From the Sector

Reset
77 results
nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

15.12.2023

National Defense Authorization Act: Boosting U.S. Textile Industry

The National Council of Textile Organizations (NCTO), spanning the entire spectrum of U.S. textiles from fiber to finished sewn products, commended Congress for passing the Fiscal Year 2024 National Defense Authorization Act (NDAA), legislation that will help preserve the Berry Amendment supply chain and direct the Department of Defense to expand its procurement of domestically-made textile goods for military use.

“We applaud the House and Senate for getting NDAA across the finish line and are pleased the legislation will now go to President Biden for his signature,” said NCTO President and CEO Kim Glas. “NCTO sincerely thanks Rep. Don Davis (D-NC) for sponsoring language expressing concern about offshoring textile manufacturing and highlighting the need for the DOD and Defense Logistics Agency (DLA) to procure more domestically-produced textile goods for military use. The language also requires the DOD to report on the feasibility of requiring American-made home textile goods to be used on military installations.”

The National Council of Textile Organizations (NCTO), spanning the entire spectrum of U.S. textiles from fiber to finished sewn products, commended Congress for passing the Fiscal Year 2024 National Defense Authorization Act (NDAA), legislation that will help preserve the Berry Amendment supply chain and direct the Department of Defense to expand its procurement of domestically-made textile goods for military use.

“We applaud the House and Senate for getting NDAA across the finish line and are pleased the legislation will now go to President Biden for his signature,” said NCTO President and CEO Kim Glas. “NCTO sincerely thanks Rep. Don Davis (D-NC) for sponsoring language expressing concern about offshoring textile manufacturing and highlighting the need for the DOD and Defense Logistics Agency (DLA) to procure more domestically-produced textile goods for military use. The language also requires the DOD to report on the feasibility of requiring American-made home textile goods to be used on military installations.”

“We also want to thank Rep. Joe Courtney (D-CT) who sponsored language expressing concern about economic factors impacting the capacity of the U.S. textile industry to meet DOD requirements and calling on the agency to assess labor shortages, contract forecasting and lack of investment in manufacturing capabilities and report back to Congress.”

Finally, this NDAA report language calls for DOD to report to Congress its assessment of the textile industry as it relates to labor shortages, contract forecasting and lack of investment in manufacturing capabilities.

“The domestic textile industry and supply chain are vital to the warm industrial base for the production of critical items that contribute to our nation’s health and safety. It is imperative that Congress and the administration continue to support this industry—a key contributor to our national defense that supplies over 8,000 products a year to our men and women in uniform—through expanded government procurement of American-made items. The NDAA is critical to supporting this manufacturing base,” Glas said.

Source:

National Council of Textile Organizations (NCTO)

Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right. Source: ITMF
Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right.
01.12.2023

Faster and cheaper carbon fibre production with CarboScreen

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Both types of damage cannot be optimally detected by current means or only become apparent after production, to name just two examples. This leads to higher production costs. In an emergency, faulty production can even lead to plant fires. For this reason, and to ensure good production quality, the system is run at 15 m/min below its production capacity for safety reasons. However, 30 m/min or more would be possible. With the sensor-based online monitoring of CarboScreen, the production capacity can be doubled to 30 /min. This would lead to higher production, resulting in lower manufacturing costs and wider use of carbon fibres in mass markets such as automotive, aerospace and wind energy.

More information:
carbon fibers sensors Startup
Source:

ITA – Institut für Textiltechnik of RWTH Aachen University
 

DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

Dyneema® SB301 to Enable Weight Savings of up to 20% in Protective Body Armor Image Avient
10.10.2023

Dyneema®: Weight Savings of up to 20% in Protective Body Armor

Dyneema® announced the launch of a next-generation unidirectional (UD) material innovation based on its third-generation fiber at the polymer level: a development poised to enhance the safety and mobility of law enforcement officers and military forces through molecular engineering.

This evolution enables a higher-tenacity fiber – resulting in increased ballistic stopping power when used in the new UD material, Dyneema® SB301, for protective armor applications. The seismic shift in performance enables body armor manufacturers to design soft armor vests 10–20% lighter than previous protective solutions.

Beyond strength, Dyneema® SB301 has the advantage of being made from bio-based Dyneema® fiber, which enables a carbon footprint up to 90% lower than generic high modulus polyethylene (HMPE) fiber.

Now available for use in law enforcement vests for the US market, Dyneema® SB301 material is manufactured in Greenville, North Carolina, in compliance with the Berry Amendment, with additional markets to follow.

Dyneema® announced the launch of a next-generation unidirectional (UD) material innovation based on its third-generation fiber at the polymer level: a development poised to enhance the safety and mobility of law enforcement officers and military forces through molecular engineering.

This evolution enables a higher-tenacity fiber – resulting in increased ballistic stopping power when used in the new UD material, Dyneema® SB301, for protective armor applications. The seismic shift in performance enables body armor manufacturers to design soft armor vests 10–20% lighter than previous protective solutions.

Beyond strength, Dyneema® SB301 has the advantage of being made from bio-based Dyneema® fiber, which enables a carbon footprint up to 90% lower than generic high modulus polyethylene (HMPE) fiber.

Now available for use in law enforcement vests for the US market, Dyneema® SB301 material is manufactured in Greenville, North Carolina, in compliance with the Berry Amendment, with additional markets to follow.

“In every situation, weight is now considered to be the top priority after ballistic stopping power,” said Marcelo van de Kamp, global business director for personal protection at Avient. “That’s because survivability is directly tied to weight savings when speed and agility determine outcomes. We’ve long been known as the ‘world’s strongest fiber™,’ but that won’t stop us from finding new opportunities to get stronger. This new product is the latest demonstration of our commitment to both innovation and protection.”

Source:

Avient Corporation

22.09.2023

INDA Partners & Waterloo Filtration Institute: Partnering for the FiltXPO™ 2023 Technical Program

INDA, the Association of the Nonwoven Fabrics Industry, is partnering with the Waterloo Filtration Institute to deliver the FiltXPO™ technical program on October 10-11, 2023 in Chicago, Illinois. The Waterloo Filtration Institute was instrumental in recommending program topics and world-class presenters.

Engineers, scientists, and industry professionals will gain the latest insights into the filtration and separation topics affecting the industry today and into the future. The program features presentations include: filter media technologies, advancements and opportunities in filtration machinery and equipment, innovations in clean air for homes and urban areas, standards and testing, industry trends and new developments, and filtration challenges and opportunities.

The keynote for this year’s event is “IAQ Is the New Black” presented by Suzanne Shelton, President & CEO, Shelton Group. Shelton will share the latest data around consumer views on health, safety, people, and the planet. Participants will gain an understanding of the filtration opportunities and the challenges manufacturers face in communicating the value of their products.

INDA, the Association of the Nonwoven Fabrics Industry, is partnering with the Waterloo Filtration Institute to deliver the FiltXPO™ technical program on October 10-11, 2023 in Chicago, Illinois. The Waterloo Filtration Institute was instrumental in recommending program topics and world-class presenters.

Engineers, scientists, and industry professionals will gain the latest insights into the filtration and separation topics affecting the industry today and into the future. The program features presentations include: filter media technologies, advancements and opportunities in filtration machinery and equipment, innovations in clean air for homes and urban areas, standards and testing, industry trends and new developments, and filtration challenges and opportunities.

The keynote for this year’s event is “IAQ Is the New Black” presented by Suzanne Shelton, President & CEO, Shelton Group. Shelton will share the latest data around consumer views on health, safety, people, and the planet. Participants will gain an understanding of the filtration opportunities and the challenges manufacturers face in communicating the value of their products.

A preview of the subject matter experts includes:

  • AAF Flanders – “Air Filter Standards Activity and What It Means for Innovation”
  • Ahlstrom – “Expanding Wetlaid Filtration Media Performance Through Innovation”
  • Air Techniques International – “Application of Automated Filter Tester in Quality Control Testing: Importance of Consistent Aerosol Particle Size Distribution”
  • American Truetzschler, Inc. – “How Really Good Filter Media Is Made”
  • CEREX Advanced Fabrics – “The Antimicrobial Nylon Advantage”
  • Elsner Engineering Works, Inc. – “When Does Automation Make Sense”
  • Hollingsworth & Vose – “Accelerating Membrane Adoption with ROI”
  • INDA – “Beyond Porter’s Five Forces – When Regulation Reshapes Markets”
  • MANN+HUMMEL GmbH – “Filtration for Cleaner Urban Mobility – Introducing Horizon Europe Innovation Action Aersolfd”
  • NatureWorks – “Optimizing Biopolymers to Improve Filter Performance – A Spectrum of Approaches and Opportunities”
  • Palas GmbH – “Influence of Temperature and Humidity to Filter Efficiency and Dust Holding Capacity”
  • Ptak Consulting – “Residential Filtration – Performance Against Infectious Aerosols”
  • The University of Georgia – “Recent Advances in Melt Blown Nonwovens and Filter Media Research”

New this year to FiltXPO are Lightning Talks. Lightning Talks are an opportunity to connect with new trends, products, innovations, and ideas with speakers rotating every eight minutes. Presenting companies include Ahlstrom, Elsner Engineering Works, Inc., Gottlieb Binder GmbH, TSI, and the Waterloo Filtration Institute.

The FiltXPO exhibition takes place October 10-12 and will run concurrently with the technical program.

More information:
INDA Filtxpo Conference
Source:

INDA, the Association of the Nonwoven Fabrics Industry

seat belts Photo Oerlikon Textile GmbH & Co. KG
07.09.2023

Oerlikon Polymer Processing Solutions at the Techtextil India 2023

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

More polyester for airbags
The yarns used in airbags are made predominantly from polyamide. As a result of increasingly diverse airbag applications and also the increasing size of the systems used, polyester is today used as well, depending on the application requirements and cost-benefit considerations. Against this background, the Oerlikon Barmag technol-ogies make an invaluable contribution. In addition to high productivity and low energy consumption, they particularly excel in terms of their stable production processes. Furthermore, they comply with every high quality standard for airbags, which – as in the case of virtually all other textile products used in vehicle construction – must provide the highest level of safety for vehicle occupants - without any loss of function in any climate and for the lifetime of the vehicle

Buckle up!
Seat belts have to withstand tensile forces in excess of three tons and simultaneously stretch in a controlled manner in emergencies in order to reduce the load in the event of impact. A seat belt comprises approximately 300 filament yarns, whose individual, high-tenacity yarn threads are spun from around 100 individual filaments. “With our unique, patented Single Filament Layer Technology, we offer a sophisticated and simultaneously gentle high-tenacity (HT) yarn process for manufacturing these lifesavers and other applications made from industrial yarn”, explains André Wissenberg, Head of Marketing.

Road reinforcement using geotextiles
Low stretch, ultra-high tenacity, high rigidity – industrial yarns offer outstanding properties for the demand-ing tasks carried out by geotextiles; for instance, as geogrids in the base course system under asphalt. Normally, geotextiles have extremely high yarn titers of up to 24,000 denier. Oerlikon Barmag system concepts simultaneously manufacture three filament yarns of 6,000 denier each. Due to the high spinning titers, fewer yarns can be plied together to the required geo-yarn titer in a more cost- and energy-efficient manner.

hycuTEC –  quantum leap for filter media
In the case of its hycuTEC hydro-charging solution, Oerlikon Neumag offers a new technology for charging nonwovens that increases filter efficiency to more than 99.99%. For meltblown producers, this means material savings of 30% with significantly superior filter performance. For end users, the consequence is noticeably improved comfort resulting from significantly reduced breathing resistance. With its considerably lower water and energy consumption, this new development is also a future-proof, sustainable technology.

Source:

Oerlikon Textile GmbH & Co. KG

05.09.2023

Beaulieu International Group at International Conference on Geosynthetics

Beaulieu International Group will turn the spotlight on geotextile products with sustainability benefits to support progress in resilient civil engineering projects at the 12th ICG Rome from 18th -21st September 2023, presenting options to target fossil carbon reduction by choosing PP-based staple fibres or woven geotextiles that are among the lowest in carbon footprint for geosynthetics.

For manufacturers of nonwoven geotextiles, Beaulieu Fibres International (BFI) offers PP fibres with > 25% carbon footprint reduction compared to the European standard PP fibres, generating 1.48 kg CO2/kg PP fibres. A step further is to accelerate the replacement of fossil carbon in engineered fibre applications by choosing its ISCC Plus certified bio-attributed MONO-PP with a negative carbon footprint.

For construction projects, nonwoven geotextiles made with high-tenacity HT8 fibres are proven to secure a longer service lifetime and reduce the environmental impact, as they offer high mechanical performance at a reduced weight.

Beaulieu International Group will turn the spotlight on geotextile products with sustainability benefits to support progress in resilient civil engineering projects at the 12th ICG Rome from 18th -21st September 2023, presenting options to target fossil carbon reduction by choosing PP-based staple fibres or woven geotextiles that are among the lowest in carbon footprint for geosynthetics.

For manufacturers of nonwoven geotextiles, Beaulieu Fibres International (BFI) offers PP fibres with > 25% carbon footprint reduction compared to the European standard PP fibres, generating 1.48 kg CO2/kg PP fibres. A step further is to accelerate the replacement of fossil carbon in engineered fibre applications by choosing its ISCC Plus certified bio-attributed MONO-PP with a negative carbon footprint.

For construction projects, nonwoven geotextiles made with high-tenacity HT8 fibres are proven to secure a longer service lifetime and reduce the environmental impact, as they offer high mechanical performance at a reduced weight.

Beaulieu Technical Textiles' (BTT) woven geotextiles provide a wide range of functions, including separation, filtration, reinforcement and erosion control, and are among the most sustainable in the industry. Depending on weight, the carbon footprint of its woven geotextiles (m²) ranges between 0.37 and 1.40 kg CO2 eq./m². They also minimize the use of natural resources for more sustainable infrastructure development. Case studies such as at the Ostend-Bruges airport highlight significant CO2 reduction on the jobsite by replacing the transport of 960 trucks of gravel with 3 trucks of woven geotextiles, and by extending the runway’s life span.

The ICG launch of its new line Terralys MF woven filtration geotextiles with monofilament boosts the performance of a common solution in building layers that require high water flow rates. High-tenacity extruded polypropylene tapes and monofilaments are interwoven to form dimensionally stable and highly permeable geotextiles. These new filtration geotextiles provide greater resistance to dirt and biological clogging. They allow water to travel freely while reducing soil erosion when employed as a separation and stabilizing layer.

As of September 2023, all PP staple fibres and woven geotextiles will have Environmental Product Declarations (EPD) based on LCAs. Each EPD is an essential tool for communicating and reporting on the sustainability performance and helps carbon-conscious customers in their purchasing and decision making. Registered EPDs are globally recognized, publicly available and free to download through EPD Libraries.

Source:

Beaulieu International Group

ropes Photo Cinte Techtextil
29.08.2023

Cinte Techtextil China 2023 to launch new Marine Textile Zone

At the crosswinds of China’s 14th Five-Year Plan for the Development of the Marine Economy and its 14th Five-Year Guidance for the Development of the Technical Textiles Industry lies the marine textile sub-sector. Following the government’s directive, the Marine Textile Zone will be unfurled at this year’s fair, taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre. Multiple exhibitors from across China have confirmed their participation within the zone, which will be comprised of three main parts: green marine science and nautical rope netting innovation display area, the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry.
 
The global rope market is predicted to experience a CAGR of 5.6% and grow by over USD 4 billion between 2022 - 2027[1], and suppliers are eager for the chance to meet buyers face to face. In fact, many will use the new zone at Asia’s leading technical textiles and nonwovens fair to do so.

At the crosswinds of China’s 14th Five-Year Plan for the Development of the Marine Economy and its 14th Five-Year Guidance for the Development of the Technical Textiles Industry lies the marine textile sub-sector. Following the government’s directive, the Marine Textile Zone will be unfurled at this year’s fair, taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre. Multiple exhibitors from across China have confirmed their participation within the zone, which will be comprised of three main parts: green marine science and nautical rope netting innovation display area, the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry.
 
The global rope market is predicted to experience a CAGR of 5.6% and grow by over USD 4 billion between 2022 - 2027[1], and suppliers are eager for the chance to meet buyers face to face. In fact, many will use the new zone at Asia’s leading technical textiles and nonwovens fair to do so.

In the green marine and rope netting category, exhibitors will showcase the latest innovations along the marine textile industry chain, anchored by application areas such as marine engineering, marine economy, marine fencing, marine rescue, deep-sea fishing, deep-sea aquaculture, and many more.

Featured exhibitors include:

  • Ropenet Group: covering 36 application areas, such as aerospace, marine fisheries, safety protection, and emergency rescue, the Shandong-based company has exported to over 110 countries and regions. Products include ropes, nets, threads, and belts, with new materials and high-performance synthetic fibre spinning ropes forming the core of its business.
  • Hunan Xinhai: with its Hunan factory covering 200,000 sqm, its industry-leading rope net production scale ensures it can service multiple sectors such as fisheries, sports, military industry, marine engineering, life-saving protection, and many more. Its extensive network spans Asia, Africa, Europe, and beyond.
  • Zhejiang Four Brothers Rope: located in Zhejiang Toumen Port Economic Development Zone, the special chemical fibre rope manufacturer integrates R&D, manufacturing, sales, and after-sales service. After nearly 60 years of operation, the company now has a yearly production capacity of over 15,000 tons.

Other notable exhibitors in this zone include Xuzhou Henghui Braiding Machine; Shandong Jinguan Netting; Jiuli Rope; and Zhejiang Hailun Rope Net.

Meanwhile, the Technology Exchange Forum will focus on policies and regulations, strategic development opportunities, market analysis, product and process innovation, and the promotion and application of marine textiles. A range of well-known international and domestic experts have been invited to deliver comprehensive industry analysis, and unveil oceanic green textile initiatives onsite.

Designed to expand the influence of the rope net industry, the Top 10 Suppliers in the China Rope Net Industry awards will highlight enterprises currently making key contributions. Other fringe events related to this textile sub-sector include the Conference on Textile Applications for Marine Engineering and Fisheries, and the China Nonwovens & Industrial Textiles Association (CNITA) Rope Net Branch Council Meeting.

Lastly, the Marine Textile Zone will also encompass a business negotiation area to facilitate negotiations between key players onsite, set against the backdrop of the innovation display area’s award-winning and patented rope net products. As a whole, the zone is expected to encourage independent innovation in marine science and technology, coordinate the protection and development of marine resources, and help build a modern maritime industrial system.

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

The fair is organised by Messe Frankfurt (HK) Ltd; the Sub-Council of Textile Industry, CCPIT; and the China Nonwovens & Industrial Textiles Association (CNITA).

Source:

Messe Frankfurt (HK) Ltd

25.08.2023

Exist research transfer project FoxCore successfully launched

The FoxCore founding team and the ITM at TU Dresden aim to usher in a new era for fastening solutions in lightweight construction with the start of the Exist research transfer project FoxCore. The project started on June 1, 2023, and will run until November 30, 2024, with support from the German Federal Ministry of Economics and Climate Protection (BMWK) and the European Social Fund (ESF).

The innovative company is to develop and offer new and customer-oriented fastening solutions for lightweight construction applications. Safety and performance of lightweight solutions in various industries are to be increased. FoxCore's objective is to take a leading role in fastening technology.

Daniel Weise, Philipp Schegner, Michael Vorhof and Cornelia Sennewald form the FoxCore team; they will work closely with the Institute of Textile Machinery and Textile High Performance Materials (ITM) at TU Dresden. Together, they will develop optimal manufacturing technologies and establish a widespread network of customers and suppliers.

The FoxCore founding team and the ITM at TU Dresden aim to usher in a new era for fastening solutions in lightweight construction with the start of the Exist research transfer project FoxCore. The project started on June 1, 2023, and will run until November 30, 2024, with support from the German Federal Ministry of Economics and Climate Protection (BMWK) and the European Social Fund (ESF).

The innovative company is to develop and offer new and customer-oriented fastening solutions for lightweight construction applications. Safety and performance of lightweight solutions in various industries are to be increased. FoxCore's objective is to take a leading role in fastening technology.

Daniel Weise, Philipp Schegner, Michael Vorhof and Cornelia Sennewald form the FoxCore team; they will work closely with the Institute of Textile Machinery and Textile High Performance Materials (ITM) at TU Dresden. Together, they will develop optimal manufacturing technologies and establish a widespread network of customers and suppliers.

Source:

Institute of Textile Machinery and High Performance Material Technology (ITM)
TU Dresden

OETI purchases ECS to expand its PPE portfolio photo: OETI
12.07.2023

OETI purchases ECS to expand its PPE portfolio

OETI – a member of the internationally active TESTEX Group – has bought the German company ECS to expand its service portfolio in the field of personal protective equipment (PPE).

OETI has been offering testing services for textile work clothing since 1983 – for about 40 years. Since the introduction of CE labelling for personal protective equipment and the enactment of the PPE Directive by the European Union in 1993, OETI has not only been testing textile personal protective equipment, but now on also certifies it in conformity with EU standards. In 1995, OETI was certified in Brussels as a Notified Body (0534) for type-examinations and quality assurance monitoring of personal protective equipment end products. Testing and certification is carried out in accordance with the current PPE Regulation (EU) 2016/425.

Testing and Certification Body for Eye and Face Protection, based in Aalen, was founded 15 years ago and is a globally active institution for testing and certification of eye and face protection equipment. The company is one of the leading independent testing institutions for personal protection products in laser applications and for welding work.

OETI – a member of the internationally active TESTEX Group – has bought the German company ECS to expand its service portfolio in the field of personal protective equipment (PPE).

OETI has been offering testing services for textile work clothing since 1983 – for about 40 years. Since the introduction of CE labelling for personal protective equipment and the enactment of the PPE Directive by the European Union in 1993, OETI has not only been testing textile personal protective equipment, but now on also certifies it in conformity with EU standards. In 1995, OETI was certified in Brussels as a Notified Body (0534) for type-examinations and quality assurance monitoring of personal protective equipment end products. Testing and certification is carried out in accordance with the current PPE Regulation (EU) 2016/425.

Testing and Certification Body for Eye and Face Protection, based in Aalen, was founded 15 years ago and is a globally active institution for testing and certification of eye and face protection equipment. The company is one of the leading independent testing institutions for personal protection products in laser applications and for welding work.

ECS tests and evaluates occupational health and safety goggles with and without a filter action, passive and active switching protection filters and shields for welders, and laser protection filters, goggles, and shields. The company also tests the optical properties of sunglasses, sports glasses, ski goggles, swimming goggles and motorbike goggles.

With OETI’s takeover, the ECS location in Aalen is retained, and all employees will continue working at ECS. The new Managing Director of ECS GmbH as of 1 July 2023 is Dipl.-Ing. Rolf Diebolder.

‘We are present on the European market, on the American market and, via a representative office, on the Chinese market. With the aid of the new distribution channels through OETI and TESTEX, we want to steadily advance ECS’ expansion and be present on all five continents’, says Managing Director Rolf Diebolder, explaining his strategic plans for ECS. ‘I would like OETI and ECS to develop a joint strategy in order to be able to offer existing and new customers of both companies a complete package which, when combined, will give us a unique selling point in the marketplace’, says Diebolder.

Diebolder also sees further potential in the cooperation with regard to protective laser clothing. According to him, this is where the laser laboratory commissioned by ECS could be used to make textiles laser-safe. In the future, there will be more and more ‘hand-held’ devices, i.e. laser welding devices, for which gloves and protective jackets are needed.

Source:

OETI - Institut fuer Oekologie, Technik und Innovation GmbH

12.04.2023

Comeback of CIOSH trade fair in Shanghai

As a trade fair for safety and occupational health in China, the 104th China International Occupational Safety & Health Goods Expo (CIOSH 2023), organized by China Textile Commerce Association (CTCA) and Messe Düsseldorf (Shanghai) Co., Ltd. (MDS), will be grandly held at the Shanghai New International Expo Centre (SNIEC) Hall E1-E7 from 13-15 April 2023. Following three years of epidemic prevention and control measures, the situation has stabilized in China, allowing the labor protection market to enter a phase of rapid recovery and rebound. CIOSH 2023 will attract over 1,500 exhibitors from 14 countries, showcasing their latest protective equipment and technology in an exhibition area exceeding 80,000 square meters.

As a trade fair for safety and occupational health in China, the 104th China International Occupational Safety & Health Goods Expo (CIOSH 2023), organized by China Textile Commerce Association (CTCA) and Messe Düsseldorf (Shanghai) Co., Ltd. (MDS), will be grandly held at the Shanghai New International Expo Centre (SNIEC) Hall E1-E7 from 13-15 April 2023. Following three years of epidemic prevention and control measures, the situation has stabilized in China, allowing the labor protection market to enter a phase of rapid recovery and rebound. CIOSH 2023 will attract over 1,500 exhibitors from 14 countries, showcasing their latest protective equipment and technology in an exhibition area exceeding 80,000 square meters.

Integrating Online and Offline Platforms
CIOSH 2023 encompasses four major sectors: Safety at Work, Security at Work, Health at Work, and Emergency Rescue Management. Renowned domestic and international exhibitors, including 3M, Honeywell, Ansell, SATA, JSP, MSA, DELTAPLUS, Lakeland, Cortina, UVEX, CM Chaomei, Xing Yu Gloves, DS, East Asia Glove, Hanvo, SOMO Zhongmai Safety, SAFETY-INXS, and TELPS, will assemble on site. At the same time, CIOSH 2023 has introduced an innovative online platform - CIOSH VIRTUAL. By offering online displays, live streaming, interactive features, and real-time communications, it breaks time and space constraints, facilitating exhibitors and visitors to continue their business exchanges and cooperations beyond the physical exhibition. So far, nearly 1,300 companies have joined the CIOSH VIRTUAL, showcasing more than 3,000 products online and attracting over 70,000 views.

CIOSH Industry Technical Seminar, Sustainable Development Emerges as the Key Focus
The annual Industry Technical Seminar, held concurrently with CIOSH, serves as a platform for professionals to discuss product solutions, share industry insights, and exchange ideas on relevant policies. In 2021, China integrated climate change mitigation measures into its 14th Five-Year Plan, established a 2030 carbon peaking action plan, and proactively pursued the goal of carbon neutrality by 2060. Under the development objectives of "carbon peaking" and "carbon neutrality," the sustainable development of the personal protective equipment (PPE) industry has become the primary theme of this year's seminar. Experts from China Carbon Low-carbon Certification (Jiangsu) Co., Ltd., China Certification Centre, Inc., and SGS-CSTC Standards Technical Services Co., Ltd., will examine related policies, the effects of "carbon neutrality" on the PPE industry chain and the industries using PPE from different angles. They will also explore the future direction of PPE and offer professional guidance for the transformation of relevant enterprises.

Fall Protection Zone
Falls from height are one of the most common accidents that cause serious injury or death to workers. Effective fall protection requires not only protective equipment, but also professional instructions and training. Therefore, CIOSH set up a new Fall Protection Zone in 2021, which received unanimous acclaim. CIOSH 2023 has continued to invite SKYLOTEC, rothoblaas, JECH, Mode and NTR Safety, five companies that specialize in protection at height, to conduct on-site demonstrations on fall testing, fall protection solutions and aerial rescue, and provide visitors with the most professional fall protection guidance and training.

Occupational Health
CIOSH has always implemented the strategy of expanding the business scope in a diversified way, which devotes itself to providing innovative opportunities and new driving forces for the sustainability of the occupational safety and health industry. This year, focusing on the "occupational health" sector, the exhibition will launch an Ergonomics Zone and an Exoskeleton Technology Zone for the first time.

Celliant -how it works (c) Hologenix
06.04.2023

Hologenix: Infrared technology with potentially positive impact on diabetic patients

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

According to statistics cited in the International Diabetes Federation Diabetes Atlas, 9th edition, globally, close to a half billion people are living with diabetes and that number is expected to increase by more than 50 percent in the next 25 years.
 
The introduction of the study in the Journal of Textile Science & Engineering also reports that diabetic patients frequently suffer from a combination of peripheral neuropathy and peripheral artery disease, which particularly affects their feet. It further states that it has been estimated that the lifetime risk for the development of foot ulcers in diabetic patients can be as high as 25 percent and that the risk of amputation is 10 to 20 times higher than in non-diabetic subjects.
 
The study was performed by Lawrence A. Lavery, D.P.M., M.P.H., a Professor in the Department of Plastic Surgery at UT Southwestern Medical Center. His clinic and research interests involve diabetic foot complications, infections and wound healing, and he participated in the conception, design, implementation and authorship of the Journal of Textile Science & Engineering study.  

CELLIANT technology is a patented process for adding micron-sized thermo-responsive mineral particles to fibers, in this case polyethylene terephthalate (PET) fibers. The resulting CELLIANT yarns were woven into stockings and gloves containing either 82% CELLIANT polyester, 13% nylon and 5% spandex or for the placebo, 82% polyester with no CELLIANT, 13% nylon and 5% spandex. CELLIANT products absorb body heat and re-emit the energy back to the body as infrared energy, which is non-invasive and increases temporary blood flow and cell oxygenation levels in the body.

The objective of the study was to “evaluate changes in transcutaneous oxygen (TcPO2) and peripheral blood flow (laser Doppler, LD) in the hands and feet of diabetic patients with vascular impairment when CELLIANT gloves and stockings are worn.” While there was not a statistically significant result across all subjects, the study did show that some patients wearing CELLIANT stockings for 60 minutes had an increase of as much as 20% in tissue oxygenation and 30% in localized blood flow. According to the study’s conclusion, “the trends that were observed in favor of CELLIANT stockings suggest that a larger well-designed clinical trial should be undertaken and may provide evidence of clinical efficacy in treatment of the diabetic foot.”
 
The study also notes that “There have been no documented or observed side effects of wearing CELLIANT stockings, and they are relatively inexpensive compared to conventional pharmaceutical interventions.”

Hologenix has embarked on a more comprehensive trial, “Study to Evaluate CELLIANT Diabetic Medical Socks to Increase Tissue Oxygenation and Incidence of Complete Wound Closure in Diabetic Foot Wounds” – NCT04709419, which focuses on the impact of CELLIANT technology to potentially improve tissue oxygenation and wound healing outcomes.
 
“We are excited to explore whether future studies of infrared, with its most common biological effects of increased localized blood flow and cellular oxygenation, could result in a breakthrough in diabetic patients with vascular impairment,” said Seth Casden, Hologenix Co-founder and CEO. “We see a huge potential opportunity with this research for helping to fulfill our core mission of improving people’s health and well-being by potentially reducing the impact of diabetes, and we are actively seeking partners to expand our research efforts.”

Source:

Hologenix

Photo Fibre Extrusion Technology Ltd (FET)
23.03.2023

FET prepares for INDEX 23 Exhibition in Geneva

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Source:

Fibre Extrusion Technology Ltd (FET)

Photo: Messe Düsseldorf, Constanze Tillmann
21.12.2022

WearRAcon Europe Conference to be held at A+A 2023

Under the motto “People Matter” A+A 2023, a Trade Fair for Safety, Security and Health at Work, will revolve around the most important trends of our time: sustainability and digitalisation. Here, exoskeletons also play a prominent role as tomorrow’s ergonomic tools. An important conference in this field is WearRAcon Europe which will be held at A+A from 25 – 26 October 2023 for the first time.

The Conference will be organised by the Fraunhofer Institute IPA in cooperation with the Stuttgart University and the Wearable Robotics Association (WearRA). The 38th A+A Congress, which is held by Bundesarbeitsgemeinschaft für Sicherheit und Gesundheit bei der Arbeit (German Federal Association for Occupational Safety and Health - Basi) will be closely dovetailed thematically and in terms of content with it.

Under the motto “People Matter” A+A 2023, a Trade Fair for Safety, Security and Health at Work, will revolve around the most important trends of our time: sustainability and digitalisation. Here, exoskeletons also play a prominent role as tomorrow’s ergonomic tools. An important conference in this field is WearRAcon Europe which will be held at A+A from 25 – 26 October 2023 for the first time.

The Conference will be organised by the Fraunhofer Institute IPA in cooperation with the Stuttgart University and the Wearable Robotics Association (WearRA). The 38th A+A Congress, which is held by Bundesarbeitsgemeinschaft für Sicherheit und Gesundheit bei der Arbeit (German Federal Association for Occupational Safety and Health - Basi) will be closely dovetailed thematically and in terms of content with it.

Being able to walk again despite a serious injury, handle heavy parts without outside help or simply do overhead work comfortably and for extended periods of time - the advantages of exoskeletons have already convinced numerous industries. Exoskeletons and wearables are now already being used successfully in industry and commerce, and major machine builders and automakers as well as the medical sector are continuing to experiment with man-machine connections. Currently, the global market volume for exoskeletons is valued by leading analysts at over US$20 billion by 2030.1

The WearRAcon Europe Conference 2023 will provide new insights into the promising world of exoskeleton systems from different perspectives and, in conjunction with the A+A Congress, set future-oriented impulses. Lectures by renowned exoskeleton pioneers combined with testimonials presented by users from a variety of industries and keynotes by experts will round off the programme. And, like at the previous A+A, a Self-Experience Space will again be set up so that the exoskeleton systems of various manufacturers can be tested in realistic work scenarios.

In parallel with the Self-Experience Space, the large live study Exoworkathlon will also take place again. Trainees from various mechatronic training courses have to complete a concourse and perform holding, lifting and assembling tasks, which have been specially developed with the industry. Data is prospectively collected with different measuring sensors to measure the effects of exoskeletons. In the Exoworkathlon, the IPA focuses especially on prevention for young employees in order to raise awareness of the issue and counteract ailments at an early stage.

1 (Interview Trans.INFO mit Armin G. Schmidt, CEO von German Bionic (01/2021).

Source:

Messe Düsseldorf GmbH

Photo Autoneum Management AG
19.12.2022

Autoneum: Optimized thermal management for electric vehicles thanks to cold chamber

A new cold chamber at its headquarters in Winterthur, Switzerland, enables Autoneum to optimize existing technologies as well as simulation and engineering services in vehicle thermal management and to adapt them to the changing thermal requirements of electric vehicles

The absence of heat from the internal combustion engine in electric vehicles as well as the impact of ambient temperature on the performance and lifetime of lithium-ion batteries are changing the requirements for vehicle thermal management. In addition, the energy from the battery is used not only to power the e-motor but also to thermally manage the battery itself and to warm and cool the car cabin by means of the heating, ventilation and air conditioning system. To increase the thermal comfort of the occupants and at the same time ensure optimum battery performance, save energy and thus increase the car’s range, manufacturers are placing increasing emphasis on efficient overall thermal management of the vehicle.

A new cold chamber at its headquarters in Winterthur, Switzerland, enables Autoneum to optimize existing technologies as well as simulation and engineering services in vehicle thermal management and to adapt them to the changing thermal requirements of electric vehicles

The absence of heat from the internal combustion engine in electric vehicles as well as the impact of ambient temperature on the performance and lifetime of lithium-ion batteries are changing the requirements for vehicle thermal management. In addition, the energy from the battery is used not only to power the e-motor but also to thermally manage the battery itself and to warm and cool the car cabin by means of the heating, ventilation and air conditioning system. To increase the thermal comfort of the occupants and at the same time ensure optimum battery performance, save energy and thus increase the car’s range, manufacturers are placing increasing emphasis on efficient overall thermal management of the vehicle.

The chamber enables to test both occupants’ subjective perception of thermal comfort and the performance of components and entire vehicles under controlled temperature conditions of up to minus 20 degrees Celsius. It is thus a valuable addition to the existing testing and bench-marking facilities at the Company’s global research and development centers. The tests conducted in the chamber show how existing insulating components such as under battery shields, carpets and interior trim need to be optimized to further enhance the thermal management of the vehicle battery and cabin. The tests also provide valuable insights regarding the development and optimization of heated surfaces such as floor mats and door trim panels to improve thermal performance and driver comfort of electric vehicles.

Source:

Autoneum Management AG

Photo: OCSiAl
24.11.2022

OCSiAl: Graphene nanotubes expand textiles’ functionality

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 
In applications where multifunctionality of textile is required, graphene nanotubes overcome the limitations of other conductive materials such as unstable anti-static properties; degradation of strength, or chemical or fire resistance; complicated manufacturing processes; dusty production; carbon contamination on the material’s surface; or limited color options. Recent developments show that graphene nanotubes provide ESD protection to textiles in full compliance with safety standards and without degrading the textile’s resistance to harsh environments, greatly enhancing the value of textiles.
 
One such example is textiles coated with fluoroelastomer (a polymer that is highly resistant to chemicals) augmented with graphene nanotubes from OCSiAl. Nanotubes provide the material with surface resistivity of 10^6–10^8 Ω/sq compliant with EN, ISO, and ATEX standards for personal protective equipment. This new technology opens the door for the fabric to be used in high-level protective suits, combining exceptional protection from chemicals with electrostatic discharge protection.
 
Another example is how graphene nanotube technology is being acknowledged as a replacement for metal yarns in fireproof and anti-static textiles, protecting against sparks, splashes of molten metal, high temperatures, and the risk of sudden electrostatic discharge. While metal yarns require a specific knitting process and storage conditions, incorporating nanotubes in a fabric does not require any changes in the manufacturing process as the water-based dispersion is introduced into the fabric at the fluoro-organic treatment stage. The fabric with OCSiAl’s graphene nanotubes has been proven to maintain the pre-set level of ESD protection (surface resistance of 10^7 Ω) after numerous washes.
 
Permanent and stable electrical conductivity, facilitated by graphene nanotubes, is not only a matter of safety but brings additional value in augmenting dust-repellent properties and touchscreen compatibility for comfort and time savings. At the same time, the ultralow nanotube concentrations result in maintained manufacturing processes and mechanical properties, and improve product aesthetics by making it possible to use a wide range of colors. Altogether, these benefits allow textile manufacturers to create next-generation special textiles with expanded functionality.

 

Photo: Indorama Ventures Limited
12.10.2022

Indorama Ventures: New plant for nylon yarn

  • Collaboration between Indorama Ventures and Toyobo to meet growing global demand for airbags
  • Newly completed plant in Thailand will supply high-performance nylon yarn to customers in the automotive safety sector

Indorama Ventures Public Company Limited (IVL) celebrated the completion of a plant to manufacture high-performance nylon yarn for automobile airbags. The new plant in Rayong, Thailand, was constructed by Toyobo Indorama Advanced Fibers Co., Ltd. (TIAF), a joint venture that Indorama Ventures established with Toyobo Co., Ltd in November 2020.

The plant, which has been built on the site of Indorama Polyester Industries PCL (IPI) in Rayong Province, will deliver 11,000 tons of high-performance yarn per year to meet global demand for airbags that is expected to grow by 3 percent to 4 percent annually as automakers equip vehicles with more airbags and emerging economies require cars to adopt more safety features. Test production is scheduled to start in October 2022 with the goal of starting commercial production in the middle of 2023.

  • Collaboration between Indorama Ventures and Toyobo to meet growing global demand for airbags
  • Newly completed plant in Thailand will supply high-performance nylon yarn to customers in the automotive safety sector

Indorama Ventures Public Company Limited (IVL) celebrated the completion of a plant to manufacture high-performance nylon yarn for automobile airbags. The new plant in Rayong, Thailand, was constructed by Toyobo Indorama Advanced Fibers Co., Ltd. (TIAF), a joint venture that Indorama Ventures established with Toyobo Co., Ltd in November 2020.

The plant, which has been built on the site of Indorama Polyester Industries PCL (IPI) in Rayong Province, will deliver 11,000 tons of high-performance yarn per year to meet global demand for airbags that is expected to grow by 3 percent to 4 percent annually as automakers equip vehicles with more airbags and emerging economies require cars to adopt more safety features. Test production is scheduled to start in October 2022 with the goal of starting commercial production in the middle of 2023.

In 2014, Indorama Ventures and Toyobo jointly acquired Germany’s PHP Fibers GmbH, a leading airbag yarn maker. Since then, both companies have strengthened their relationship with a focus to expand in the automotive safety sector. Mr Christopher Kenneally, based in Bangkok, leads IVL’s Fibers segment, which produces fibers and yarns across its Hygiene, Mobility and Lifestyle verticals. Mr Ashok Arora, with over 30 years of experience in fibers and polymer operations, will helm TIAF as CEO while maintaining his role as CTO with IVL Fibers.

Source:

Indorama Ventures Limited

Beaulieu International Group
23.08.2022

BIG at EuroGeo7 with geotextile fibres & woven fabrics

Beaulieu International Group invites EuroGeo7 attendees to discover geotextile solutions promoting greater sustainability for future civil engineering projects. Specialists from Beaulieu Fibres International (BFI) and Beaulieu Technical Textiles (BTT) will present high-performance geosynthetics through high tenacity fibres for lightweight, nonwoven geotextiles, and a range of high durability woven geotextile solutions with an environmentally beneficial impact.

Beaulieu International Group invites EuroGeo7 attendees to discover geotextile solutions promoting greater sustainability for future civil engineering projects. Specialists from Beaulieu Fibres International (BFI) and Beaulieu Technical Textiles (BTT) will present high-performance geosynthetics through high tenacity fibres for lightweight, nonwoven geotextiles, and a range of high durability woven geotextile solutions with an environmentally beneficial impact.

“We are delighted to sponsor EuroGeo7 and to be finally on-site, following a two-year postponement of the event. EuroGeo7 is bringing the geotextile community together to further promote and develop geosynthetics in a fast changing global economy striving for growth while reducing its carbon footprint along the supply chain, " comment from Jefrem Jennard, Sales Director Fibres, and Roy Kerckhove, Sales Director Technical Textiles. “Geotextiles provide highly versatile, durable and natural resource-saving alternatives in large infrastructure works, and offer durable protection in erosion control and waste/water management projects. We are continuously developing our fibres and finished engineering textiles with proven sustainability-enhancing benefits to progress product development and customer sustainability goals on fossil carbon reduction, while taking concrete steps to reduce our own environmental footprint.”
 
Sustainability improvement is key to the long-term strategy of Beaulieu International Group, and it is committed to supporting the geotextile industry by targeting and accelerating change and communicating the sustainable performance of its products. The UN Sustainable Development Goals are integrated into its business and are the foundations of the new Route 2030 Sustainability Roadmap.


For manufacturers of nonwoven geotextiles, BFI’s high-tenacity HT8 staple fibres enable customers to achieve nonwovens with high mechanical performance at reduced fibre weight. The HT8 high tenacity fibres are designed in a way that customers can meet the industry durability standards for a longer service lifetime, supporting more sustainable design and resource reduction over time. BTT’s woven geotextiles are amongst the most sustainable in the industry and provide a wide range of functions, including separation, filtration, reinforcement and erosion control.

BFI and BTT have conducted lifecycle assessments to calculate their activities' carbon footprint and solutions and have received external recognition for their ongoing sustainability efforts. For example, in 2022, BFI was awarded a Silver EcoVadis sustainability rating, and BFI and BTT are proud recipients of the Voka Charter for Sustainable Entrepreneurship 2022.

Source:

Beaulieu International Group

(c) Messe Frankfurt (HK) Ltd.
08.08.2022

Deferral of Cinte Techtextil China 2022

In light of the evolving pandemic circumstances in Shanghai, Cinte Techtextil China will no longer be taking place from 6 – 8 September at the Shanghai New International Expo Centre. A new date for the technical textile fair will be announced in due course.
 
Ms Wendy Wen, Managing Director of Messe Frankfurt (HK) Ltd, explained: “After discussions with stakeholders, and in support of the government’s pandemic control measures, we have decided to postpone Cinte Techtextil China 2022 to a later date. The safety of fairgoers is of paramount importance to the fair’s ongoing success, and we are working tirelessly to provide an efficient sourcing platform for the technical textile industry. I would like to thank all participants for their sustained support and understanding.”

In light of the evolving pandemic circumstances in Shanghai, Cinte Techtextil China will no longer be taking place from 6 – 8 September at the Shanghai New International Expo Centre. A new date for the technical textile fair will be announced in due course.
 
Ms Wendy Wen, Managing Director of Messe Frankfurt (HK) Ltd, explained: “After discussions with stakeholders, and in support of the government’s pandemic control measures, we have decided to postpone Cinte Techtextil China 2022 to a later date. The safety of fairgoers is of paramount importance to the fair’s ongoing success, and we are working tirelessly to provide an efficient sourcing platform for the technical textile industry. I would like to thank all participants for their sustained support and understanding.”

Cinte Techtextil China’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry. The 2021 edition attracted 366 exhibitors and recorded 14,868 visits. The fair is organised by Messe Frankfurt (HK) Ltd; the Sub-Council of Textile Industry, CCPIT; and the China Nonwovens & Industrial Textiles Association (CNITA).

Source:

Messe Frankfurt (HK) Ltd