of some of the key chemicals needed in the fiber regeneration process have risen by some 200-300% since the start of the war.
 
“We of course don’t have a crystal ball. But according to our advisors and other experts, utility and commodity prices are forecast to normalize before 2026, when we now expect the first commercial fiber deliveries from Kemi to be shipped. In addition to the likely normalization of the market, the extended timeline enables us to undertake the necessary measures to develop the profitability of the future factory. The growing demand for Infinna™, despite the general turbulence, is an encouraging and clear indication of the fashion industry’s commitment to circularity,” said Petri Alava.

Source:

Infinited Fiber Company

15.09.2022

Lenzing also switches to green electricity at its Chinese site

The Lenzing Group, a leading provider of wood-based specialty fibers, is expanding its global clean electricity portfolio by gradually transitioning to green energy at its production site in Nanjing. This will enable its Chinese subsidiary Lenzing Nanjing Fibers to use electricity derived solely from renewable sources from 2023 onwards and reduce the site’s carbon emissions by 100,000 tonnes annually. Lenzing only recently announced the transition to green electricity at its Indonesian production facility.

In 2019, Lenzing became the first fiber producer to set a target of halving its carbon emissions by 2030 and becoming climate neutral by 2050. This carbon reduction target has been recognized by the Science Based Targets Initiative. In Nanjing, Lenzing is currently investing in cutting its carbon emissions and converting a standard viscose production line to 35,000 tonnes of TENCEL™ branded modal fibers. Thanks to this move, the Chinese site will exclusively produce eco-friendly specialty fibers.

The Lenzing Group, a leading provider of wood-based specialty fibers, is expanding its global clean electricity portfolio by gradually transitioning to green energy at its production site in Nanjing. This will enable its Chinese subsidiary Lenzing Nanjing Fibers to use electricity derived solely from renewable sources from 2023 onwards and reduce the site’s carbon emissions by 100,000 tonnes annually. Lenzing only recently announced the transition to green electricity at its Indonesian production facility.

In 2019, Lenzing became the first fiber producer to set a target of halving its carbon emissions by 2030 and becoming climate neutral by 2050. This carbon reduction target has been recognized by the Science Based Targets Initiative. In Nanjing, Lenzing is currently investing in cutting its carbon emissions and converting a standard viscose production line to 35,000 tonnes of TENCEL™ branded modal fibers. Thanks to this move, the Chinese site will exclusively produce eco-friendly specialty fibers.

The company aims to generate more than 75 percent of its fiber revenue from the wood-based, biodegradable specialty fibers business under the TENCEL™, LENZING™, ECOVERO™ and VEOCEL™ brands by 2024. With the launch of the lyocell plant in Thailand in March 2022 and the investments in existing production sites in China and Indonesia, the share of specialty fibers in Lenzing’s fiber revenue is set to exceed the 75 percent target by a significant margin as early as 2023.

13.09.2022

Ionofibres a new track for smart and functional textiles

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors.

In Claude Huniade’s project, the goal is to produce conductive yarns without conductive metals.
"My research is about producing electrically conductive textile fibres, and ultimately yarns, by coating non-metals sustainably on commercial yarns. The biggest challenge is in the balance between keeping the textile properties and adding the conductive feature," said Claude Huniade.

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors.

In Claude Huniade’s project, the goal is to produce conductive yarns without conductive metals.
"My research is about producing electrically conductive textile fibres, and ultimately yarns, by coating non-metals sustainably on commercial yarns. The biggest challenge is in the balance between keeping the textile properties and adding the conductive feature," said Claude Huniade.

Currenty, the uniqueness of his research leans towards the strategies employed when coating. These strategies expand to the processes and the materials used.

Uses ionic liquid
One of the tracks he investigates is about a new kind of material as textile coating, ionic liquids in combination with commercial textile fibres. Just like salt water, they conduct electricity but without water. Ionic liquid is a more stable electrolyte than salt water as nothing evaporates.

"The processable aspect is an important requirement since textile manufacturing can be harsh on textile fibres, especially when upscaling their use. The fibres can also be manufactured into woven or knitted without damaging them mechanically while retaining their conductivity. Surprisingly, they were even smoother to process into fabrics than the commercial yarns they are made from," explained Claude Huniade.

Ionofibres could be used as sensors since ionic liquids are sensitive to their environment. For example, humidity change can be sensed by the ionofibers, but also any stretch or pressure they are subjected to.

"Ionofibres could truly shine when they are combined with other materials or devices that require electrolytes. Ionofibres enable certain phenomena currently limited to happen in liquids to be feasible in air in a lightweight fashion. The applications are multiple and unique, for example for textile batteries, textile displays or textile muscles," said Claude Huniade.

Needs further research
Yet more research is needed to combine the ionofibres with other functional fibres and to produce the unique textile devices.

How do they stand out compared to common electronically conductive fibres?
"In comparison to electronically conductive fibres, ionofibers are different in how they conduct electricity. They are less conductive, but they bring other properties that electronically conductive fibers often lack. Ionofibres achieve higher flexibility and durability and match the type of conduction that our body uses. They actually match better than electronically conductive fibres with how electricity is present in nature," he concluded.

Source:

University of Borås - The Swedish School of Textiles

09.09.2022

Lenzing invests in renewable energy expansion

  • Partnership with green power producer Enery and Energie Steiermark realizes construction of a photovoltaic plant with 5.5 MWpeak capacity
  • Strategic investments in renewables boost energy independence and reduce carbon footprint

The Lenzing Group has signed an electricity supply contract with green power producer Enery and Energie Steiermark to finance a photovoltaic plant in the Deutschlandsberg region (Styria). The electricity generated will supply the fiber and pulp plant at the Lenzing site after commissioning from the fourth quarter of 2023. The electricity supply contract is limited to 20 years.

The plant’s output will amount to 5.5 MWpeak. This corresponds to the average annual electricity demand of more than 1,700 households. Several photovoltaic systems are already being installed at the Lenzing site, including the largest ground-mounted plant in the province of Upper Austria, whose commissioning is imminent.

  • Partnership with green power producer Enery and Energie Steiermark realizes construction of a photovoltaic plant with 5.5 MWpeak capacity
  • Strategic investments in renewables boost energy independence and reduce carbon footprint

The Lenzing Group has signed an electricity supply contract with green power producer Enery and Energie Steiermark to finance a photovoltaic plant in the Deutschlandsberg region (Styria). The electricity generated will supply the fiber and pulp plant at the Lenzing site after commissioning from the fourth quarter of 2023. The electricity supply contract is limited to 20 years.

The plant’s output will amount to 5.5 MWpeak. This corresponds to the average annual electricity demand of more than 1,700 households. Several photovoltaic systems are already being installed at the Lenzing site, including the largest ground-mounted plant in the province of Upper Austria, whose commissioning is imminent.

In 2019, Lenzing became the first fiber manufacturer to set a target to reduce its carbon emissions by 50 percent by 2030 and to be climate neutral by 2050. This carbon reduction target has been confirmed by the Science Based Targets Initiative. Lenzing is also currently investing in reducing carbon emissions at other sites worldwide. Only recently, the Lenzing Group announced that its Indonesian site will also be relying on green energy in the future.

Source:

Lenzing AG

25.08.2022

Indorama Ventures committed to Science Based Targets initiative

Indorama Ventures Public Company Limited (IVL), a global sustainable chemical company, announced its commitment to science-based targets by the Science Based Targets initiative (SBTi) to help drive its ambitious sustainability programs. The company will also participate in the SBTi Expert Advisory Group for the chemicals industry.

SBTi is a collaboration between CDP, the United Nations Global Compact, the World Resources Institute, and the World Wide Fund for Nature to help businesses set emissions reduction targets based on the most recent climate science. IVL has committed to science-based targets under its purpose of “Reimagining chemistry together to create a better world” which aims to reduce global warming in line with the 1.5°C Paris Climate Agreement.

Indorama Ventures Public Company Limited (IVL), a global sustainable chemical company, announced its commitment to science-based targets by the Science Based Targets initiative (SBTi) to help drive its ambitious sustainability programs. The company will also participate in the SBTi Expert Advisory Group for the chemicals industry.

SBTi is a collaboration between CDP, the United Nations Global Compact, the World Resources Institute, and the World Wide Fund for Nature to help businesses set emissions reduction targets based on the most recent climate science. IVL has committed to science-based targets under its purpose of “Reimagining chemistry together to create a better world” which aims to reduce global warming in line with the 1.5°C Paris Climate Agreement.

Under its Vision 2030 ambition, Indorama Ventures aims to build on its global industry leadership in sustainability, including by reducing GHG intensity by 30% and increasing renewable electricity consumption to 25%. Green projects are helping the company to achieve its operational efficiency targets, increase its use of renewable energy (especially renewable electricity – both onsite generation and offsite procurement through power purchase agreements), implement new decarbonization technologies including carbon capture, introduce bio-feedstock to its petrochemical value chain, and expand its PET recycling capability.

To meet its targets, IVL recognizes the importance of collaboration between the public and private sectors to decarbonize its operations through a variety of strategies. The established targets help its customers and suppliers to achieve their own sustainability goals, particularly their science-based targets.

Yash Lohia, Chairman of ESG Council at Indorama Ventures, said, "We are pleased to make our sustainability commitment more practical and measurable through science-based targets. We are dedicated to finding new technologies that can transform our operations and products towards net-zero. The efforts are not only for our sustainable business but also to support our customers and suppliers to achieve their own sustainability goals."

Source:

IVL

23.08.2022

Lenzing: Transition to green electricity in Indonesia

  • Gradual transformation of production capacities to LENZING™ ECOVERO™ and VEOCEL™ branded specialty viscose

The Lenzing Group, provider of wood-based specialty fibers, is expanding its global clean electricity portfolio and transitioning its production site in Purwakarta to green electricity. The Indonesian subsidiary PT. South Pacific Viscose (SPV) has been using electricity generated solely from renewable sources since July this year, which will reduce its specific carbon emissions by 75,000 tonnes annually.

In 2019, Lenzing became the first fiber producer to set a target of halving its carbon emissions by 2030 and becoming climate neutral by 2050. This carbon reduction target has been recognized by the Science Based Targets Initiative. In Purwakarta, Lenzing is currently investing in the reduction of carbon emissions, as well as air and water emissions. Thanks to its EUR 100 million investment in this area, Lenzing is gradually transitioning its existing capacities for standard viscose to LENZING™ ECOVERO™ and VEOCEL™ branded specialty viscose.

  • Gradual transformation of production capacities to LENZING™ ECOVERO™ and VEOCEL™ branded specialty viscose

The Lenzing Group, provider of wood-based specialty fibers, is expanding its global clean electricity portfolio and transitioning its production site in Purwakarta to green electricity. The Indonesian subsidiary PT. South Pacific Viscose (SPV) has been using electricity generated solely from renewable sources since July this year, which will reduce its specific carbon emissions by 75,000 tonnes annually.

In 2019, Lenzing became the first fiber producer to set a target of halving its carbon emissions by 2030 and becoming climate neutral by 2050. This carbon reduction target has been recognized by the Science Based Targets Initiative. In Purwakarta, Lenzing is currently investing in the reduction of carbon emissions, as well as air and water emissions. Thanks to its EUR 100 million investment in this area, Lenzing is gradually transitioning its existing capacities for standard viscose to LENZING™ ECOVERO™ and VEOCEL™ branded specialty viscose.

“Demand for our wood-based, biodegradable specialty fibers is constantly rising. We see enormous growth potential, especially in Asia. The switch to green, renewable electricity marks a huge step forward in converting our Indonesian site into a specialty fiber supplier. This makes us better positioned to meet the growing demand for sustainably produced fibers,” comments Robert van de Kerkhof, Chief Commercial Officer for Fiber at Lenzing.


The company aims to generate more than 75 percent of its fiber revenue from the wood-based, biodegradable specialty fibers business under the TENCEL™, LENZING™ ECOVERO™ and VEOCEL™ brands by 2024. With the launch of the lyocell plant in Thailand in March 2022 and the investments in existing production sites in Indonesia and China, the share of specialty fibers in Lenzing’s fiber revenue is set to exceed the 75 percent target by a significant margin as early as 2023.

Source:

Lenzing AG

Foto: Unplash
10.08.2022

High-tech center for cotton processing and fiber-to-fiber recycling being built in Africa

IFFAC (Impact Fund for African Creatives) has revealed plans which will revolutionise West African textile and garment production at one stroke. The fund is converting a partially disused textile mill in the region into a hi-tech centre for processing local cotton and recycling waste fabric, to produce both fabric for further processing and new clothes. The mill will be equipped with modern equipment, all sustainably powered by hydroelectricity from the nearby Volta Dam.

West Africa grows about 6% of the world’s cotton but only a tiny fraction of that crop is processed on the continent, the vast majority being shipped thousands of miles to Asia before being shipped back again as finished or part-finished fabrics. The mill project will end the continent’s reliance on such an unsustainable practice with all the obvious financial and environmental benefits.

IFFAC (Impact Fund for African Creatives) has revealed plans which will revolutionise West African textile and garment production at one stroke. The fund is converting a partially disused textile mill in the region into a hi-tech centre for processing local cotton and recycling waste fabric, to produce both fabric for further processing and new clothes. The mill will be equipped with modern equipment, all sustainably powered by hydroelectricity from the nearby Volta Dam.

West Africa grows about 6% of the world’s cotton but only a tiny fraction of that crop is processed on the continent, the vast majority being shipped thousands of miles to Asia before being shipped back again as finished or part-finished fabrics. The mill project will end the continent’s reliance on such an unsustainable practice with all the obvious financial and environmental benefits.

As well as producing fabric from sustainably grown virgin cotton, a joint venture with Shandong-based WOL Textiles Ltd., a privately owned plant that has long supplied the African market, the mill will be home to a state-of-the-art shredding and recycling facility, a joint venture between IFFAC and the Dutch Circularity B.V. CEO Han Hamers of Circularity B.V. in The Netherlands, has been involved in the production of 100% circular knit and woven articles.

The mill project is expected to create over a thousand jobs. The surrounding area already boasts a significant number of experienced textile workers ready to be retrained on the new equipment. While the majority of the products created will be sold within the region, all processes will confirm to new EU Supply Chain Law to allow for the possibility of export.  

Output is forecast at six million pieces of finished clothing and twenty-five million metres of spun and woven cloth per year. In total, thirty million US$ of investment will be made in the site with operations ready to begin next year (2023).

More information:
IFFAC Africa Recycling
Source:

Circularity Germany GmbH i.G.

07.06.2022

SGL Carbon raises sales and earnings guidance for 2022

Based on the good business development in all four Business Units as well as the mostly successful passing on of increased costs for raw materials, energy and transport to customers, the Board of Management of SGL Carbon SE expects to exceed the given guidance for the fiscal year 2022. Accordingly, SGL Carbon SE is increasing its sales and earnings guidance for fiscal year 2022.

The Company expects to exceed the upper end of the stated range of its Group EBITDApre (earnings before interest, taxes and depreciation adjusted by non-recurring items and one-time effects) guidance for the fiscal year 2022 of EUR 110 - 130 million and is raising its EBITDApre guidance for 2022 to EUR 130 - 150 million. Correspondingly, EBITpre1 (earnings before interest and tax adjusted by non-recurring items and one-time effects) is now forecasted to be between EUR 70 - 90 million (previously: EUR 50 - 70 million). The sales guidance is also raised to around EUR 1.1 billion for the current fiscal year, originally expected to be at the level of the previous year (EUR 1,007.0 million).

Based on the good business development in all four Business Units as well as the mostly successful passing on of increased costs for raw materials, energy and transport to customers, the Board of Management of SGL Carbon SE expects to exceed the given guidance for the fiscal year 2022. Accordingly, SGL Carbon SE is increasing its sales and earnings guidance for fiscal year 2022.

The Company expects to exceed the upper end of the stated range of its Group EBITDApre (earnings before interest, taxes and depreciation adjusted by non-recurring items and one-time effects) guidance for the fiscal year 2022 of EUR 110 - 130 million and is raising its EBITDApre guidance for 2022 to EUR 130 - 150 million. Correspondingly, EBITpre1 (earnings before interest and tax adjusted by non-recurring items and one-time effects) is now forecasted to be between EUR 70 - 90 million (previously: EUR 50 - 70 million). The sales guidance is also raised to around EUR 1.1 billion for the current fiscal year, originally expected to be at the level of the previous year (EUR 1,007.0 million).

In line with the development of earnings, the forecast for return on capital employed (ROCE) of originally 5% - 7% is raised to 7% - 9%. The expectations for free cash flow remain unaffected by the forecast increase. Free cash flow is still expected to be significantly lower in 2022 than in the previous year (previous year: EUR 111.5 million).

The new forecast for fiscal 2022 has been drawn up on the basis of the prevailing market environment and assumes no deterioration in conditions, in particular due to the war in Ukraine and its consequences for the global economy. In particular, it is assumed that sufficient electricity and gas will be available and production lines will remain in operation. The communicated medium-term targets up to 2025 remain unaffected by the forecast adjustment.

SGL Carbon will publish its 2022 half-year figures as planned on August 4, 2022.

More information:
SGL Carbon SE
Source:

SGL CARBON SE

27.01.2022

Radici Yarn certified to ISO 50001 Energy Management Systems

Over 400 employees work hard every day to improve the environmental performance of Radici Yarn’s site. Through teamwork and continuous improvement in energy efficiency, Radici Yarn has obtained ISO 50001 Energy Management Systems certification, which attests to the organization’s commitment to contain and progressively reduce energy consumption.

Radici Yarn, one of the companies in the RadiciGroup Advanced Textile Solutions Business Area, is engaged in the production and sale of polyamide 6 polymer, PA6 and PA66 continuous filament and staple yarn, and other synthetic fibres, including products made of recycled or bio-based materials.

All the processes - polymerization and spinning (Villa d'Ogna plant), as well as warping and draw-warping (Ardesio plant) - are run under constant monitoring with the goal of achieving maximum energy efficiency and lower consumption. Both sites are powered by two hydroelectric power plants owned by Geogreen, a RadiciGroup partner and energy supplier. The share of energy consumption from renewable sources and reduced environmental impact (natural gas) sources  is constantly increasing.

Over 400 employees work hard every day to improve the environmental performance of Radici Yarn’s site. Through teamwork and continuous improvement in energy efficiency, Radici Yarn has obtained ISO 50001 Energy Management Systems certification, which attests to the organization’s commitment to contain and progressively reduce energy consumption.

Radici Yarn, one of the companies in the RadiciGroup Advanced Textile Solutions Business Area, is engaged in the production and sale of polyamide 6 polymer, PA6 and PA66 continuous filament and staple yarn, and other synthetic fibres, including products made of recycled or bio-based materials.

All the processes - polymerization and spinning (Villa d'Ogna plant), as well as warping and draw-warping (Ardesio plant) - are run under constant monitoring with the goal of achieving maximum energy efficiency and lower consumption. Both sites are powered by two hydroelectric power plants owned by Geogreen, a RadiciGroup partner and energy supplier. The share of energy consumption from renewable sources and reduced environmental impact (natural gas) sources  is constantly increasing.

The energy issue has always been a priority for Radici Yarn, whose products serve numerous sectors, including automotive, clothing and furnishings.

"Already at the beginning of the 1990s, Radici Yarn started investing in cogeneration, the simultaneous production of electricity and steam,” pointed out Laura Ravasio, energy manager of Radici Yarn SpA. “We have recently started up an advanced trigeneration plant – a highly efficient system that produces not only electricity and steam, but also chilled water for our production processes. One of the first results recorded in 2021 was a 30% reduction in water consumption. Thus, ISO 50001 certification seemed like the next logical step to take in formalizing a long-term approach to energy.”

The ISO 50001 certification, which is voluntary and valid for a period of three years, was added to the ISO 14001 Environmental and ISO 9001 Quality Management system certifications previously achieved by Radici Yarn.

Source:

RadiciGroup

(c) Trützschler
Ralf Helbig, R & D Engineer for Air Technology (left) and Christian Freitag, Head of Air Technology at Trützschler (right).
27.09.2021

Trützschler: TC 19i sets the benchmark for energy-efficient carding

Global energy consumption reached a record high in 2019, following a 40-year trend for rapidly increasing energy demand that was only halted by the Coronavirus pandemic. It’s estimated that more than 80 % of this energy is still generated from fossil fuels that produce CO2 emissions and contribute to climate change. Renewable energy offers a solution to this problem, but saving energy whenever possible is an even more effective approach. That are the motives for Trützschler to develop the intelligent card TC 19i, which sets a new benchmark for energy-efficient carding.

The intelligent Trützschler card TC 19i features the unique T-GO gap optimizer, which continuously and automatically monitors and adjusts the carding gap to an ideal position during production. Innovative drive- and air technology further reduce energy consumption of the TC 19i.

Global energy consumption reached a record high in 2019, following a 40-year trend for rapidly increasing energy demand that was only halted by the Coronavirus pandemic. It’s estimated that more than 80 % of this energy is still generated from fossil fuels that produce CO2 emissions and contribute to climate change. Renewable energy offers a solution to this problem, but saving energy whenever possible is an even more effective approach. That are the motives for Trützschler to develop the intelligent card TC 19i, which sets a new benchmark for energy-efficient carding.

The intelligent Trützschler card TC 19i features the unique T-GO gap optimizer, which continuously and automatically monitors and adjusts the carding gap to an ideal position during production. Innovative drive- and air technology further reduce energy consumption of the TC 19i.

The most energy-intensive elements in a carding machine are the drive, the dust suction process and the compressed air system. Permanent suction is needed to remove dust and cotton waste in key places. Smart optimization of these areas has made the intelligent card TC 19i a benchmark for energy efficiency in carding because it uses less electricity, lower suction pressure and less compressed air than other machines, while providing the highest production rates currently available on the market.

In a head-to-head comparison between the TC 19i and a high-performance card from a competitor, the TC 19i consumed at least 10 % less energy per kilogram of material produced when manufacturing rotor yarn from a cotton and cotton waste mix. The compared energy values included electric power consumption and energy required for suction and compressed air and were measured in both cards at the same production of 180 kg/h. A 10 % reduction in energy per kilogram of sliver produced, as proven here by TC 19i, can have a significant impact on a spinning mill’s profitability; annual savings worth a five-digit sum are frequently possible, depending on factors such as the output of the mill. The customer trial also showed TC 19i’s excellent reliability at the customer’s usual production rate of 180 kg/h, and even demonstrated stable performance at 300 kg/h in the same application. Because the TC 19i with T-GO gap optimizer realizes maximum production rates at no compromise in quality, manufacturers can reduce their energy demand and investment costs drastically: Less machines are needed to achieve the desired output, and energy consumption per production is reduced.

This improvement was made possible by a long and sometimes challenging innovation process involving mathematical models of air flows, as well as flow simulations and prototypes. By combining the final flowoptimized parts in the TC 19i, Trützschler’s experts have developed a card that operates with suction pressure of just -740 Pa and with an air requirement of only 4200 m³/h. This translates into 40 % less energy demand for air technology compared to the latest high-performance competitor model.

More information:
Trützschler carding technology
Source:

Trützschler