From the Sector

Reset
88 results
Freudenberg battery separator material ©Freudenberg Performance Materials
Freudenberg battery separator material
06.02.2025

Freudenberg at International Battery Seminar 2025 in Orlando

2025 International Battery Seminar in Orlando: Freudenberg to present innovative battery separator solutions for stationary energy storage systems and further applications

Freudenberg Performance Materials (Freudenberg) will be showcasing its nonwoven battery separators at the International Battery Seminar in Orlando, Florida, USA, from March 17-20, 2025. The manufacturer of technical textiles will present innovative materials that enable long-duration, high-performance and safe stationary energy storage systems.

Freudenberg will present its range of battery separators that increase the cycle-life, performance and safety of batteries for stationary energy storage systems, as well as batteries used in transportation, communications and computer systems. This includes nickel-cadmium, nickel-metal hydride, nickel-zinc, nickel-hydrogen, metal-air and lead-acid batteries plus many more.

2025 International Battery Seminar in Orlando: Freudenberg to present innovative battery separator solutions for stationary energy storage systems and further applications

Freudenberg Performance Materials (Freudenberg) will be showcasing its nonwoven battery separators at the International Battery Seminar in Orlando, Florida, USA, from March 17-20, 2025. The manufacturer of technical textiles will present innovative materials that enable long-duration, high-performance and safe stationary energy storage systems.

Freudenberg will present its range of battery separators that increase the cycle-life, performance and safety of batteries for stationary energy storage systems, as well as batteries used in transportation, communications and computer systems. This includes nickel-cadmium, nickel-metal hydride, nickel-zinc, nickel-hydrogen, metal-air and lead-acid batteries plus many more.

One highlight will be the latest unique surface finishing technology that provides excellent electrolyte absorption as well as increasing the speed. The company combines this new finishing and a variety of other finishes with its versatile nonwoven technologies to develop further custom-made separators that meet the needs of energy storage system manufacturers and other battery manufacturers in the aviation, rail vehicle construction or computer systems sectors. Freudenberg has a broad range of nonwoven technologies in the industry, including wetlaid, drylaid and spunbond processes. These offer unique capabilities to tailor material homogeneity and uniformity, electrolyte absorption, wicking rate, air permeability, thickness and tensile strength.
With production sites on several continents, Freudenberg can manufacture locally and offer major battery manufacturers optimal service.

Freudenberg high-performance nonwoven separators play an important functional role in batteries. Besides their primary function of separating the electrode and cathode, they form an electrolyte reservoir in the battery, and contribute to enhancing battery functionality, self-discharge, and durability. They help to prevent short circuits by avoiding dendrite growth.

Source:

Freudenberg Performance Materials

Orthopac GRVMC-15 Photo Mahlo Automation GmbH
Orthopac GRVMC-15
18.12.2024

SAATI Germany optimizes production with Mahlo

SAATI Germany, a leading manufacturer of highly developed technical fabrics, has further optimised its production processes by using innovative measurement and control technology from Mahlo.

The globally active SAATI Group produces filter fabric for blood transfusion devices, aramid fabric for bulletproof vests and functional fabric for mobile phones and tablets, among other things. SAATI is known for its high precision and quality, which is maintained at all stages of production.

The installation of a Mahlo distortion control system Orthopac FMC-15 and a Famacont PMC-15 yarn density meter in the outfeed of a stenter frame was a further step in this optimisation process.

SAATI Germany, a leading manufacturer of highly developed technical fabrics, has further optimised its production processes by using innovative measurement and control technology from Mahlo.

The globally active SAATI Group produces filter fabric for blood transfusion devices, aramid fabric for bulletproof vests and functional fabric for mobile phones and tablets, among other things. SAATI is known for its high precision and quality, which is maintained at all stages of production.

The installation of a Mahlo distortion control system Orthopac FMC-15 and a Famacont PMC-15 yarn density meter in the outfeed of a stenter frame was a further step in this optimisation process.

As Saati produces highly technical fabrics, the exact thread count (up to over 300 F/cm) is an essential quality feature. The PMC-15, a camera-based measuring system, can continuously record and log this parameter. At the same time, the FMC-15 records residual distortion and contributes to the elimination of so-called back sheet distortion in the fabric by automatically controlling the take-off roller of the stenter frame. This ensures the consistently high quality of the end products and reduces potential sources of error.

The investment in these systems proved so successful that SAATI initiated the next stage of process optimisation in 2024. „With the installation of an Orthopac GRVMC-15 straightening machine before the infeed of the stenter frame, we have further perfected the control of fabric
quality,“ says Operations Manager Thomas Brockmeier. The heavyweight among the Mahlo straightening systems with a working width of 2,800 mm enables SAATI to correct skew and bow distortions in the raw fabric even before the stenter frame. This is because a weft yarn that is only slightly skewed or curved can render the fabric unusable or visually unfit for use.

By combining the GRVMC-15 with the FMC-15 already installed in the outfeed, SAATI now has a fully automatic system that offers maximum monitoring and control options. The co-operation of these two technologies enables the company to deliver precisely shot-straight items. „I am delighted that we were able to complete the project so successfully,“ says Brockmeier.

Source:

Mahlo Automation GmbH

Graphic LM Wind Power
14.10.2024

Wind Turbine Blade Recycling: ZEBRA Project Demonstrates Closed-Loop System

The ZEBRA (Zero wastE Blade ReseArch) project marks a significant leap forward in the recycling and circular economy for wind turbine blades. This collaborative effort demonstrates a breakthrough in the complete recycling of thermoplastic blades achieving significant environmental and economic benefits.

The ZEBRA project is a unique partnership led by the French Institute for Technological Research, IRT Jules Verne. Joining forces are industry leaders Arkema (resin supplier), Owens Corning (glass fiber supplier), LM Wind Power (blade manufacturer), SUEZ (dismantling and waste processing), CANOE R&D center (recycling technology), and ENGIE (life cycle analysis).

Each company played a crucial role in the development of the closed-loop recycling process:

The ZEBRA (Zero wastE Blade ReseArch) project marks a significant leap forward in the recycling and circular economy for wind turbine blades. This collaborative effort demonstrates a breakthrough in the complete recycling of thermoplastic blades achieving significant environmental and economic benefits.

The ZEBRA project is a unique partnership led by the French Institute for Technological Research, IRT Jules Verne. Joining forces are industry leaders Arkema (resin supplier), Owens Corning (glass fiber supplier), LM Wind Power (blade manufacturer), SUEZ (dismantling and waste processing), CANOE R&D center (recycling technology), and ENGIE (life cycle analysis).

Each company played a crucial role in the development of the closed-loop recycling process:

  • Arkema developed and validated the generation of recycled Elium® monomer through thermolysis, and, together with its subsidiary Bostik, an innovative adhesive for the blade assembly that is recycled together with Elium® paving the way for industrial-scale implementation.
  • Owens Corning successfully recovered glass fiber at pilot scale, enabling its reintroduction into the production process for their Sustaina® product line.
  • LM Wind Power manufactured two wind turbine blades with Arkema’s Elium® resin and Owens Corning’s Ultrablade® fabrics; one blade including a large structural element made with recycled Elium® resin.
  • SUEZ provided cutting and grinding expertise for processing the blades.
  • CANOE R&D center optimized recycling for production and carbon blade waste, additionally developing methods for repurposing waste streams through mechanical recycling.
  • ENGIE conducted a comprehensive life cycle analysis demonstrating the environmental benefits of closed-loop ZEBRA blades and validated their economic viability.

A Sustainable Future for Wind Energy
The ZEBRA project successfully recycled Elium® resin and Ultrablade® fabrics from wind turbine blades and manufacturing waste, reformulating them back into usable materials. This closed-loop process addresses the growing challenge of end-of-life blade management within the wind energy industry.

  • Recycled Elium® Monomer: Arkema achieved a yield of over 75% in the thermolysis process, paving the way for industrial-scale production of recycled resin.
  • Recovered Glass Fiber: Owens Corning successfully retrieved glass fiber for remelting and reintegration into their Sustaina® product line.
  • Life Cycle and Cost Analysis: ENGIE's study confirmed the significant environmental benefits and economic viability of ZEBRA blades when assuming a closed-loop recycling system from production to end-of-life.

ZEBRA blade using Elium® thermoplastic resin, Bostik’s highly compatible adhesive and Ultrablade® fabrics is bringing the best closed-loop recycling solution compared to traditional thermoset system. The operating cost and investments for recycling facility are significantly lowered. The CO2 emission linked to the recycling operations is reduced as well. All those results are making the closed-loop recycling solution of ZEBRA blades a viable option both on economic and environmental standpoints.

By demonstrating the feasibility of full wind turbine blade recycling, the ZEBRA project paves the way for a more sustainable future in the wind energy sector.

Source:

LM Wind Power

Photo: Heytex
24.09.2024

Core business of the Heytex Group sold to Freudenberg

Private equity investor Bencis Capital Partners is selling the core business of the Heytex Group with three production sites (two in Germany and one in China) and all central functions, including sales, research and development and administration, to Freudenberg Performance Materials (FPM). FPM is active in the market for coated technical textiles, as Heytex is, under the Mehler Texnologies brand. In 2023, the relevant part of the Heytex Group generated sales of around EUR 100 million with approximately 400 employees. The transaction is subject to the approval of the antitrust authorities.

“The Bramsche, Neugersdorf and Zhangjiagang sites will play a key role in the future direction due to their good investment status, as well as the new synergies and expanded resources,” says Hans-Dieter Kohake, CEO of the Heytex Group.

As part of its strategic orientation, Freudenberg is deliberately focusing on the two German and Chinese sites of the Heytex Group, which are ideally suited to the company's goals and focus. The sites will make a significant contribution to the further development and expansion of the new Group's market leadership.

Private equity investor Bencis Capital Partners is selling the core business of the Heytex Group with three production sites (two in Germany and one in China) and all central functions, including sales, research and development and administration, to Freudenberg Performance Materials (FPM). FPM is active in the market for coated technical textiles, as Heytex is, under the Mehler Texnologies brand. In 2023, the relevant part of the Heytex Group generated sales of around EUR 100 million with approximately 400 employees. The transaction is subject to the approval of the antitrust authorities.

“The Bramsche, Neugersdorf and Zhangjiagang sites will play a key role in the future direction due to their good investment status, as well as the new synergies and expanded resources,” says Hans-Dieter Kohake, CEO of the Heytex Group.

As part of its strategic orientation, Freudenberg is deliberately focusing on the two German and Chinese sites of the Heytex Group, which are ideally suited to the company's goals and focus. The sites will make a significant contribution to the further development and expansion of the new Group's market leadership.

The Pulaski (USA) and Nijverdal (Netherlands) sites of Heytex will remain with the current shareholder Bencis Capital Partners and will continue to operate independently.

Source:

Heytex Bramsche GmbH

06.09.2024

Loomia: Automotive Comfort with Smart Textiles

Traditional heating systems in vehicles often rely on bulky and energy-intensive methods. Smart textiles, equipped with integrated heating elements powered by Loomia’s technology, offer an efficient alternative. These textiles can provide targeted warmth directly to occupants, reducing energy consumption compared to conventional heating systems. Whether integrated into seats, armrests, or steering wheels, smart heating textiles enhance comfort while optimizing energy use.

Smart surfaces in automotive interiors go beyond aesthetics, offering interactive functionalities that improve safety and convenience. Loomia’s smart surfaces can transform mundane surfaces into dynamic interfaces, capable of displaying information, adjusting settings, and responding to touch or gestures. For example, smart door panels can illuminate and provide feedback when touched, enhancing both usability and safety during nighttime operation.

Traditional heating systems in vehicles often rely on bulky and energy-intensive methods. Smart textiles, equipped with integrated heating elements powered by Loomia’s technology, offer an efficient alternative. These textiles can provide targeted warmth directly to occupants, reducing energy consumption compared to conventional heating systems. Whether integrated into seats, armrests, or steering wheels, smart heating textiles enhance comfort while optimizing energy use.

Smart surfaces in automotive interiors go beyond aesthetics, offering interactive functionalities that improve safety and convenience. Loomia’s smart surfaces can transform mundane surfaces into dynamic interfaces, capable of displaying information, adjusting settings, and responding to touch or gestures. For example, smart door panels can illuminate and provide feedback when touched, enhancing both usability and safety during nighttime operation.

Loomia’s expertise in smart textiles allows seamless integration into various aspects of vehicle design. From customizable lighting elements embedded within upholstery to responsive control panels, smart textiles enhance the overall aesthetics and functionality of automotive interiors. These innovations not only elevate the driving experience but also contribute to a more sustainable and technologically advanced automotive industry.

Looking ahead, the potential applications of smart textiles in automotive environments are vast. Future developments could include adaptive textiles that respond to environmental conditions, such as adjusting ventilation based on temperature and humidity levels. Moreover, advancements in sensor technology integrated into smart textiles may enable enhanced vehicle monitoring and diagnostics, further improving safety and efficiency on the road.

Source:

Loomia Technologies Inc

Ontex launches youth incontinence pants (c) Ontex BV
05.08.2024

Ontex launches youth incontinence pants

Ontex Group NV announces the launch of enhanced youth pants this fall. The pants are designed to reduce the psychological impact of incontinence during adolescence, offering protection and discretion.

The new Ontex youth pants are tailored for children aged 3 to 15 who struggle with bladder control at night, despite staying dry during the day, or have some disability leading to loss of bladder control.

The pants are produced by Ontex plants using its growing HappyFit product platform and will be available through retailers and Ontex’s online sales channels in Europe, with room for expansion to other regions. The pants are constructed combining absorbent materials for heavy bedwetting protection, a chassis with soft and quiet materials for discretion that also offers an improved fit. The production will also have a significantly lower impact on the environment vs previous concepts. During the production, waste is also minimized.

Ontex Group NV announces the launch of enhanced youth pants this fall. The pants are designed to reduce the psychological impact of incontinence during adolescence, offering protection and discretion.

The new Ontex youth pants are tailored for children aged 3 to 15 who struggle with bladder control at night, despite staying dry during the day, or have some disability leading to loss of bladder control.

The pants are produced by Ontex plants using its growing HappyFit product platform and will be available through retailers and Ontex’s online sales channels in Europe, with room for expansion to other regions. The pants are constructed combining absorbent materials for heavy bedwetting protection, a chassis with soft and quiet materials for discretion that also offers an improved fit. The production will also have a significantly lower impact on the environment vs previous concepts. During the production, waste is also minimized.

Bedwetting is a common issue, affecting many children. Research[1] shows that 15% of children still wet the bed in primary school, with boys significantly more likely to experience incontinence. Bedwetting mainly occurs at night and is the second most common chronic childhood condition after allergic disorders. Factors contributing to bedwetting include sleep arousal difficulties, nocturnal polyuria (excessive nighttime urine production), and bladder dysfunction.

[1] https://www.abct.org/fact-sheets/bed-wetting/

More information:
Ontex BV Ontex
Source:

Ontex BV

colouring process Photo (c) Hypetex
22.05.2024

First technical coloured flax fibre replacing carbon fibre?

British technology company Hypetex has been awarded a significant grant from Innovate UK to develop the world’s first technical coloured flax fibre, which will have applications in the sustainable manufacturing of cars, boats and other products that are usually made with carbon fibre.

Called FlaxTex the material is strong, lightweight and 100 per cent biodegradable, having a net positive carbon footprint at point of manufacturing. It can be colourised whilst enhancing its performance properties, with the process adding some important manufacturing attributes compared to standard flax fibre.

As such, FlaxTex’s mechanical properties represent the closest sustainable substitute for robust and lightweight materials like glass fibre and carbon fibre in composite structures.  

The performance of standard flax fibre is often hindered by its high moisture absorption, resulting in reduced structural integrity when used in composite construction. In addition, the natural brown colour of flax has been deemed unappealing for product use.

British technology company Hypetex has been awarded a significant grant from Innovate UK to develop the world’s first technical coloured flax fibre, which will have applications in the sustainable manufacturing of cars, boats and other products that are usually made with carbon fibre.

Called FlaxTex the material is strong, lightweight and 100 per cent biodegradable, having a net positive carbon footprint at point of manufacturing. It can be colourised whilst enhancing its performance properties, with the process adding some important manufacturing attributes compared to standard flax fibre.

As such, FlaxTex’s mechanical properties represent the closest sustainable substitute for robust and lightweight materials like glass fibre and carbon fibre in composite structures.  

The performance of standard flax fibre is often hindered by its high moisture absorption, resulting in reduced structural integrity when used in composite construction. In addition, the natural brown colour of flax has been deemed unappealing for product use.

Flaxtex solves these issues by removing moisture through the colouring process and sealing the fibres, which waterproofs them and enabling their core mechanical properties. Hypetex’s patented nano-pigment technology changes the colour adding an aesthetic quality to the material.  

This colouring process is set to transform industrial design possibilities of Flax natural fibres by enhancing the strength and performance while simultaneously reducing post-processing requirements and total energy usage. This also aligns with Hypetex's commitment to supporting the green transition and helping manufacturers meet government expectations on the path to UK Net Zero targets and the European Green Deal.

Over the course of a 12-month industrial research project, Hypetex will further optimize its resin systems and processes, expanding the use of FlaxTex across various markets.  

FlaxTex has a range of industry uses, including on construction, automotive, sports equipment and furniture products.

More information:
HYPETEX® flax carbon fibers
Source:

Hypetex

15.03.2024

TMAS: Digitised solutions at Techtextil and Texprocess

Members of TMAS – the Swedish textile machinery association – will display technologies in alignment with the theme of digitalisation at the forthcoming Techtextil and Texprocess 2024 exhibitions, taking place in Frankfurt from April 23-26th.

Automatic handling
The fully automated and digitised handling solutions for finished garments, home textiles and furniture of Eton Systems, for example, will be demonstrated at Texprocess.

Designed to increase value-added time in production by eliminating manual transportation and minimising handling, the individually addressable product carriers are fully managed and controlled by the latest ETONingenious™ software. This web based real-time data collection and information system continuously accumulates, processes and makes all production information instantly available to supervisors, quality control personnel and management.

Members of TMAS – the Swedish textile machinery association – will display technologies in alignment with the theme of digitalisation at the forthcoming Techtextil and Texprocess 2024 exhibitions, taking place in Frankfurt from April 23-26th.

Automatic handling
The fully automated and digitised handling solutions for finished garments, home textiles and furniture of Eton Systems, for example, will be demonstrated at Texprocess.

Designed to increase value-added time in production by eliminating manual transportation and minimising handling, the individually addressable product carriers are fully managed and controlled by the latest ETONingenious™ software. This web based real-time data collection and information system continuously accumulates, processes and makes all production information instantly available to supervisors, quality control personnel and management.

Bespoke seams
Svegea will demonstrate its EC 300-XS colarette technology, which is used by garment manufacturers around the world for the production of tubular apparel components such as cuff and neck tapes and other seam reinforcements.

The EC 300-XS collarette cutter on show in Frankfurt is equipped with the latest E-Drive II system providing the operator with a very user-friendly touchscreen, providing full control of the cutting process. An accompanying FA 350 fully automatic roll slitting machine will also be demonstrated.

Digital finishing
At Techtextil meanwhile, Baldwin Technology Co. will provide full details of how its highly digitised TexCoat G4 non-contact spray technology for textile finishing and remoistening not only reduces water, chemicals and energy consumption, but also provides the flexibility to adapt to customer requirements in terms of single and double-sided finishing applications.

TexCoat G4 can reduce water consumption and chemical usage by as much as 50% compared to traditional padding application processes.

Yarn tension
Celebrating its 60th anniversary this year, Eltex will display the latest Eltex EyETM system for the continuous monitoring of yarn tension on warp beams.

The Eltex EyETM eliminates problems when warping, and also in subsequent weaving or tufting processes, monitoring the yarn tension on all positions in real-time and enabling a minimum and maximum allowable tension value it be set. If any yarn’s tension falls outside these values the operator can be warned or the machine stopped.

The Eltex ACT and ACT-R units meanwhile go beyond yarn tension monitoring to actually control yarn tension. This extends the application range greatly. The plug and play system automatically compensates for any differences in yarn tension that arise, for example from irregularities in yarn packages.

Accumulated know-how
Vandewiele Sweden AB benefits from all of the synergies and accumulated know-how of Vandewiele Group, supplying weft yarn feeding and tension control units for weaving looms to the majority of weaving machine manufacturers. It also retrofits its latest technologies to working mills to enable instant benefits in terms of productivity and control.

The company will present its latest X4 yarn feeders with integrated accessory displays (TED) as a new standard, as well as launching its own e-commerce platform – iroonline.com.

The TED function enables weft tension settings to be transferred from one machine to another, enabling a fast start-up the next time the same article is woven. The position of the S-Flex Tensioner is constantly monitored by an internal sensor – even if adjustment is made during power off.

X4 feeders are also available with integrated active tension control (ATC-W) as an option. With the ATC-W active tension control, the required tension is easily set and monitored on the integrated display. Once set, the system constantly regulates itself, ensuring consistent yarn tension during the weaving process which is constantly and accurately measured by the ATC sensor unit, sending a signal to the ATC operator unit resulting in consistently stable yarn tension at the required level.

Source:

TMAS - Swedish textile machinery association

Baldwin presents spray finishing system at Techtexil (c) Baldwin Technology Company Inc.
13.03.2024

Baldwin presents spray finishing system at Techtexil

Baldwin Technology Co. will join Elmatex GmbH at Techtexil (April 23-26 in Frankfurt, Germany) to demonstrate its TexCoat™ G4 precision spray finishing system.

Baldwin Technology Co. will join Elmatex GmbH at Techtexil (April 23-26 in Frankfurt, Germany) to demonstrate its TexCoat™ G4 precision spray finishing system.

With Baldwin’s system, the chemistry is precisely distributed across the textile surface and is applied only where it is required, on one or both sides of the fabric. The non-contact technology eliminates chemistry dilution in wet-on-wet processes, allowing full control of maintaining consistent chemistry coverage rates. Plus, pad bath contamination is eliminated, and changeovers are only required when there is a change of finish chemistry.
 
Furthermore, the system offers automated speed tracking, fabric-width compensation, and real-time monitoring to track system uptime, performance and chemistry usage, as well as active care alerts.
 
In addition, the TexCoat™ G4 system can process a wide range of low-viscosity water-based chemicals, such as durable water repellents, softeners, antimicrobials, flame retardants and more. Baldwin’s technology utilizes the same chemicals used in the traditional pad bath, and no special auxiliaries are required. The recipe is adjusted by increasing the concentration and reducing the pickup by a corresponding amount, so that the same level of solids is applied.
 
Some applications, such as durable water repellents, are only applied on the face of the fabric, instead of the traditional method of saturation through dipping and squeezing. Drier fabric entering the stenter means lower drying temperatures and faster process speeds. Single-side applications also open up the opportunity to process back-coated or laminated fabrics in a single pass of the stenter, instead of two passes.

Graphic Toray
20.12.2023

Recycled carbon fiber: When a Boeing 787 turns into a Lenovo ThinkPad

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

TORAYCA™ is an established aerospace material known for its high strength, stiffness, and lightweighting properties. These qualities have led to its adoption in other applications such as electrical and electronic equipment housings, sports equipment, and other industrial applications.

A key advantage of carbon fiber is the ability to retain its primary mechanical properties even after the recycling process. Toray is actively advancing recycling technologies and establishing a strategic business model for rCF. Given that the carbon footprint of rCF is lower than that of virgin carbon fiber, Toray is proactively recommending the adoption of rCF to reduce the environmental impact of customers’ products. This commitment aligns with Toray’s dedication to fostering a circular economy, thereby reducing landfill waste.

Source:

Toray Industries

Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right. Source: ITMF
Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right.
01.12.2023

Faster and cheaper carbon fibre production with CarboScreen

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Both types of damage cannot be optimally detected by current means or only become apparent after production, to name just two examples. This leads to higher production costs. In an emergency, faulty production can even lead to plant fires. For this reason, and to ensure good production quality, the system is run at 15 m/min below its production capacity for safety reasons. However, 30 m/min or more would be possible. With the sensor-based online monitoring of CarboScreen, the production capacity can be doubled to 30 /min. This would lead to higher production, resulting in lower manufacturing costs and wider use of carbon fibres in mass markets such as automotive, aerospace and wind energy.

More information:
carbon fibers sensors Startup
Source:

ITA – Institut für Textiltechnik of RWTH Aachen University
 

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
14.11.2023

Successful SMCCreate 2023 Design Conference in Prague

Successful SMCCreate 2023 Design Conference in Prague

With over 60 participants from Europe and the USA the second edition of the SMCCreate Design Conference took place from November 7th to 8th in Prague. The conference was jointly organized by the AVK – Federation of Reinforced Plastics and the European Alliance for SMC BMC, promoting the use of SMC and providing design tools to designers for applying these versatile materials.

During the SMCCreate 2023 conference topics covered the wide spectrum of the design with fiber composite/composite components in SMC and BMC technology, from conceptual design, development, and scale-up, with a special emphasis on recycling and sustainability solutions. 18 speakers from various European countries showed how they address important market trends and changing customer needs, and which solutions their companies offered in terms of materials, performance and much more.

Successful SMCCreate 2023 Design Conference in Prague

With over 60 participants from Europe and the USA the second edition of the SMCCreate Design Conference took place from November 7th to 8th in Prague. The conference was jointly organized by the AVK – Federation of Reinforced Plastics and the European Alliance for SMC BMC, promoting the use of SMC and providing design tools to designers for applying these versatile materials.

During the SMCCreate 2023 conference topics covered the wide spectrum of the design with fiber composite/composite components in SMC and BMC technology, from conceptual design, development, and scale-up, with a special emphasis on recycling and sustainability solutions. 18 speakers from various European countries showed how they address important market trends and changing customer needs, and which solutions their companies offered in terms of materials, performance and much more.

As an introduction, speakers - including CTC/Airbus and Teijin - presented different possible applications for SMC and BMC components, including aircraft interiors, bicycle boxes, and applications in e-mobility. The topic of sustainability was broadly covered, highlighting recycling solutions and experiences (Siemens, IDI, OC, AOC), the use of renewable raw materials, as well new LCA models developed by the SMC BMC Alliance (LCS),

Specifically for designers, the use of the SMC flow and curing modelling was presented (ESI, OC), SMC positioning vs. aluminium (Spartners). The second day concluded with contributions on process optimization options for component production, including speeches by Dieffenbacher, Netzsch and EBG.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

14.09.2023

Rudolf commissions Baldwin’s TexCoat™ G4 lab-scale precision spray unit

Rudolf GmbH, a provider of chemicals to the textile industry, can now offer side-by-side performance tests of the age-old “dip and squeeze” pad versus precision spray finishing with the delivery of Baldwin Technology Inc.’s TexCoat ™ G4 lab-scale unit.

Rudolf GmbH, a provider of chemicals to the textile industry, can now offer side-by-side performance tests of the age-old “dip and squeeze” pad versus precision spray finishing with the delivery of Baldwin Technology Inc.’s TexCoat ™ G4 lab-scale unit.

The new TexCoat lab-scale unit at Rudolf’s Geretsried, Germany-based Customer Solution Center, tests the sprayability of chemicals on fabrics as an additional tool to help the market transition to precision spray with confidence in the performance and sustainability of the end result.
 
With Baldwin’s innovative system, the chemistry is precisely distributed across the textile surface and is applied only where it is required, on one or both sides of the fabric. The non-contact technology eliminates chemistry dilution in wet-on-wet processes, allowing full control of maintaining consistent chemistry coverage rates.
 
Plus, pad bath contamination is eliminated, and changeovers are only required when there is a change of finish chemistry. On wet-on-dry processes, the finish is applied with 50% of the amount of water required for pad finishing. Dryer fabric entering the stenter means less water to evaporate resulting in less energy and higher production speeds.
 
More specifically, with Baldwin’s TexCoat G4, textile finishers can track and control the finishing process. Changeovers are quickly performed thanks to recipe management, including automated chemistry and coverage selection. Furthermore, the system takes speed information from the drying process to insure exact coverage regardless of any change in speed. TexCoat G4 measures every drop of chemical usage ensuring that the amount of chemical add-on is precise.
 
In addition, the TexCoat G4 system can process a wide range of low-viscosity water-based chemicals, such as durable water-repellants including PFAS-free, softeners, anti-microbials, easy care resins, flame retardants and more. Baldwin’s technology utilizes the same chemicals used in the traditional pad bath, with no special auxiliaries required.

Source:

Baldwin Technology Company Inc.

Photo Autoneum
15.08.2023

Autoneum’s Re-Liner nominated as finalist for 2023 PACE Award

Using recovered resin from discarded car bumpers, Autoneum’s sustainable Re-Liner technology transforms a previously unusable waste product into lightweight and durable wheelhouse outer liners. In addition to their high recycled content, the eco-friendly components require significantly less energy to produce than conventional alternatives. The innovation presents another important step towards a more sustainable circular economy and has now been nominated for the 2023 PACE Award.

Autoneum has been selected as one of the finalists for the 2023 Automotive News PACE Awards. Entering its 29th year, this prestigious award honors superior innovation, technological advancement and business performance among automotive suppliers.

Using recovered resin from discarded car bumpers, Autoneum’s sustainable Re-Liner technology transforms a previously unusable waste product into lightweight and durable wheelhouse outer liners. In addition to their high recycled content, the eco-friendly components require significantly less energy to produce than conventional alternatives. The innovation presents another important step towards a more sustainable circular economy and has now been nominated for the 2023 PACE Award.

Autoneum has been selected as one of the finalists for the 2023 Automotive News PACE Awards. Entering its 29th year, this prestigious award honors superior innovation, technological advancement and business performance among automotive suppliers.

Re-Liner is based on a core of polyolefins recovered from post-consumer bumpers and has a textile top layer made of fibers from recycled materials. “Autoneum has recognized the untapped potential of recovered resin from automotive bumper covers as a resource and is giving this former waste product a second life,” explained Dan Moler. “The core resin of Re-Liner is 100% automotive post-consumer recycled material, not just a filler or additive to a virgin material. Lightweight, durable, and sustainable wheelhouse outer liners based on this technology are expected to reduce waste generated by bumper covers by nearly one million kilograms in 2023.”

For more than a quarter century of a century, the PACE Award has honored innovations driven by automotive suppliers. The award is known in the global automotive industry for identifying and recognizing the latest game-changing innovation: from the plant floor to the product to the showroom. In 2000, Autoneum (then Rieter Automotive) already received a PACE Award for its Ultra-Light technology. In addition, two of the Company’s technologies have also been nominated as finalists in the past: Ultra-Silent in 2010 and Theta-Fiber in 2012.

More information:
Autoneum Re-Liner PACE award
Source:

Autoneum

Freudenberg complements Range of Technical Packaging Textiles (c) Freudenberg Performance Materials Holding GmbH
28.07.2023

Freudenberg complements Range of Technical Packaging Textiles

Freudenberg Performance Materials (Freudenberg) is launching its latest innovation Evolon® Ultra Smooth to serve the specific packaging needs of technical industries.

Evolon® Ultra Smooth fabrics are low-linting, strong and hard-wearing. The new materials are designed for industrial parts and components which require low-friction, sliding behavior during the part packing and handling procedures. Furthermore, they are durably hydrophobic and available in different weights. The reusable textile containers made of Evolon® Ultra Smooth can be used in various industries to pack and transport even very heavy and sensitive parts without damage.

The Evolon® Ultra Smooth materials have a point-sealed patterned white surface which is very different from the standard Evolon® packaging textiles and which makes them easily identifiable.  

Freudenberg Performance Materials (Freudenberg) is launching its latest innovation Evolon® Ultra Smooth to serve the specific packaging needs of technical industries.

Evolon® Ultra Smooth fabrics are low-linting, strong and hard-wearing. The new materials are designed for industrial parts and components which require low-friction, sliding behavior during the part packing and handling procedures. Furthermore, they are durably hydrophobic and available in different weights. The reusable textile containers made of Evolon® Ultra Smooth can be used in various industries to pack and transport even very heavy and sensitive parts without damage.

The Evolon® Ultra Smooth materials have a point-sealed patterned white surface which is very different from the standard Evolon® packaging textiles and which makes them easily identifiable.  

Evolon® Ultra Smooth materials protect the surfaces of industrial and automotive parts by avoiding micro-scratches or lint contamination. By using Evolon® Ultra Smooth reusable packaging to transport parts with highly-sensitive surfaces, customers reduce the number of damaged parts and the reject rate. The innovation is available worldwide. As Evolon® Ultra Smooth is 100% made in Europe, European customers benefit from even greater flexibility in the supply chain and quick go-to-market.

Source:

Freudenberg Performance Materials Holding GmbH

06.04.2023

Autoneum: Acquisition of Borgers Automotive successfully completed

The acquisition of the automotive business of Borgers, announced in January 2023, has been completed with effect from April 1, 2023, following receipt of all antitrust approvals. As a result, Autoneum now operates 67 production facilities worldwide and employs around 16 100 people in 24 countries. With the acquisition of the long-established German company, Autoneum is further expanding its global market leadership in sustainable acoustic and thermal management of vehicles. For the planned capital increase of around CHF 100 million for the long-term financing of the acquisition, the shareholders approved the creation of a capital band.

The purchase agreement signed on January 6, 2023, to acquire the assets of the insolvent Borgers companies by Autoneum could be completed. As a result, Autoneum will take over the assets of the Borgers companies in Germany and the shares in the subsidiaries in France, Poland, Sweden, Spain, the Czech Republic, the United Kingdom and the USA as well as in the company in Shanghai, China, with effect from April 1, 2023. As already communicated, the enterprise value paid amounts to EUR 117 million.

The acquisition of the automotive business of Borgers, announced in January 2023, has been completed with effect from April 1, 2023, following receipt of all antitrust approvals. As a result, Autoneum now operates 67 production facilities worldwide and employs around 16 100 people in 24 countries. With the acquisition of the long-established German company, Autoneum is further expanding its global market leadership in sustainable acoustic and thermal management of vehicles. For the planned capital increase of around CHF 100 million for the long-term financing of the acquisition, the shareholders approved the creation of a capital band.

The purchase agreement signed on January 6, 2023, to acquire the assets of the insolvent Borgers companies by Autoneum could be completed. As a result, Autoneum will take over the assets of the Borgers companies in Germany and the shares in the subsidiaries in France, Poland, Sweden, Spain, the Czech Republic, the United Kingdom and the USA as well as in the company in Shanghai, China, with effect from April 1, 2023. As already communicated, the enterprise value paid amounts to EUR 117 million.

The product and customer range of Borgers Automotive, the specialist for textile acoustics protection, insulation and trim for vehicles, ideally complements Autoneum’s sustainable product portfolio. Particularly with the wheel arch liner and trunk lining product lines as well as the truck business, Autoneum’s global presence offers further potential for profitable growth also outside Europe. In addition, Borgers has more than 150 years of experience in recycling textile materials. In the 2022 financial year, the Borgers Group – excluding the mechanical engineering division which was already sold in the summer of 2022 – generated expected annual revenue of around EUR 700 million and employed around 4 500 employees worldwide. Autoneum has agreed new pricing and delivery terms with Borgers’ customers, which will ensure both sustainable profitability and the further development of technologies and processes.

From April 1, the former Borgers sites in Germany will be part of Autoneum Germany GmbH, which has been in existence for many years. The other subsidiaries worldwide will gradually be renamed Autoneum.

More information:
Autoneum Borgers
Source:

Autoneum Management AG

(c) Freudenberg Performance Materials
17.02.2023

Freudenberg: Packaging textile for automotive and industrial parts

Freudenberg Performance Materials (Freudenberg) is widening its product range of technical packaging textiles. Evolon® ESD protects automotive and industrial parts with electronic components from electrostatic discharge. This includes trim lines, dashboards, mirrors, steering wheels, etc.

The ESD (ElectroStatic Discharge) feature of the new Evolon® technical packing textile provides permanent electrostatic discharging protection and the fabric’s surface resistivity can be customized. This eliminates ESD damage to electronic components during transport because electrostatic charging due to movement and friction is safely prevented. As this kind of damage cannot be detected with the naked eye, Evolon® ESD helps to avoid failures which can occur after the final product is assembled and released. Manufacturers benefit from fewer complaints and warranty costs, as well as better end customer satisfaction.

Freudenberg Performance Materials (Freudenberg) is widening its product range of technical packaging textiles. Evolon® ESD protects automotive and industrial parts with electronic components from electrostatic discharge. This includes trim lines, dashboards, mirrors, steering wheels, etc.

The ESD (ElectroStatic Discharge) feature of the new Evolon® technical packing textile provides permanent electrostatic discharging protection and the fabric’s surface resistivity can be customized. This eliminates ESD damage to electronic components during transport because electrostatic charging due to movement and friction is safely prevented. As this kind of damage cannot be detected with the naked eye, Evolon® ESD helps to avoid failures which can occur after the final product is assembled and released. Manufacturers benefit from fewer complaints and warranty costs, as well as better end customer satisfaction.

Further protection feature
Unlike conventional ESD packaging solutions, Evolon® ESD also protects parts surfaces by avoiding micro-scratches or lint contamination. By using Evolon® reusable packaging to transport parts with highly-sensitive surfaces, customers reduce the number of damaged parts and the reject rate.

Additional benefits
Evolon® microfilament textiles are also extremely strong and are available in different weights to meet a wide range of requirements – from lightweight to heavy-duty. They can be used to pack and transport very heavy parts without damage. In addition, Evolon® fabrics are durable, and contain up to 85% recycled PET.

Source:

Freudenberg Performance Materials

(c) Messe Frankfurt (HK) Ltd
08.02.2023

Cinte Techtextil China 2023 set for September

With China easing its pandemic restrictions, foreign exhibitors and buyers can look forward to quarantine-free travel when participating at this year’s industry showcase in Shanghai. The technical textile and nonwovens fair is scheduled to take place from 19 – 21 September 2023 at the Shanghai New International Expo Centre, amid positive market forecasts for both sectors. The organisers are anticipating a strong showing and the conclusion of an inconsistent period for in-person textile business.

“The industry has demonstrated incredible patience and resilience over the course of the pandemic,” said Ms Wilmet Shea, General Manager of Messe Frankfurt (HK) Ltd. “With both markets growing and China opening its borders, we are excited at the prospect of providing participants with an international, business-friendly platform and expect to welcome a healthy number of exhibitors later this year.”

With China easing its pandemic restrictions, foreign exhibitors and buyers can look forward to quarantine-free travel when participating at this year’s industry showcase in Shanghai. The technical textile and nonwovens fair is scheduled to take place from 19 – 21 September 2023 at the Shanghai New International Expo Centre, amid positive market forecasts for both sectors. The organisers are anticipating a strong showing and the conclusion of an inconsistent period for in-person textile business.

“The industry has demonstrated incredible patience and resilience over the course of the pandemic,” said Ms Wilmet Shea, General Manager of Messe Frankfurt (HK) Ltd. “With both markets growing and China opening its borders, we are excited at the prospect of providing participants with an international, business-friendly platform and expect to welcome a healthy number of exhibitors later this year.”

The global technical textile and nonwovens markets are both set to perform strongly over the next few years. According to Grand View Research, the technical textile market is forecast to expand at a CAGR of 4.7% from 2022 to 2030[1]. The nonwoven fabrics market is anticipated to display an even stronger CAGR of 5.6% during the same period[2], with Asia-Pacific to maintain its position as the biggest regional market.

As one of Asia’s leading trade fairs for the abovementioned sectors, Cinte Techtextil China is the preferred platform for multiple industry players. Speaking at the previous edition in 2021, Mr Seven Shen, Sales Manager at Libero Trading (Shanghai) Co Ltd, China, said: “We have been exhibiting at this fair for years, and know we will meet our target customers at every edition. The buyers here are all highly specialised.”

During his interview at the same edition, Mr Eric Ni, Senior Manager, China Supply Chain Marketing for Cotton Council International, USA, commented: “We hope to use this platform to meet more companies and brands in the nonwovens industry who are interested in US cotton, and to meet up with old friends to discuss the current situation and industry trends. The fair’s buyers are quality, and we have found some new potential clients at this edition.”

Many buyers at the previous edition also gave positive appraisals. “As a professional trade fair for technical textile and nonwoven products, Cinte Techtextil China is not only a platform to gather qualified industry players, but also the best place to showcase new products and innovations,” said Mr Lin Bin, Technical Director at Zhejiang Xinna Medical Device Technology Co Ltd, China. “Specific and high quality products enhance sourcing efficiency for buyers, and exposure to new trends and market developments ensures my company visits here regularly.”

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

[1] “Technical Textile Market Size, Share & Trends Analysis Report 2022-2030”, 2022, Grand View Research, https://bit.ly/3IAxQIK, (Retrieved: January 2023)
[2] “Nonwoven Fabrics Market Size”, 7 September 2022, GlobeNewswire, https://bit.ly/3CxPE3u, (Retrieved: January 2023)

Source:

Messe Frankfurt (HK) Ltd

Graphik Freudenberg Performance Materials
10.01.2023

Freudenberg: Technical packaging textiles with less CO2 emissions

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

Evolon® microfilament textiles have a small carbon footprint because their manufacturing process uses low CO2 energy sources. The fabrics are lightweight and can be reused throughout entire production programs, e.g. of a car model when it is about the automotive industry. Furthermore, the new Evolon® RE fabrics contain up to 85% of recycled PET which is produced in-house out of post-consumer PET bottles.

Evolon® textiles are suitable for reusable technical packaging, which eliminate the use of thousands of disposable packaging materials. Evolon® fabrics offer scratch-free, lint-free, high-end surface protection for molded plastic parts, painted parts and other sensitive industrial and automotive parts during transport. This contributes to lower the scrap rate of parts and provide both financial and ecological benefits. By using Evolon® reusable packaging to transport highly-sensitive parts, customers can increase their efficiency and save resources.

Source:

Freudenberg Performance Materials