From the Sector

Reset
11 results
25.08.2023

Exist research transfer project FoxCore successfully launched

The FoxCore founding team and the ITM at TU Dresden aim to usher in a new era for fastening solutions in lightweight construction with the start of the Exist research transfer project FoxCore. The project started on June 1, 2023, and will run until November 30, 2024, with support from the German Federal Ministry of Economics and Climate Protection (BMWK) and the European Social Fund (ESF).

The innovative company is to develop and offer new and customer-oriented fastening solutions for lightweight construction applications. Safety and performance of lightweight solutions in various industries are to be increased. FoxCore's objective is to take a leading role in fastening technology.

Daniel Weise, Philipp Schegner, Michael Vorhof and Cornelia Sennewald form the FoxCore team; they will work closely with the Institute of Textile Machinery and Textile High Performance Materials (ITM) at TU Dresden. Together, they will develop optimal manufacturing technologies and establish a widespread network of customers and suppliers.

The FoxCore founding team and the ITM at TU Dresden aim to usher in a new era for fastening solutions in lightweight construction with the start of the Exist research transfer project FoxCore. The project started on June 1, 2023, and will run until November 30, 2024, with support from the German Federal Ministry of Economics and Climate Protection (BMWK) and the European Social Fund (ESF).

The innovative company is to develop and offer new and customer-oriented fastening solutions for lightweight construction applications. Safety and performance of lightweight solutions in various industries are to be increased. FoxCore's objective is to take a leading role in fastening technology.

Daniel Weise, Philipp Schegner, Michael Vorhof and Cornelia Sennewald form the FoxCore team; they will work closely with the Institute of Textile Machinery and Textile High Performance Materials (ITM) at TU Dresden. Together, they will develop optimal manufacturing technologies and establish a widespread network of customers and suppliers.

Source:

Institute of Textile Machinery and High Performance Material Technology (ITM)
TU Dresden

Dr Ioana Slabu and Benedict Bauer with the nanomodified stent. Photo Peter Winandy
30.03.2023

Nanomodified polymerstent: Novel technology for tumour therapy

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

Ioana Slabu of the AME explains: "Not only can we drastically reduce treatment costs, but above all we can provide relief for millions of patients worldwide.
 
A manufacturing process and proof of concept for magnetic hyperthermia are already in place. This novel technology has a very high development potential because it can also be used for tumours in other parts of the body such as the prostate, stomach, intestine or urinary bladder or for cardiovascular diseases.  

The AiF/IGF project started under the project title "ProNano" funded by BMWK. Now the approval for the follow-up project "ProNano2" has also been received. The approved project is called: "Validation of the innovation potential of heatable stents for heat-induced treatment of cavity tumours" and is funded by BMBF in course of the VIP+ program. With the Clinic for General, Visceral and Transplantation Surgery of the University Hospital Aachen and the Institute for Technology and Innovation Management at RWTH Aachen University, the consortium is enriched by clinical and economic expertise. Every year, RWTH Aachen University honours particularly innovative university projects with the Innovation Award. Professor Malte Brettel, Prorector for Business and Industry, presented the certificates to four outstanding projects as part of RWTHtransparent.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

(c) Cobra International
26.04.2022

COBRA International: Highlights Diversification into New Market Sectors at JEC World 2022

Cobra International, a leading manufacturer of advanced composite products for the watersports, automotive, marine, and industrial sectors, will highlight recent diversification into new composite markets at JEC World 2022, with exhibits ranging from VTOL drones to carbon fibre prosthetics.  Cobra will also demonstrate how it is working alongside automotive and water sports customers to further enhance the sustainability of products in these sectors.

High Volume Production Capacity for the UAV sector
Cobra will display a wing from the Swiftlet UAV. This compact tactical fixed wing UAV platform has a 5.5m wingspan and was developed by the Royal Thai Air Force and National Science and Technology Development Agency (NSTDA) for survey, monitoring and search and rescue operations. Cobra manufactured the 32kg Swiftlet composite airframe using a combination of CNC cut carbon sandwich internal structure and PVC foam sandwich skins using both high grade glass fibre and carbon fibre reinforcements.  

Cobra International, a leading manufacturer of advanced composite products for the watersports, automotive, marine, and industrial sectors, will highlight recent diversification into new composite markets at JEC World 2022, with exhibits ranging from VTOL drones to carbon fibre prosthetics.  Cobra will also demonstrate how it is working alongside automotive and water sports customers to further enhance the sustainability of products in these sectors.

High Volume Production Capacity for the UAV sector
Cobra will display a wing from the Swiftlet UAV. This compact tactical fixed wing UAV platform has a 5.5m wingspan and was developed by the Royal Thai Air Force and National Science and Technology Development Agency (NSTDA) for survey, monitoring and search and rescue operations. Cobra manufactured the 32kg Swiftlet composite airframe using a combination of CNC cut carbon sandwich internal structure and PVC foam sandwich skins using both high grade glass fibre and carbon fibre reinforcements.  

Sustainability Options for Automotive and Watersports
Sustainability has a been a key focus for the Cobra Waterports division and CAC, the Cobra automotive business unit. At JEC World 2022, Cobra will showcase the increasing material and process options it has developed with both bio-resin and natural fibre reinforcements variants presented alongside more traditional carbon fibre parts.

Visitors will be able to get up close to a new Bio SUP Wingfoil board featuring a basalt, flax, bamboo and GreenPoxy bio-epoxy construction created for partners NSP, as well as state-of-the-art compression moulded prepreg foils. Cobra’s first fully recyclable surfboard incorporating the Recyclamine® resin technology that Cobra was recognised for in the 2020 JEC Innovation Awards will also be on display alongside a new Audi e-tron foil by Aerofoils – the world’s safest electric hydrofoil board.

The CAC team (Automotive Business Unit of Cobra) will present a set of OEM mirror cap parts that showcase a range of carbon SMC, woven visual carbon, pure woven visual flax, hybrid flax-carbon and painted flax construction options for the same component.  Clear carbon aesthetic and structural parts including CAC made M-carbon components for the BMW S 1000 RR Motorcycle will furthermore underline the high quality and eye-for-detail for which CAC is renowned.

Carbon Prosthetics
An entirely new composite application for the company, Cobra will also show two composite prosthetic devices at JEC which were productionised by the in-house design and development team. Working alongside a leading Thai university and a medical device OEM, Cobra created a rapid and cost effective series production process for a lightweight carbon fibre prosthetic foot. In another example of lightweight composites creating major quality of life improvements, Cobra has also designed and manufactured a carbon and glass fibre prepreg foot support for Elysium Industries.

More information:
COBRA Composites UAV
Source:

Cobra International

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – presents its Innovation Awards 2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

Category “Research and Science”
First place in the “Research and Science” category was awarded to the German Aerospace Center (DLR) for its Bondline Control Technology (BCT). This innovative process is used for quality control and assurance of bonded joints. The core element is a porous fabric which is applied to a joining surface using an epoxy adhesive or matrix resin. Peeling away the fabric creates a chemically reactive and undercut surface and can also be used as a test to check adhesion to the substrate. BCT has potential in a variety of possible applications. For example, peel ply can be replaced by BCT fabric to produce composite components with an optimised joining surface. The cost-effective BCT peel test is suitable for coupon testing and process control. In addition, the combined adhesion test and surface pre-treatment can be used for quality assurance of bonded repairs on fibre composite structures.

Second place was taken by the Institute of Textile Technology (ITA) at RWTH Aachen University and its partners AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR with “StoneBlade – Lightweight construction with granite for the wind industry”. This innovation enables manufacturers to reduce the amount of non-recyclable materials used in rotor blade construction. At the same time, it reduces the weight of these components and improves the mechanical properties relating to the stability of wind turbines. The innovative approach replaces glass-fibre reinforced plastic in the blade components with hard rock – a natural, cost-effective and recyclable lightweight material. The slabs of rock are cut and ground to a thickness of just a few millimetres and embedded in a fibre composite laminate with carbon fibre, which stabilises them for alternating load cases. The pre-stressed material is pressure-stable in the composite and can absorb tensile forces in the event of continuously alternating loads without any loss of stiffness.

Third place went to the Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK) with its partner Mercedes Benz AG for the interdisciplinary development of a highly integrated inductive charging module for electric vehicles. The ultra-thin charging module was designed to make optimum use of space in the vehicle underbody without reducing ground clearance. An interdisciplinary approach was adopted for the development process. This involved the electrical, mechanical and process characterisation of high-frequency Litz wires, ferromagnetic foil and metal wire cloth as well as the creation of a simulation model. The result is a demonstrator for a charging system with a structural height of 15 mm and a total weight of 8 kg. It achieves a transmission efficiency of up to 92 percent at 7.2 kW nominal power and active air cooling. The hardware demonstrator was fabricated in a 3-step process using RTM and VARI techniques.

Overview of all the winners in the three categories:
Category “Innovative Products/Applications”
1st Place: “Traffic signs from Nabasco (N-BMC)” – Nabasco Products BV and Lorenz Kunststofftechnik GmbH, partners: Pol Heteren BV and NPSP BV
2nd Place: “Novel, ultratough vinyl ester resin for the construction of large marine vessels” Evonik Operations GmbH
3rd Place: “Air intake housing with a multi-material design for gas turbines” – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH and Leichtbau-Systemtechnologien KORROPOL GmbH.
Category “Innovative Processes”
1st Place: “In-mould wrapping” off-tool, film-coated, fibre composite components for exterior applications – BMW Group, Partner: Renolit SE
2nd Place: “Adaptive automated repair of composite structural components in the aviation sector” – Lufthansa Technik AG, Partner: iSAM AG
3rd Place: “Automated surface pre-treatment using VUV excimer lamps” – CTC GmbH
Category “Research and Science”
1st Place: “Bondline Control Technology (BCT)” – German Aerospace Center (DLR)
2nd Place: “StoneBlade – Lightweight construction with granite for the wind industry” – Institute of Textile Technology at RWTH Aachen University, Partners: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3rd Place: “Interdisciplinary development of a highly integrated inductive charging module for electric vehicles” – Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK), Partner: Mercedes Benz AG

Submissions for the next Innovation Award can be made from the end of January 2022.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group (c) Composites United
Skeletal windshield design based on injection molding with carbon fiber profiles
16.11.2020

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

In the vehicle, the windshield is a connecting element between the roof frames and thus has an important stabilizing function. The carbon fiber profiles add the required stiffness and crash safety to the component. At the same time, they help to significantly reduce the weight of the roof and thus also support the driving dynamics. The injection molding process also enables particularly complex and material-efficient structures. In the BMW Group model, this innovative component concept will cut weight by 40 percent compared to conventional steel designs of the component while creating important space for cable ducts and sensors.

The production of the carbon fiber profiles themselves is also particularly geared to material and process efficiency in large-scale production. The profiles consist of several smaller fiber strands, the so-called rods, and are manufactured using the modern continuous pultrusion process. During product and process development it was one key objective to ensure that material loss during production is almost completely avoided.

"At SGL Carbon, we have been working on the development of thermoplastic carbon fiber profiles for use in injection molding for some time already. This development work is now beginning to pay off. Due to the many advantages and competitive costs, we see a great potential for the technology to be used in other automotive projects too," explains Sebastian Grasser, Head of the Automotive Segment in the Business Unit Composites - Fibers & Materials at SGL Carbon.

"Innovative lightweight construction with hybrid designs has developed into a strategically conclusive concept for Koller Group's OEM customers," confirms Max Koller, CEO of Koller Group. "SGL Carbon's high level of material expertise, combined with the process know-how of KOLLER Kunststofftechnik and KOLLER Formenbau, create the basis for a promising future in innovative lightweight construction technologies. With this order, the BMW Group has confirmed its confidence in the successful cooperation between SGL and Koller; we are particularly pleased about this", said Max Koller.
 
The Koller Group is a globally operating technology company with plants in Europe and China, as well as NAFTA. The Koller Group develops and manufactures lightweight construction, tools and serial components, primarily for the automotive industry.

Source:

SGL CARBON SE

Sample from the development of the nano porous high-temperature thermal insulation material Sample from the development of the nano porous high-temperature thermal insulation material (© ZAE Bayern).
12.08.2020

Consortium develops new generation of thermal insulation for high-temperature furnaces

In the joint project "AeroFurnace" funded by the German Federal Ministry of Economic Affairs and Energy (BMWi), the consortium, consisting of the Bavarian Center for Applied Energy Research e.V. (ZAE Bayern) as joint coordinator, the furnace manufacturer FCT Systeme, and SGL Carbon has succeeded in improving the thermal insulation properties of a new composite material by up to 120 percent compared to commercially available felt-based carbon materials. This enabled the project partners to move into a new quality level of thermal insulation in high-temperature industrial applications and pave the way for more energy efficient thermal insulation.

Dr. Gudrun Reichenauer, coordinator of the joint project and head of the work group Nanomaterials at ZAE Bayern: "In this project, we have been able to make the latest findings from the world of nanomaterials accessible to the market through intensive cooperation and thus set new standards in the field of thermal insulation materials."

In the joint project "AeroFurnace" funded by the German Federal Ministry of Economic Affairs and Energy (BMWi), the consortium, consisting of the Bavarian Center for Applied Energy Research e.V. (ZAE Bayern) as joint coordinator, the furnace manufacturer FCT Systeme, and SGL Carbon has succeeded in improving the thermal insulation properties of a new composite material by up to 120 percent compared to commercially available felt-based carbon materials. This enabled the project partners to move into a new quality level of thermal insulation in high-temperature industrial applications and pave the way for more energy efficient thermal insulation.

Dr. Gudrun Reichenauer, coordinator of the joint project and head of the work group Nanomaterials at ZAE Bayern: "In this project, we have been able to make the latest findings from the world of nanomaterials accessible to the market through intensive cooperation and thus set new standards in the field of thermal insulation materials."

Dr. Thomas Kirschbaum, project manager at SGL Carbon: "In furnace simulations at the partner FCT, we have already been able to demonstrate what the new material can do: Depending on the temperature program, up to 40 percent of the required process energy can be saved with the new thermal insulation material. The potential of the new material is great." This prediction will be reviewed under real conditions in a demonstrator component in the second half of 2020 as part of the still ongoing BMWi project.

Dr. Jürgen Hennicke, project lead and head of R&D at FCT Systeme: "As a leading manufacturer of industrial vacuum or inert gas high temperature furnaces, the new generation of insulating materials enables us to create furnaces with a more favorable ratio of usable space to external dimensions, thus offering customers improved cost efficiency and productivity".

Based on laboratory samples in plate form it has already been demonstrated that the production of the new material can be represented by technically simple processes and is in principle well scalable. However, there is still a long way to go before the product is ready for serial production.

The third largest share of final energy in Germany is used for the generation of heat in industrial processes (22.6 percent). In many industries, e.g. in the steel and ceramics industry, energy-intensive high-temperature processes run above 1000°C – these alone require almost 50 percent of the industrial process heat. Suitable thermal insulation materials can significantly reduce energy demand while maintaining the same usable volume.

Source:

SGL CARBON SE

(c) BMW Group
21.04.2020

SGL Carbon receives contract for battery enclosure from BMW Group

  • New composite e-Mobility application
  • Multi-year substantial contract

After prototypes for a Chinese automotive manufacturer, a major order from a North American automaker, and yet another order for a European sports car manufacturer, SGL Carbon has now been nominated by BMW Group to produce a cover component for battery enclosures in series. This substantial multi-year order will include the production of an innovative glass-fiber-based cover plate for the battery housing for usage in a future plug-in hybrid model of BMW Group.

  • New composite e-Mobility application
  • Multi-year substantial contract

After prototypes for a Chinese automotive manufacturer, a major order from a North American automaker, and yet another order for a European sports car manufacturer, SGL Carbon has now been nominated by BMW Group to produce a cover component for battery enclosures in series. This substantial multi-year order will include the production of an innovative glass-fiber-based cover plate for the battery housing for usage in a future plug-in hybrid model of BMW Group.

Materials made of composites are suited for battery enclosures for different reasons: Besides their light weight, which enhances the electric vehicle’s range, fiber-reinforced plastics offer high stiffness. In addition, they meet high requirements for water and gas tightness and feature excellent fire protection properties. Composite materials can also help to achieve improved structural stiffness of the underbody, e.g. to protect against penetration, as well as an optimized thermal management. Carbon fibers are ideal for especially stressed structures or load-bearing elements, such as the underbody panels and side frames. For components subjected to less stress, such as battery box covers, glass fibers or a fiber mix may suffice.

In addition to the new application for the hybrid model battery enclosure, SGL Carbon will continue producing the usual components made of carbon-fiber-reinforced plastic for the BMW i3 and delivering materials for the Carbon Core body of the BMW 7 series, and has been nominated as the supplier for all carbon materials - fibers, textiles, stacks - for the BMW iNEXT, set to be launched in 2021.

Source:

SGL CARBON SE

The lucky winner with the certificate, from left to right: Professor Jens Ridzewski (AVK), Sven Schöfer (ITA), Dr Rudolf Kleinholz (AVK) (c) Reed Exhibitions, Oliver Wachenfeld
The lucky winner with the certificate, from left to right: Professor Jens Ridzewski (AVK), Sven Schöfer (ITA), Dr Rudolf Kleinholz (AVK)
17.09.2019

ITA is AVK innovation prize winner 2019 in the category "Research and Science”

  • Reduction of material usage by up to 50 percent through innovative draping strategy in the production of fibre composite materials

In fibre reinforced plastic (FRP) production, stamp forming is one of the most economical processes for automated large-scale production, e.g. in the BMW i-series. However, the current processes are susceptible to draping errors and a high proportion of waste. An innovative process developed at the Institut für Textiltechnik of RWTH Aachen University, short ITA, can now significantly reduce the scrap rate and reduce the waste rate of high-priced reinforcing textiles, such as carbon fibre textiles, by up to 50 percent. Sven Schöfer from ITA achieved this effect with his work "Development of a textile-based material feed to increase the preform quality during stamp forming of reinforcing layers". On 10 September 2019, he won the third AVK Innovation Prize in the "Research and Science" category at Composite Europe in Stuttgart, Germany.

  • Reduction of material usage by up to 50 percent through innovative draping strategy in the production of fibre composite materials

In fibre reinforced plastic (FRP) production, stamp forming is one of the most economical processes for automated large-scale production, e.g. in the BMW i-series. However, the current processes are susceptible to draping errors and a high proportion of waste. An innovative process developed at the Institut für Textiltechnik of RWTH Aachen University, short ITA, can now significantly reduce the scrap rate and reduce the waste rate of high-priced reinforcing textiles, such as carbon fibre textiles, by up to 50 percent. Sven Schöfer from ITA achieved this effect with his work "Development of a textile-based material feed to increase the preform quality during stamp forming of reinforcing layers". On 10 September 2019, he won the third AVK Innovation Prize in the "Research and Science" category at Composite Europe in Stuttgart, Germany.

Current process
In stamp forming, clamping grippers are usually used in industry to feed the stacked individual layers to the forming process and position them on the lower tool via a clamping frame or hold-down device. Due to the clamping grippers, the cutting proportion of cost-intensive reinforcing textiles is high, as additional material at the textile edge is necessary with clamping systems. Other approaches to feeding the reinforcing semi-finished product during forming and simultaneously improving the draping quality are also not economical: they are usually only designed for certain textile cuts, cannot be automated, are prone to errors or are expensive special solutions.

There is currently no system in the industry that can apply retention forces along a final contour with low waste and remains flexible in terms of geometry.

Innovative approach of Sven Schöfer
The innovative process developed by Sven Schöfer works with a detachable textile joint, a so-called tufting seam. It allows the single layers to slide off during the forming process under a retention force dependent on the seam design.

This reduces or completely eliminates draping errors in previously critical areas, even with complex preform geometries. This leads to a significant increase in preform quality and a reduction in scrap rates. The process is also highly efficient, as tensile forces can be applied to any component geometry on near-net-shape blanks. This reduces the material input by up to 50 percent.

Source:

ITA – Institut für Textiltechnik

© Techtextil, Messe Frankfurt Exhibition GmbH
06.08.2018

Strong potential in Buildtech and Mobiltech sectors to be displayed at Cinte Techtextil China

This September’s Cinte Techtextil China will once again provide a strong barometer of the state of the global technical textiles industry, and in particular which sectors in Asia as a whole, and China specifically, are performing well. Two of these for certain are Buildtech and Mobiltech, with a number of leading global and Chinese brands exhibiting to eager buyers from these sectors.

Cinte Techtextil China is Asia’s leading biennial fair for the technical textiles and nonwovens sector, and will feature an expected 500-plus total exhibitors from around 20 countries & regions from 4 – 6 September. The fair offers products and technologies for 12 application areas* which cover the entire industry.

Buildtech benefits from Belt & Road and other infrastructure investment

This September’s Cinte Techtextil China will once again provide a strong barometer of the state of the global technical textiles industry, and in particular which sectors in Asia as a whole, and China specifically, are performing well. Two of these for certain are Buildtech and Mobiltech, with a number of leading global and Chinese brands exhibiting to eager buyers from these sectors.

Cinte Techtextil China is Asia’s leading biennial fair for the technical textiles and nonwovens sector, and will feature an expected 500-plus total exhibitors from around 20 countries & regions from 4 – 6 September. The fair offers products and technologies for 12 application areas* which cover the entire industry.

Buildtech benefits from Belt & Road and other infrastructure investment

With a huge boom in national and regional infrastructure projects, the market for Buildtech products, especially geotextiles and construction textiles, is rapidly expanding. In particular, the government’s global Belt & Road project, as well as continued investment at home in highways, high-speed rail and more, is fuelling this expansion. According to CNITA, in 2017 China started 35 new railway projects, with additional private capital investment in this sector totalling some USD 53 billion that year. The same investment in highway construction increased 17.7%, while water conservation project investment by private firms reached a new record of USD 105 billion.

With this potential in the Asian market, it’s no surprise a number of new exhibitors will feature in the Buildtech sector at the fair, including FPC Technical Textile from Saudi Arabia, Kobe-cz from the Czech Republic, as well as Lenzing Plastics, while Johns Manville are one of the returning exhibitors this year.

  • FPC Technical Textile (Saudi Arabia) produce high-end specialty fabrics including PVC coated fabrics and fibre glass PTFE fabrics, and will focus on the latter at the fair.
  • Kobe-cz (Czech Republic) will showcase their nonwoven fabrics, mainly from glass fibre with temperature resistance up to 800°C.
  • Exhibiting for the first time at the fair with their Plastics division, Lenzing (Austria) will feature their technical laminates for building industries, roofing membranes, vapour barriers, isolation facings and barrier packaging, as well as PROFILEN® PTFE yarns, films and fibres at Cinte Techtextil.
  • Johns Manville’s (US) products on offer include polyester spunbond, PP & PBT meltblown, glass fibre nonwovens, micro glass fibre nonwovens, hybrid nonwovens, glass fibre needle mat and glass microfibers.

Mobiltech benefits from huge increases in automobile production in China

With new textile innovations and application possibilities spreading throughout the automobile industry, coupled with the fact China is the world’s largest auto producer, Cinte Techtextil is the place to see the latest products and technologies for this sector this September. Automobile production in China reached 29 million units in 2017, an increase of 3% year-on-year. Staggeringly, new-energy vehicle production grew by 53% last year, while SUVs and commercial vehicles increased 13.81% and 13.95% respectively.

With such strong growth in China, a number of leading international Mobiltech producers, as well as top domestic suppliers, will be at Cinte Techtextil this year, including:

  • Abifor (Switzerland): their focus at the fair is on products designed for automotive, construction and other technical applications, in particular their specialty hot-melt powders. The company has its own production unit in Shanghai, and reports that an increasing number of domestic customers are starting to focus on more sophisticated products.
  • SKS Group (Sweden): will showcase high performance single end yarn for automotive and industrial hoses, and single end cord for automotive and industrial belts.
  • Swisstulle (Switzerland): will have a range of products on offer for automotive, rail and aviation uses, including sunshade materials, nets, tube reinforcements and new possibilities for luggage compartment covers.
  • Windel Textile Far East (Germany): with production undertaken in China, this German firm offers textile greige, half-done and finished materials. They offer nonwoven, knitted and woven fabrics (substrates), and glass fibre solutions. At the fair, they will showcase substrates for adhesive tapes / wire harnessing tapes, and Maliwatt- and coagulated microfibre fleece for covering vehicle interiors.
  • Protechnic (France): they will feature hot melt thermoadhesive nets, webs and films, as well as laminating process in automotive and other industrial applications at Cinte 2018.
  • Kuangda Technology Group (China): having supplied products for global brands such as Volkswagen and Audi, this Chinese supplier will offer automotive interiors, including interior fabrics, seat covers and cushions at the fair.
  • Shanghai Shenda (ShanghaiTex Group) (China): specialising in automotive interior textiles, they manufacture a full range of products including grey car carpet, moulding car carpet, head liners (warp-knitting and nonwoven), seat belt, seat fabrics and more, and have supplied the likes of Mercedes-Benz, BMW, Volkswagen and GM.

Cinte Techtextil China is organised by Messe Frankfurt (HK) Ltd; the Sub-Council of Textile Industry, CCPIT; and the China Nonwovens & Industrial Textiles Association (CNITA). To find out more about the fair, please visit: www.techtextilchina.com.

Source:

Messe Frankfurt Exhibition GmbH

JEC Group sets the stage for composites materials at upcoming international motor shows (c) JEC Group
BMW i3
17.05.2018

JEC Group sets the stage for composites materials at upcoming international motor shows

  • In its aim to promote composites materials, JEC Group will highlight the latest technologies that enable the automotive industry to innovate in product design, emission reductions and production.

Paris - In its mission to address composites end-use industries specifically, JEC Group, the world leading organization for the promotion of composite materials, moves up a gear to target the automotive industry. Introduced many decades ago in car manufacturing, and not only for high-end performance models, composites are now offering many alternatives to steel and aluminum, thanks to their specific features, which go far beyond their lightweight properties.

  • In its aim to promote composites materials, JEC Group will highlight the latest technologies that enable the automotive industry to innovate in product design, emission reductions and production.

Paris - In its mission to address composites end-use industries specifically, JEC Group, the world leading organization for the promotion of composite materials, moves up a gear to target the automotive industry. Introduced many decades ago in car manufacturing, and not only for high-end performance models, composites are now offering many alternatives to steel and aluminum, thanks to their specific features, which go far beyond their lightweight properties.

“Today, nearly 2.9 cars are produced and sold worldwide every second. Yet growth potential is still enormous. In value, the automotive industry makes up 20% of the total composites market with promising opportunities for lighter, stronger and more efficient materials in the years to come. They offer new design opportunities, enable a reduction in tooling investment and allow several functions to be integrated in one, on top of their corrosion and impact resistance. Furthermore, composite materials contribute to the development of a new generation of cars, offering innovative battery integration solutions for electric vehicles, as well as a new generation of fuel storage tanks for hydrogen-powered vehicles. JEC Group is moving forward in its strategy to democratize and promote the use of composites materials among end-user segments that, in this case, are OEMs and car manufacturers,” said Ms Frédérique MUTEL, JEC Group President & CEO.

The BMW i3 the largest-volume production car ever to extensively use composites for emission-free mobility

With this in mind, JEC Group will invest in a significant number of composites pavilions at key automotive events in Europe, America and Asia. The first of these will be at Mondial.Tech Paris, part of Paris Motor Show, held on October 2-6, 2018 in Paris. The composites pavilion will include an innovation showcase, expert presentations and networking activities.

The second composites pavilion will be at the North American International Auto Show in Detroit on January 14-18, 2019 and will focus on the same goals of sharing knowledge and developing networking.

Additional events, particularly in Asia, are being planned to cover the global automotive market.

Although the composites pavilions are organized by JEC Group, they will be supported by major composites manufacturers. These combined efforts will enable stands to showcase several solutions provided by composites for the automotive industry, driving innovation in this sector.

More information:
JEC Group BMW Composites Automotive
Source:

AGENCE APOCOPE

02.05.2018

Demand for European technical textiles attracts leading companies to Cinte Techtextil China

Exhibitors from eight countries have already confirmed to participate in the fair’s European Zone. They join an expected 500-plus total exhibitors from around the world. The 2018 edition of this biennial fair takes place from 4 – 6 September in halls N1 – N3 of the Shanghai New International Expo Centre.

While China retains its edge in terms of technical textiles and nonwovens production capabilities, in the eyes of Chinese buyers, European suppliers are still the leaders when it comes to technology and innovation. This was widely reported by European exhibitors at the previous edition in 2016 of Asia’s leading biennial trade event for the industry: Cinte Techtextil China.

Exhibitors from eight countries have already confirmed to participate in the fair’s European Zone. They join an expected 500-plus total exhibitors from around the world. The 2018 edition of this biennial fair takes place from 4 – 6 September in halls N1 – N3 of the Shanghai New International Expo Centre.

While China retains its edge in terms of technical textiles and nonwovens production capabilities, in the eyes of Chinese buyers, European suppliers are still the leaders when it comes to technology and innovation. This was widely reported by European exhibitors at the previous edition in 2016 of Asia’s leading biennial trade event for the industry: Cinte Techtextil China.

“In the Chinese market, buyers want good quality products, so overseas companies, and products with recognised quality certifications, have a lot of potential,” Ms Ping Chen, General Manager of IBENA Shanghai Technical Textiles commented. “As a leading German company in the industry, our products are welcomed by many buyers at this fair. It is also important to be in the German Pavilion as this signals to buyers that we have quality products, and it attracts more attention.” Swiss firm Sanitized AG had the same experience. “As a Swiss company in the European Zone I believe it’s an advantage, as some local buyers have more confidence towards imported products,” Mr Steven Liu, Sales Manager said.

Other exhibitors commented on the long-term trends in the Chinese market. “There’s a definite shift to more high-quality machinery in China that isn’t affected by what’s happening in the overall economy. Moreover, there are opportunities for overseas suppliers as there is still a gap between us and what Chinese companies produce,” Dr Joachim Binnig, Vice President, Head of Development & Technology, Autefa Solutions Germany GmbH explained.

Mr Roger Zhang, Sales Manager for German firm J.H. Ziegler Nonwovens and New Materials commented: “Our products are mainly for high-end Chinese customers, such as BMW and Audi. The Chinese market has gradually matured, but the production capability for high-performance products which are energy efficient and eco-friendly is still developing, so there is a lot of space for overseas brands to develop here.”

European Zone highlights
This year’s European Zone will feature around 30 exhibitors from eight countries, including Austria, Belgium, the Czech Republic, France, Italy, the Netherlands, Sweden, Switzerland and the UK, while further exhibitors can be found in national pavilions from Belgium, the Czech Republic, Germany and Italy. Some of the exhibitor highlights in the European Zone include:

  • Arkema (France): with brands including PMMA Altuglas, Rilsan, Pebax, Kynar PVDF and Bostik, they will present polymer resin for fibres and yarns, which apply to a wide range of applications, at the fair.
  • Dakota Coating (Belgium): specialists in thermoplastic and thermosetting adhesives, their polymer products, based on polyethylene, polyolefin or mixtures, ethylene vinyl acetates, co-polyamides, polyurethanes and co-polyesters, are suitable for automotive, building, heat transfer and sound insulation uses.
  • Lenzing Plastics (Austria): a new exhibitor at the fair, they are a leading manufacturer of polyolefin and fluoropolymer products, such as Thermoplast and PTFE products. One of their core competencies lies in the monoaxial stretching of films and filaments, and they offer special solutions in the fields of construction & insulation, medicine & hygiene, packaging and cables, as well as automotive and technical textiles. They will highlight their PROFILEN® PTFE product at the fair, and with its extreme durability and very smooth surface, it is highly valued in many niche applications in the technical and medical sectors.
  • Protechnic (France): leading manufacturers of hot-melt adhesives and plastic printed films, they will showcase hot melt thermo-adhesive nets, webs and films at the fair.
  • Trelleborg Coated Systems (Italy): another new exhibitor this edition, they produce high-performance, engineered coated fabrics. They offer a wide variety of substrates – from Kevlar® to silk – with a choice of weaving methods.