From the Sector

Reset
14 results
Propylat-Technologie Photo Autoneum Management AG
08.12.2023

Optimized acoustic performance thanks to sustainable technology with high recycled content

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

The ongoing electrification of mobility as well as increasingly strict regulatory requirements for vehicle performance in terms of sustainability and acoustics are presenting new challenges to car manufacturers worldwide. With Propylat, Autoneum now offers another lightweight, fiber-based and versatile technology whose sound-insulating and -absorbing properties as well as high content of recycled materials help customers address these challenges. Propylat-based products not only contribute to reducing pass-by noise and improving driver comfort, but they are also up to 50 percent lighter than equivalent plastic alternatives; this results in a lower vehicle weight and, consequently, less fuel and energy consumption as well as lower CO2 emissions.

Autoneum's innovative Propylat technology consists of a mixture of recycled synthetic and natural fibers – the latter include cotton, jute, flax or hemp, for example – that are consolidated using thermoplastic binding fibers without adding any further chemical binders. Thanks to the flexible fiber composition and the variable density and thickness of the porous material, the properties of the respective Propylat variant, for example with regards to acoustic performance, can be tailored to individual customer requirements. This allows for a versatile application of the technology in a variety of interior and exterior components such as wheelhouse outer liners, trunk trim, underbody systems and carpets. For instance, Propylat-based wheelhouse outer liners significantly reduce rolling noise both inside and outside the vehicle while at the same time offering optimum protection against stone chipping and spray water.

In terms of sustainability, Propylat always contains a high proportion of recycled fibers – up to 100% in some variants – and can be manufactured with zero waste. Thanks to the full vertical integration of Propylat and Autoneum’s extensive expertise in recycling processes, the technology also contributes to a further significant reduction in production waste. Moreover, the Propylat PET technology variant, which consists of 100% PET, of which up to 70% are recycled fibers, is fully recyclable at the end of product life. For this reason, Propylat PET has been selected for Autoneum Pure – the Company’s sustainability label for technologies with excellent environmental performance throughout the product life cycle – where it will replace the current Mono-Liner technology going forward.

Propylat-based components are currently available in Europe, North America and China.

Source:

Autoneum Management AG

Photo: CHT
26.05.2023

BEZAKTIV ONE: New Reactive dyes range by CHT

  • Reactive dyes for water and energy saving dye processes with significantly shortened process time

BEZAKTIV ONE covers a broad color spectrum with tinctorial very strong dyes. This enables a cost-efficient dye process with significantly less dye and salt. The excellent wash-off behavior allows short rinse cycles at lower temperatures and therefore offers further ecological and economic advantages. The dyes are particularly suitable for durable textiles due to their good multiple wash fastness.

Cellulosic fibers are often dyed with reactive dyes, as these are commercially available in a wide range of colors that result in dyeings with high wash fastness. However, reactive dyeings require a lot of water due to the necessary rinsing processes. Due to increased ecological requirements, the development of energy and water saving processes is not just a trend, but rather a core prerequisite for new dyes.

A minimal number of rinsing baths and generally lower temperatures for dye exhaust, rinsing and soaping contribute to an overall efficient water and energy saving dyeing processes.

  • Reactive dyes for water and energy saving dye processes with significantly shortened process time

BEZAKTIV ONE covers a broad color spectrum with tinctorial very strong dyes. This enables a cost-efficient dye process with significantly less dye and salt. The excellent wash-off behavior allows short rinse cycles at lower temperatures and therefore offers further ecological and economic advantages. The dyes are particularly suitable for durable textiles due to their good multiple wash fastness.

Cellulosic fibers are often dyed with reactive dyes, as these are commercially available in a wide range of colors that result in dyeings with high wash fastness. However, reactive dyeings require a lot of water due to the necessary rinsing processes. Due to increased ecological requirements, the development of energy and water saving processes is not just a trend, but rather a core prerequisite for new dyes.

A minimal number of rinsing baths and generally lower temperatures for dye exhaust, rinsing and soaping contribute to an overall efficient water and energy saving dyeing processes.

BEZAKTIV ONE dyes can be dyed, rinsed and soaped between 40 and 60 °C. Therefore, the BEZAKTIV ONE exhaust dyeing process is significantly shorter compared to conventional reactive dyeing processes, where temperatures between 60 and 98 °C are required. This advantage means savings in process time and higher productivity for the textile dyer.

The advantages become particularly clear when dyeing medium to dark shades with the BEZAKTIV ONE process. Due to the high fixation level in combination with good color build-up dark shades can be matched with lower dye concentrations of BEZAKTIV ONE than with conventional bifunctional reactive dyes. The addition of the auxiliary COTOBLANC SEL in the second soap bath has an additional positive effect, so that a washing process with low water and energy consumption generates excellent wet fastness properties on the textile.

Photo: Freudenberg Performance Apparel
24.11.2022

Freudenberg Performance Materials Apparel: Rooftop photovoltaic coverage at Nantong

Freudenberg recently completed the installation of 13,000m2 of photovoltaic cells on the roof of its new Nantong factory. With a total capacity of 1.6 MW, the new rooftop installation is projected to produce 1.5 million kWh of green electricity each year. In addition to reduced energy consumption from the grid, this new installation will lower CO2 emissions by approximately 1,200 tons/year.

Freudenberg recently completed the installation of 13,000m2 of photovoltaic cells on the roof of its new Nantong factory. With a total capacity of 1.6 MW, the new rooftop installation is projected to produce 1.5 million kWh of green electricity each year. In addition to reduced energy consumption from the grid, this new installation will lower CO2 emissions by approximately 1,200 tons/year.

Beyond the photovoltaic installation, Freudenberg has integrated sustainability into the Nantong factory’s design, with advances in energy conservation and emissions and loss reduction.
The factory uses valley voltage to cool water in its reservoir that is applied to A/C and machine temperature management during working hours. The new waste gas treatment technology enables hot water collected by heat exchangers to be directly reused in production, thereby reducing thermal energy waste. Furthermore, the factory applies a new multi-phase waste gas treatment technology to reduce volatile organic compounds (VOC) emissions. The factory has also incorporated new methods to improve the A-grade rates of bi-elastic interlinings and shirt interlinings, further reducing waste while improving garment quality.

As part of the Group’s sustainable development strategy, Freudenberg Apparel has also launched its House of Sustainability to minimize the impact of production processes on the environment and help customers achieve their sustainability goals, with responsible products across the seasons.

Source:

Freudenberg Performance Apparel

(c) Coperion GmbH
24.06.2022

Coperion: New Development for Plastic Fiber and Flake Recycling

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

Increased Throughput in Numbers
With a ZSK 58 Mc18 twin screw extruder, the throughput increase and thus the potential of the new ZS-B MEGAfeed becomes very clear. When recycling PA fibers with a bulk density of ~40-50 kg/m3, throughputs of 70 kg/h were previously achieved using conventional equipment. When the PA fibers were fed into the ZSK extruder using the ZS-B MEGAfeed, throughputs increased about fourteenfold to 1,000 kg/h. Similar results were achieved recycling carbon fibers with a bulk density of ~50-70 kg/m3; in this case, throughputs increased from 50 kg/h to 2,500 kg/h using the ZS-B MEGAfeed. When recycling PCR (Post-Consumer Recycled) flakes, throughputs increased from 50 kg/h to 700 kg/h, and from 80 kg/h to 1,300 kg/h with multilayer film flakes.

Key to Economical Recycling of A Wide Variety of Plastics
Plastics previously considered not recyclable are becoming a valuable raw material using the new Coperion ZS-B MEGAfeed. For example, PCR flakes or recyclate from carbon fiber-reinforced plastics can now be fed into the ZSK extruder at high feed rates and recycled economically.

In the case of mechanical upcycling, upstream processes necessary for compounding, such as compacting, melting and agglomeration, are completely eliminated using the ZS-B MEGAfeed technology. In this recycling process, flakes and fibers can be fed directly into the ZSK extruder, where they are melted, compounded, devolatilized, and filtered in a single step. In so doing, both investment costs and energy consumption drop. The production process becomes significantly more efficient. Moreover, the thermal product stress is reduced and recyclate quality increases.

Even when recycling PET, the feed rate is no longer a limiting factor. With the ZS-B MEGAfeed, PET flakes and fibers can be fed into the ZSK twin screw extruder in large quantities with no pre-drying or crystallizing, where they can be processed with the highest degree of profitability.

The ZS-B MEGAfeed can also feed large quantities of post-consumer waste, adding appreciable value to the chemical recycling process with the ZSKs. ZSK throughput rates are very high with the ZS-B MEGAfeed. Preheating of the recyclate via mechanical energy input of the twin screws thus becomes even more economical for further processing in the reactor.

Existing Coperion extruders can be retrofitted with ZS-B MEGAfeed technology to greatly expand their spectrum of applications and increase their throughput rates.

Source:

Coperion GmbH / Konsens Public Relations GmbH & Co. KG

(c) RadiciGroup
27.05.2022

RadiciGroup's sustainable Repetable yarn at Emirates FA Cup final

RadiciGroup's sustainable Repetable yarn took to the field alongside Liverpool and Chelsea during the Emirates FA Cup final, which took place on 14 May at Wembley Stadium.
 
Over 47,000 plastic bottles were collected from previous events at Wembley stadium and transformed into Repetable, the innovative RadiciGroup yarn made from PET flakes, which was then used to make the red banner 105 meters long and 68 meters wide, unveiled during the opening ceremony of the event and decorated with the logos of the two teams.
 
Compared to virgin polyester, Repetable® allows lower CO2 emissions (-45%), lower water consumption (-90%) and lower energy consumption (-60%), guaranteeing high performance.

The red banner will be recycled again to make backpacks and sports bibs that the FA will donate to the local community to inspire the eco-players of the future: an initiative in the name of circularity!

RadiciGroup's sustainable Repetable yarn took to the field alongside Liverpool and Chelsea during the Emirates FA Cup final, which took place on 14 May at Wembley Stadium.
 
Over 47,000 plastic bottles were collected from previous events at Wembley stadium and transformed into Repetable, the innovative RadiciGroup yarn made from PET flakes, which was then used to make the red banner 105 meters long and 68 meters wide, unveiled during the opening ceremony of the event and decorated with the logos of the two teams.
 
Compared to virgin polyester, Repetable® allows lower CO2 emissions (-45%), lower water consumption (-90%) and lower energy consumption (-60%), guaranteeing high performance.

The red banner will be recycled again to make backpacks and sports bibs that the FA will donate to the local community to inspire the eco-players of the future: an initiative in the name of circularity!

Source:

RadiciGroup

(c) Suedwolle
23.02.2022

Südwolle: Fall/Winter 2023/24 Collection

  • The “new normal” by Südwolle: responsible, seasonless and high performance

The concept of seasonality in the F/W 2023/24 collection is increasingly vague, in favour of more functional categories in terms of performance, sustainability, innovative content and style.

Yarns are predominantly pure wool or blends, corresponding with the new concept of “dressing well” which is gaining ground among consumers – an individual style that promotes wellbeing at various times of the day, a fluid, personal idea of elegance, that fits daily activities with ease.

The new formal replaces the traditional suit with “smart casual” jackets and trousers -comfortable, and carefully cut, they feature quality materials that guarantee wearability as well as durability. Focus on these factors makes for more informed and less impulse buying.

The renewed interest in heritage is met with Südwolle's wool know-how and its basic essentials, updated to make them more sustainable by choosing certified fibres and chlorine-free anti-shrink treatments, for products with a longer lifespan thanks to domestic washing at low temperatures.

  • The “new normal” by Südwolle: responsible, seasonless and high performance

The concept of seasonality in the F/W 2023/24 collection is increasingly vague, in favour of more functional categories in terms of performance, sustainability, innovative content and style.

Yarns are predominantly pure wool or blends, corresponding with the new concept of “dressing well” which is gaining ground among consumers – an individual style that promotes wellbeing at various times of the day, a fluid, personal idea of elegance, that fits daily activities with ease.

The new formal replaces the traditional suit with “smart casual” jackets and trousers -comfortable, and carefully cut, they feature quality materials that guarantee wearability as well as durability. Focus on these factors makes for more informed and less impulse buying.

The renewed interest in heritage is met with Südwolle's wool know-how and its basic essentials, updated to make them more sustainable by choosing certified fibres and chlorine-free anti-shrink treatments, for products with a longer lifespan thanks to domestic washing at low temperatures.

Sustainable innovation attentive to performance and durability goes hand in hand with the selection of earth-friendly recycled, recyclable and traceable materials blended with natural fibres.

Overview of the collection
The words inspiring the new collection are: sustainable, responsible, natural, recycled and high-performance.

A leading position goes to the OTW® line of weaving yarns made with Omega Twist® technology, developed and patented by Südwolle Group, which gives yarns enhanced performances in terms of reduced pilling, greater elasticity, strength and durability.

Espresso TEX Nm 48/2 (100% untreated wool,20.5μ) was created to value the authentic naturalness of wool. Made with undyed, untreated merino wool, it is a twisted yarn for weaving, ideal, for example, for flannel suits and jacket. It is available in 4 shades of brown obtained by mixing different percentages of untreated raw wool and undyed, naturally brown wool.
Eolo Nm 24/2 (100% wool 20.5 µ) is an example of circular production and reuse of recycled wool within the Karma project. Starting with in-house pre-and post-production waste, a partly carded, partly combed, product is created at Südwolle Group facilities where this type of process can be carried out.

Rhein GOTSNm 64/1 and Nm 64/2 (100% wool 19.5 µ) is the new pure woolyarn with GOTS –Global Organic Textile Standard certification, which certifies its organic provenance. The same traceable origin applies to Lerici GOTS X-COMPACT®Nm 60/1 (70% GOTS certified wool 19.5μ, 30% Schappe Mulberry silk), a glossy yarn with reduced pilling effect for improved anti-abrasion performance, obtained with X-COMPACT® spinning technology.

Performance paired with reduced energy consumption is the added value of SRP ClarkNm 60/2 (48% wool 23.5μ, 44% cationic polyester, 8% Donegal viscose), also available in a stretch version. The cationic polyester can be dyed blended with the wool, making double dying unnecessary and so saving on water and energy consumption. The addition of pre-dyed red, green or brown Donegal viscose to the blend creates a fluid look enhanced with slubbing and micro-nep effect.

Rosvic Nm 40/2 (98% wool 19.5μ, 2% Lycra®44 dtex) is a twisted yarn with Basolan treatment for comfort fabrics. It has a slightly textured surface with a contrasting or tone on tone micro mouliné pattern.

Key players among the circular knitting and hosiery yarns are Basak Nm 80/1(80% wool TEC. 20% polyamide 2.2 dtex), OTW® Barone GRS Nm 60/2(60% wool 23.5 µ TEC, 40% RENU™ recycled cationic polyester 2.2 dtex) and OTW®Concorde Nm 88/2(100% wool 19.3 µ TEC), available in the new colour cards.

More information:
Südwolle collection
Source:

(c) Suedwolle

27.01.2022

Radici Yarn certified to ISO 50001 Energy Management Systems

Over 400 employees work hard every day to improve the environmental performance of Radici Yarn’s site. Through teamwork and continuous improvement in energy efficiency, Radici Yarn has obtained ISO 50001 Energy Management Systems certification, which attests to the organization’s commitment to contain and progressively reduce energy consumption.

Radici Yarn, one of the companies in the RadiciGroup Advanced Textile Solutions Business Area, is engaged in the production and sale of polyamide 6 polymer, PA6 and PA66 continuous filament and staple yarn, and other synthetic fibres, including products made of recycled or bio-based materials.

All the processes - polymerization and spinning (Villa d'Ogna plant), as well as warping and draw-warping (Ardesio plant) - are run under constant monitoring with the goal of achieving maximum energy efficiency and lower consumption. Both sites are powered by two hydroelectric power plants owned by Geogreen, a RadiciGroup partner and energy supplier. The share of energy consumption from renewable sources and reduced environmental impact (natural gas) sources  is constantly increasing.

Over 400 employees work hard every day to improve the environmental performance of Radici Yarn’s site. Through teamwork and continuous improvement in energy efficiency, Radici Yarn has obtained ISO 50001 Energy Management Systems certification, which attests to the organization’s commitment to contain and progressively reduce energy consumption.

Radici Yarn, one of the companies in the RadiciGroup Advanced Textile Solutions Business Area, is engaged in the production and sale of polyamide 6 polymer, PA6 and PA66 continuous filament and staple yarn, and other synthetic fibres, including products made of recycled or bio-based materials.

All the processes - polymerization and spinning (Villa d'Ogna plant), as well as warping and draw-warping (Ardesio plant) - are run under constant monitoring with the goal of achieving maximum energy efficiency and lower consumption. Both sites are powered by two hydroelectric power plants owned by Geogreen, a RadiciGroup partner and energy supplier. The share of energy consumption from renewable sources and reduced environmental impact (natural gas) sources  is constantly increasing.

The energy issue has always been a priority for Radici Yarn, whose products serve numerous sectors, including automotive, clothing and furnishings.

"Already at the beginning of the 1990s, Radici Yarn started investing in cogeneration, the simultaneous production of electricity and steam,” pointed out Laura Ravasio, energy manager of Radici Yarn SpA. “We have recently started up an advanced trigeneration plant – a highly efficient system that produces not only electricity and steam, but also chilled water for our production processes. One of the first results recorded in 2021 was a 30% reduction in water consumption. Thus, ISO 50001 certification seemed like the next logical step to take in formalizing a long-term approach to energy.”

The ISO 50001 certification, which is voluntary and valid for a period of three years, was added to the ISO 14001 Environmental and ISO 9001 Quality Management system certifications previously achieved by Radici Yarn.

Source:

RadiciGroup

20.12.2021

Kelheim Fibres: Severe Impact of Natural Gas Price Increases

Over the past 14 days, the wholesale cost of natural gas in Germany has risen by more than 50%. This increase presents an extraordinary challenge for industry, and there is no sign of support or intervention from the Government. Indeed, recent statements are destined to provoke a worsening of the situation.

Kelheim Fibres is entirely dependent on natural gas for the generation of electrical energy and steam and has no viable short-term alternatives. In addition, the raw materials used by the company often consume high levels of energy in their production and are also increasing significantly in cost. These increases in cost jeopardise the future of the business if they cannot be passed on though the supply chain.

Kelheim Fibres is calling on the Government of Germany to take immediate steps to mitigate the impact of the cost increases for natural gas and is committed to work to implement alternative sources of energy in the medium term.

Over the past 14 days, the wholesale cost of natural gas in Germany has risen by more than 50%. This increase presents an extraordinary challenge for industry, and there is no sign of support or intervention from the Government. Indeed, recent statements are destined to provoke a worsening of the situation.

Kelheim Fibres is entirely dependent on natural gas for the generation of electrical energy and steam and has no viable short-term alternatives. In addition, the raw materials used by the company often consume high levels of energy in their production and are also increasing significantly in cost. These increases in cost jeopardise the future of the business if they cannot be passed on though the supply chain.

Kelheim Fibres is calling on the Government of Germany to take immediate steps to mitigate the impact of the cost increases for natural gas and is committed to work to implement alternative sources of energy in the medium term.

In parallel, the disruption to global logistic networks that has been seen throughout 2021 is now expected to continue throughout 2022. Massive increases in shipping rates – in some cases in excess of 80% – are being imposed without notice and with no opportunity for negotiation. These costs must also be passed on though the supply chain if businesses are to remain viable.

To address these issues, Kelheim Fibres is implementing the following measures with immediate effect:

  • The increased cost of energy and freight will be passed on in prices to customers at the soonest opportunity;
  • If necessary, changes or adjustments to existing agreements will be negotiated to reflect the increased cost levels;
  • If the necessary increase in fibre prices cannot be secured, cuts to production will be implemented with the objective of minimising losses until the cost increases can be mitigated.

As the drivers for the increases in natural gas prices appear to be temporary in nature, we will maintain any price adjustments under review and pass on any relief to customers.

Craig Barker, CEO of Kelheim Fibres, describes the current situation as critical. “The cost increases we are facing are unprecedented and call for swift and decisive action. We are determined to take the necessary steps to preserve the future of our business and provide security of supply for our customers. At the same time, we are relying on the support of our customers to help us conquer the challenges our business is facing.”

Source:

Kelheim Fibres GmbH

25.10.2021

TMAS members showcase sustainable finishing technologies

Members of TMAS – the Swedish textile machinery association – are proving instrumental in pioneering new sustainable processes for the dyeing, finishing and decoration of textiles.

The wasteful processes involved in these manufacturing stages are only one component in the development of viable circular supply chains for textiles that are now being established in Sweden.

At the recent Conference on Sustainable Finishing of Textiles, held across three separate afternoons on September 30th, October 1st and October 7th, delegates heard that Sweden will introduce extended producer responsibility (EPR) for waste textiles and clothing at the beginning of 2022, ahead of the adoption of a similar European Union-wide EPR system in 2025.

New fibers
Swedish companies are also active in the development of new fibers derived from waste clothing, building on the country’s legacy leadership in pulp and paper production.

Members of TMAS – the Swedish textile machinery association – are proving instrumental in pioneering new sustainable processes for the dyeing, finishing and decoration of textiles.

The wasteful processes involved in these manufacturing stages are only one component in the development of viable circular supply chains for textiles that are now being established in Sweden.

At the recent Conference on Sustainable Finishing of Textiles, held across three separate afternoons on September 30th, October 1st and October 7th, delegates heard that Sweden will introduce extended producer responsibility (EPR) for waste textiles and clothing at the beginning of 2022, ahead of the adoption of a similar European Union-wide EPR system in 2025.

New fibers
Swedish companies are also active in the development of new fibers derived from waste clothing, building on the country’s legacy leadership in pulp and paper production.

At the Sustainable Finishing of Textiles Conference, however, it was said that all of the environmental gains made by such sustainable new fibers can potentially be cancelled out in the further processing they are subjected to – and especially in resource-intensive conventional dyeing, finishing and decoration.

TMAS members Baldwin Technology and Coloreel have both developed solutions to address this issue.

TexCoat G4
During the conference, Baldwin’s VP of Global Business Development Rick Stanford explained that his company’s TexCoat G4 non-contact spray technology significantly reduces water, chemistry and energy consumption in the finishing process. It consistently and uniformly sprays chemistry across a fabric surface and applies it only where needed, on one or both sides.

Instant coloring
Coloreel’s CEO Mattias Nordin outlined the benefits of his company’s technology which enables the high-quality and instant coloring of a textile thread on-demand and can be paired with any existing embroidery machine without modification. This enables unique effects like shades and gradient to be achieved in an embroidery for the first time.

(c) Marchi & Fildi Group
19.10.2021

Marchi & Fildi Group: Positive balance for 10 years of the photovoltaic installation

10 years after the installation of the photovoltaic plant in the production units in the Biellese region, the Marchi & Fildi Group takes stock of the operation and publishes the data on energy produced, consumed, and fed back into the grid.

The photovoltaic plant owned by the Group is made up of 11,385 modules divided between the three facilities in Biella (Production), Cerrione (Dyeing mill) and Verrone (Logistics), which in total cover a surface of 16,515 sq.m.

The balance to be drawn from these 10 years is a positive one: in total 22,974,828 kWh have been produced, of which 7,292,027 kWh have been used in company activities, with a saving in energy costs of approximately €1m over 10 years.  

The energy kWh produced and not used by the company was fed back into the grid and corresponds to the average annual consumption of around 4630 families.*

10 years after the installation of the photovoltaic plant in the production units in the Biellese region, the Marchi & Fildi Group takes stock of the operation and publishes the data on energy produced, consumed, and fed back into the grid.

The photovoltaic plant owned by the Group is made up of 11,385 modules divided between the three facilities in Biella (Production), Cerrione (Dyeing mill) and Verrone (Logistics), which in total cover a surface of 16,515 sq.m.

The balance to be drawn from these 10 years is a positive one: in total 22,974,828 kWh have been produced, of which 7,292,027 kWh have been used in company activities, with a saving in energy costs of approximately €1m over 10 years.  

The energy kWh produced and not used by the company was fed back into the grid and corresponds to the average annual consumption of around 4630 families.*

The Marchi & Fildi Group has always been committed to rationalising electric energy consumption with the aim of contributing towards an eco-sustainable development without compromising the rate of production and the ability to grow. In addition to producing its own electric energy, over the years, the company has also achieved an increasing number of Energy Efficiency Titles (TEE), otherwise known as white certificates. In 2021, 138 TEEs have been awarded as a result of such interventions as the introduction of LED lighting and the optimisation of the production processes which, while still as efficient as before, permit the company to reduce the electric energy consumption of the machinery.

*In the meter class for the range of 3kW to 4.5 kW, the average consumption for residential properties is the equivalent of 3,382 kWh (source: Arera Relazione annual state of services for the year 2020). The calculations are the results of an internal study conducted by the Marchi & Fildi Group.

Source:

Marchi & Fildi Group

(c) Trützschler
Ralf Helbig, R & D Engineer for Air Technology (left) and Christian Freitag, Head of Air Technology at Trützschler (right).
27.09.2021

Trützschler: TC 19i sets the benchmark for energy-efficient carding

Global energy consumption reached a record high in 2019, following a 40-year trend for rapidly increasing energy demand that was only halted by the Coronavirus pandemic. It’s estimated that more than 80 % of this energy is still generated from fossil fuels that produce CO2 emissions and contribute to climate change. Renewable energy offers a solution to this problem, but saving energy whenever possible is an even more effective approach. That are the motives for Trützschler to develop the intelligent card TC 19i, which sets a new benchmark for energy-efficient carding.

The intelligent Trützschler card TC 19i features the unique T-GO gap optimizer, which continuously and automatically monitors and adjusts the carding gap to an ideal position during production. Innovative drive- and air technology further reduce energy consumption of the TC 19i.

Global energy consumption reached a record high in 2019, following a 40-year trend for rapidly increasing energy demand that was only halted by the Coronavirus pandemic. It’s estimated that more than 80 % of this energy is still generated from fossil fuels that produce CO2 emissions and contribute to climate change. Renewable energy offers a solution to this problem, but saving energy whenever possible is an even more effective approach. That are the motives for Trützschler to develop the intelligent card TC 19i, which sets a new benchmark for energy-efficient carding.

The intelligent Trützschler card TC 19i features the unique T-GO gap optimizer, which continuously and automatically monitors and adjusts the carding gap to an ideal position during production. Innovative drive- and air technology further reduce energy consumption of the TC 19i.

The most energy-intensive elements in a carding machine are the drive, the dust suction process and the compressed air system. Permanent suction is needed to remove dust and cotton waste in key places. Smart optimization of these areas has made the intelligent card TC 19i a benchmark for energy efficiency in carding because it uses less electricity, lower suction pressure and less compressed air than other machines, while providing the highest production rates currently available on the market.

In a head-to-head comparison between the TC 19i and a high-performance card from a competitor, the TC 19i consumed at least 10 % less energy per kilogram of material produced when manufacturing rotor yarn from a cotton and cotton waste mix. The compared energy values included electric power consumption and energy required for suction and compressed air and were measured in both cards at the same production of 180 kg/h. A 10 % reduction in energy per kilogram of sliver produced, as proven here by TC 19i, can have a significant impact on a spinning mill’s profitability; annual savings worth a five-digit sum are frequently possible, depending on factors such as the output of the mill. The customer trial also showed TC 19i’s excellent reliability at the customer’s usual production rate of 180 kg/h, and even demonstrated stable performance at 300 kg/h in the same application. Because the TC 19i with T-GO gap optimizer realizes maximum production rates at no compromise in quality, manufacturers can reduce their energy demand and investment costs drastically: Less machines are needed to achieve the desired output, and energy consumption per production is reduced.

This improvement was made possible by a long and sometimes challenging innovation process involving mathematical models of air flows, as well as flow simulations and prototypes. By combining the final flowoptimized parts in the TC 19i, Trützschler’s experts have developed a card that operates with suction pressure of just -740 Pa and with an air requirement of only 4200 m³/h. This translates into 40 % less energy demand for air technology compared to the latest high-performance competitor model.

More information:
Trützschler carding technology
Source:

Trützschler

(c) Notus Composites. Notus NE7 low temperature curing prepreg
15.09.2021

Notus Composites Launches New Low Temperature Curing NE7 Epoxy Prepreg

Notus Composites (UAE), the award-winning producer of epoxy prepreg materials, announces the latest addition to its high-performance epoxy range with the launch of its new NE7 low temperature curing prepreg system. The Notus NE7 formulation allows composite manufacturers to cure components at temperatures as low as 70˚C, reducing energy consumption and enabling more cost-effective tooling options.

Notus Composites has developed the new NE7 prepreg systems for applications across the Marine, Architecture, Industrial and Wind Energy sectors, with the novel low temperature curing chemistry delivery significant cost benefits. Existing prepreg manufacturers can now use more cost-effective composite tooling, with new prepreg users able to switch easily from existing infusion or wet laminating processes without creating expensive new high temperature tooling.

Notus Composites (UAE), the award-winning producer of epoxy prepreg materials, announces the latest addition to its high-performance epoxy range with the launch of its new NE7 low temperature curing prepreg system. The Notus NE7 formulation allows composite manufacturers to cure components at temperatures as low as 70˚C, reducing energy consumption and enabling more cost-effective tooling options.

Notus Composites has developed the new NE7 prepreg systems for applications across the Marine, Architecture, Industrial and Wind Energy sectors, with the novel low temperature curing chemistry delivery significant cost benefits. Existing prepreg manufacturers can now use more cost-effective composite tooling, with new prepreg users able to switch easily from existing infusion or wet laminating processes without creating expensive new high temperature tooling.

NE7 prepregs can be cured at temperatures as low as 70˚C, with the standard cure cycle being 12 hours at 70˚C, matching the typical cycle time for an infused part with a component Tg of 85˚C. NE7 materials have a good outlife of 30 days at 20˚C and are available in all prepreg and Notus single sided N1-Preg formats with unidirectional, multiaxial, and woven reinforcements. NE7 can also be supplied as a resin film.

Notus has recently supplied NE7 low temperature prepregs to Dubai based Aeolos Composites for the production of their new Aeolos P30 racing yacht. The P30 is a futuristic new craft created by top German sailor and designer, Hans Genthe, with a super light carbon fibre construction and large sail area that promises spectacular on the water performance for a thirty foot yacht. Notus delivered a range NE7 prepregs for the build, including woven, multiaxial, and unidirectional carbon fibre reinforcements as well as adhesive films for core bonding.

More information:
Notus prepreg material
Source:

Notus Composites.

(c) INDA, the Association of the Nonwoven Fabrics Industry
07.09.2021

INDA Announces the 2021 RISE® Innovation Award Finalists

  • Innovations in Protection, Efficiency and Engineered Fabrics

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the prestigious RISE® Innovation Award during the 11th edition of the Research, Innovation & Science for Engineered Fabrics Conference, (RISE®) to be held virtually September 28-30, 2021.  The award recognizes novel innovations in the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics. These three finalists will present their innovative material science solutions as they compete for the RISE® Innovation Award.

  • Innovations in Protection, Efficiency and Engineered Fabrics

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the prestigious RISE® Innovation Award during the 11th edition of the Research, Innovation & Science for Engineered Fabrics Conference, (RISE®) to be held virtually September 28-30, 2021.  The award recognizes novel innovations in the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics. These three finalists will present their innovative material science solutions as they compete for the RISE® Innovation Award.

Canopy Respirator
Canopy is an innovative respirator that is fully mechanical, non-electrostatic, with a filter designed for superior breathability while offering the wearer facial transparency. The breakthrough respirator features 5.5mm water column resistance at 85 liters (3 cubic feet) per minute, 2-way filtration, and a pleated filter that contains over 500 square centimeters of surface area. The patented Canopy respirator resists fluids, and eliminates fogging of eyeglasses.  

Evalith® 1000 Series
Johns Manville’s innovative Alpha Binder is a formaldehyde-free, high bio-carbon content, toxic-free binder formulation ideal for carpet mat applications. Alpha Binder eliminates monomer and polymer synthesis, uses a bio-degradable catalyst, and requires 70% less water in manufacturing. The resulting glass mats made of Alpha Binder are named “Evalith 1000” and reduces energy consumption during manufacturing by over 70% compared to alternative petroleum-based binders. Evalith 1000 was commercialized in North America in 2020.

Fiber Coated, Heat Sealable, Breathable, Hybrid Membrane, Fabric Protection
TiGUARD protective fabric is a construction of monolithic or hybrid imperious/moisture eliminating membranes with a surface covered with micro-fiber. This nonwoven product is a multi-layer all polyester fabric specifically for chemical and microbial protective fabrics, products, and garments. It is constructed of compatible heat seal-able materials which lend themselves to high-speed heat seal-able production and ultimately automated manufacture of garments without sewing. It is a combination of a densely flocked polyester fiber surface on polyester membrane supported by polyester scrim.
Virtual RISE™ conference attendees include technology scouts and product developers in the nonwoven/engineered fabrics industry seeking new developments to advance their businesses. These attendees will electronically vote for the recipient of the 2021 RISE® Innovation Award, on Wed. Sept. 29th. The winner will be announced Thurs., Sept. 30th.

The conference program will cover timely and relevant industry topics including: Material Science Developments for Sustainable Nonwovens; Increasing Circularity in Nonwovens; Market Intelligence & Economic Insights; Promising Innovations in Nonwovens; Process Innovations in Nonwovens; Material Innovations in Nonwovens;  the full program can be viewed on the link: https://www.riseconf.net/conference.php

More information:
INDA nonwovens
Source:

INDA, the Association of the Nonwoven Fabrics Industry

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists (c) JEC Group
17.05.2021

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

Sicomin, the formulator and supplier of the leading range of GreenPoxy bio-based epoxy resin systems, supplied its DNV GL approved InfuGreen 810 resin system that was used to infuse the Green Nacelle’s main structural sandwich panels, as well as providing intumescent FR gelcoats, bio-based laminating resins and UV resistant clear coatings for the groundbreaking new nacelle.  Materials, as well as on-site technical support, were delivered by Sicomin’s German distributor TIME OUT Composites.

The winners of the awards will be announced during JEC Connect which will be held on the 1st and 2nd June 2021.

Source:

100% Marketing