From the Sector

Reset
15 results
(c) POLARYSE
18.11.2022

Grand Largue Composites and Sicomin enable flax-fibre-built Racing Yacht

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Crosscall's cockpit was designed to be effectively non-structural, with the mainsheet, which can generate huge shock loads, supported separately. This would allow the cockpit to be made from a hybrid biaxial fabric comprising 50% flax fibres. Other parts of the boat that incorporate flax fibre include the tunnel, the engine cover, the ballast tanks and the cap. The rest of the boat is reinforced with 100% glass-fibre fabrics.

To help it realise this ambitious design, GLC, an infusion specialist, turned to its long-time material supplier, Sicomin. The hull was moulded and infused in one piece and the deck – including the hybrid flax-fibre cockpit – was also infused as a single part. The internal structure was then laminated into the hull by hand before the hull and deck were finally bonded together.

The infusion resin selected was Sicomin’s SR 1710, a high-modulus structural epoxy. Designed specifically for use in infusion and injection processes, it has exceptionally low viscosity and its low-reactivity hardener makes it suitable for the production of large parts. Composites components made from SR 1710 possess high interlaminar shear-strength and the resin retains its mechanical properties in wet environments.

Sicomin’s low-toxicity SR 8200 was used to laminate the internal structures onto the skin of the hull. Ideal for hand laminating, this system includes a choice of hardeners with a wide range of reactivities, which makes it equally suitable for making large or small parts. The hull and deck were joined together with Sicomin’s Isobond SR 7100, which demonstrates high fatigue strength and is very resistant to microcracking.

An epoxy bonding primer – called Undercoat EP 215 HB+ and supplied by Sicomin’s sister company, Map Yachting – was applied to the moulds first to make demoulding easier. It also serves as an undercoat in the polyurethane exterior paint system that is used instead of gelcoat to protect the epoxy hull from UV damage.

Since the launch of Crosscall, GLC has started building a second Lift V2 Class40 and a third one is now planned, both for which Sicomin will supply the materials.

Source:

Sicomin / 100% Marketing

Natural fibers combined with bio-derived epoxy resins provide sustainable options for Industrial markets (c) Hexcel
Hexcel HexPly® Nature Range
11.05.2022

Hexcel Launches HexPly® Nature Range

  • Natural fibers combined with bio-derived epoxy resins provide sustainable options for Industrial markets

Hexcel has developed a new product range that combines Hexcel resin systems made with bio-derived resin content with natural fiber reinforcements to create material solutions for Automotive, Winter Sports, Marine and Wind Energy applications.

HexPly Nature Range includes proven resins such as HexPly M49, M78.1-LT and M79 but with bio-derived epoxy resin content. The excellent resin characteristics remain unchanged in the new Nature Range products, maintaining high mechanical performance and consistent processing properties.
In addition, the HexPly Nature Range provides prepreg options with natural fiber reinforcements that can be seamlessly integrated into existing production processes.

Hexcel worked with TÜV Austria to provide independent, high-quality measurement and assessment of the bio-content of HexPly Nature Range products. TÜV Austria’s OK biobased certification uses a standardized measurement of the biobased carbon content enabling transparency and easy like-for-like comparison between products.

  • Natural fibers combined with bio-derived epoxy resins provide sustainable options for Industrial markets

Hexcel has developed a new product range that combines Hexcel resin systems made with bio-derived resin content with natural fiber reinforcements to create material solutions for Automotive, Winter Sports, Marine and Wind Energy applications.

HexPly Nature Range includes proven resins such as HexPly M49, M78.1-LT and M79 but with bio-derived epoxy resin content. The excellent resin characteristics remain unchanged in the new Nature Range products, maintaining high mechanical performance and consistent processing properties.
In addition, the HexPly Nature Range provides prepreg options with natural fiber reinforcements that can be seamlessly integrated into existing production processes.

Hexcel worked with TÜV Austria to provide independent, high-quality measurement and assessment of the bio-content of HexPly Nature Range products. TÜV Austria’s OK biobased certification uses a standardized measurement of the biobased carbon content enabling transparency and easy like-for-like comparison between products.

At JEC World in Paris on May 3-5, Hexcel presented an alpine ski produced by the Tecnica Group Ski Excellence Center which produces skis for Blizzard and for Nordica using HexPly Nature Range M78.1-LT UD flax fiber prepreg. In addition to providing a bio-based material solution, the natural fiber-reinforced prepreg also offers the potential to improve impact performance and vibration damping in the ski.

Claude Despierres, VP of Sales and Marketing – Industrial at Hexcel, said, “Our new HexPly Nature Range forms an important part of providing customers with biobased, TÜV-certified material options based on our established prepreg resin systems. Marine, winter sports, wind energy and automotive manufacturers can now have the choice to switch from petroleum-based material solutions to Hexcel HexPly Nature Range with no compromise in performance or process efficiency.”

More information:
Hexcel’s HexPly® JEC World
Source:

Hexcel

(c) Hexcel Corporation
29.04.2022

Hexcel Composite Solutions for the Automotive, Marine, Wind Energy and Recreation Markets at JEC World 2022

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

G-Vent Technology for Marine Structures
Hexcel has developed a new technology for out-of-autoclave (OoA) processing that delivers a game-changing reduction in process time and cost for marine manufacturers without compromising mechanical performance. Hexcel has leveraged its experience in aerospace and wind energy to develop its new G-Vent technology for OoA processing of highly loaded, thick section marine structures such as masts, foils, and wind-assisted ship propulsion (WASP) components. A full range of Hexcel marine prepregs are now available with integrated G-Vent technology, reducing the requirement for debulking steps and ensuring extremely low porosity (<1%) regardless of the laminate thickness. Leading marine non-destructive testing specialists Q.I. Composites recently confirmed that the thick section G-Vent panels they had evaluated had void contents and laminate quality in line with state-of-the-art autoclaved prepreg components. Visitors to the Hexcel stand will see a unique 400mm carbon cube cured in a single stage using 695 layers of HexPly M79 carbon fiber UD600 prepreg with G-Vent technology.

New HexPly® Nature Range Sustainable Prepregs
HexPly® Nature Range prepregs feature proven resins such as HexPly M49, M78 and M79 with bio-derived epoxy resin content. Created for use in all industrial markets, HexPly Nature Range materials can be seamlessly integrated into existing production processes, maintaining consistent mechanical performance and processing properties. A dedicated sustainability corner of the Hexcel stand will detail Nature Range products optimized for automotive, marine, wind energy and winter sport applications. The display will include an alpine ski produced by leading manufacturer Tecnica Group Ski Excellence Center which produces skis for Blizzard and for Nordica using HexPly Nature M78.1 UD flax prepreg material. In addition to the reduced environmental impact of the sustainably grown reinforcement, the flax fiber laminates also improve impact resistance and vibration damping in the ski.

HexPly® XF Surface Technology for Improved Part Surface Finish Quality
HexPly XF is a lightweight, semi-preg material that replaces traditional in-mold gel coat. It eliminates time-consuming refinishing work typically required to obtain a paint-ready surface and produces lighter, more consistent parts with shorter cycle times and a cleaner working environment. Visitors to the stand will see a composite panel illustrating a high-quality painted surface enabled with XF technology in a diverse range of industrial applications such as super yacht roof parts, Class A surface automotive panels, and both prepreg and infused wind turbine blades.

HexPly® M49 Prepreg for Automotive Visual Carbon Parts
HexPly M49 is easy to process and is especially suitable for visual carbon fiber-look applications such as the Brabus hood scoop on display on the Hexcel stand at JEC.

HexPly® Prepregs and HiMax® Reinforcements for Performance Marine Structures
Using a scale model of a Gunboat 68 performance sailing catamaran, Hexcel will illustrate how its HexPly and HiMax materials provide manufacturers with a complete set of lightweight composite solutions for high-performance marine structures. HexPly prepreg was selected for critical structural parts of the Gunboat 68 and provides very high mechanical performance including high dry and wet Tg.

Heavyweight HiMax reinforcements offer high deposition rates and remain easy to handle after cutting, making them highly suitable for industrial applications. In combination with a lightweight PrimeTex® woven fabric, the package of carbon fiber HiMax materials developed for the Gunboat 68 enabled consistent resin flow during infusion with reduced surface print-through.

Hexcel Fibers and Reinforcements for Lightweight Sporting Equipment
Sporting equipment manufacturers rely on Hexcel composite materials to deliver the ultimate performance at the lowest possible weight. Hexcel will exhibit a number of the latest high-performance sporting equipment applications such as a Bauer hockey stick featuring PrimeTex 98 gsm AS4C 3K fabric and a Corima tri-spoke cycling wheel made with lightweight Hexcel carbon fiber UD tape. Hexcel will also demonstrate how its HexTow® carbon fibers are used in key leisure and marine applications by displaying an AEROrazr solid carbon rigging component manufactured by spar and rigging manufacturer Future Fibres for the 36th America’s Cup.

 

Source:

Hexcel Corporation / 100% Marketing

(c) Dubai Museum of the Future
02.03.2022

Sicomin supports Dubai's Museum of the Future with fire-retardant epoxy solutions

Sicomin supported the build of Dubai’s Museum of the Future and supplied its bio-based intumescent gelcoat as well as fire-retardant laminating resins for the production of over 200 double curved panels making up the interior of the Museum’s entrance lobby.

The Museum of the Future, a new addition to Dubai’s skyline by architects Killa Design, engineers Buro Happold and contractor BAM International, opened last week on 22nd February 2022 and features a large percentage of composite materials in the interior construction.

Advanced Fiberglass Industries (AFI) manufactured 230 double curved interior panels, a double-helix DNA structure staircase that scales the full seven levels of the museum and 228 GRP oval shaped light structures for the museums car parking area.

Sicomin supported the build of Dubai’s Museum of the Future and supplied its bio-based intumescent gelcoat as well as fire-retardant laminating resins for the production of over 200 double curved panels making up the interior of the Museum’s entrance lobby.

The Museum of the Future, a new addition to Dubai’s skyline by architects Killa Design, engineers Buro Happold and contractor BAM International, opened last week on 22nd February 2022 and features a large percentage of composite materials in the interior construction.

Advanced Fiberglass Industries (AFI) manufactured 230 double curved interior panels, a double-helix DNA structure staircase that scales the full seven levels of the museum and 228 GRP oval shaped light structures for the museums car parking area.

Adaptable mould technology from Danish company Adapa, was introduced by Advanced Fiberglass Industries, Dubai (AFI) to ensure that the interior panels could be delivered in line with the project schedule. As well as allowing each panel shape to be rapidly configured without the machining of traditional moulds, the adaptive mould technology massively reduced waste generated in the moulding process, contributing to the building’s low carbon LEED platinum credentials.

With a challenging structural and fire safety specification defined, Sicomin’s bio-based SGi128 intumescent gelcoat and SR1122 fire retardant laminating epoxy were chosen for the panels, an additional advantage being that in addition to high fire properties, SGi 128 is also formulated with over 30% carbon from renewable sources, reducing the final carbon footprint significantly.  

Sicomin worked alongside the panel manufacturer, providing technical support for the fire test panels and the initial Adapa moulding trials.

Source:

Sicomin / 100% Marketing

 Hexcel’s innovative surface technology yields parts with paint-ready surfaces for builder of luxury yachts (c) Hexcel
Sunseeker 90 Ocean Luxury Yacht
26.01.2022

Hexcel Selected for Sunseeker 90 Ocean Luxury Yacht

  • Hexcel HexPly® XF Selected for High-Quality, Paint-Ready Parts for Sunseeker 90 Ocean Luxury Yacht
  • Hexcel’s innovative surface technology yields parts with paint-ready surfaces for builder of luxury yachts

Yacht builder Sunseeker has chosen Hexcel’s HexPly® XF surface technology to produce prepreg parts with high-quality, paint-ready surfaces quickly and efficiently for its 90 Ocean luxury yacht, one of its newest models.

The lightweight composite hardtop for the Sunseeker 90 Ocean yacht is manufactured from a combination of HexPly® XF and Hexcel's HexPly® SuperFIT® semi-preg. The hardtop is lighter in weight than versions made using resin-infusion processes, and it de-molds with a pinhole-free surface that needs minimal preparation to be ready for paint. Sunseeker has recorded an overall reduction in process time of around 30%, saving three days of manufacturing time per hardtop.

  • Hexcel HexPly® XF Selected for High-Quality, Paint-Ready Parts for Sunseeker 90 Ocean Luxury Yacht
  • Hexcel’s innovative surface technology yields parts with paint-ready surfaces for builder of luxury yachts

Yacht builder Sunseeker has chosen Hexcel’s HexPly® XF surface technology to produce prepreg parts with high-quality, paint-ready surfaces quickly and efficiently for its 90 Ocean luxury yacht, one of its newest models.

The lightweight composite hardtop for the Sunseeker 90 Ocean yacht is manufactured from a combination of HexPly® XF and Hexcel's HexPly® SuperFIT® semi-preg. The hardtop is lighter in weight than versions made using resin-infusion processes, and it de-molds with a pinhole-free surface that needs minimal preparation to be ready for paint. Sunseeker has recorded an overall reduction in process time of around 30%, saving three days of manufacturing time per hardtop.

The hardtop provides shade and protection for the yacht’s uppermost deck space. Its reduced weight helps to ensure the stability of the vessel, and the paint-ready finish with HexPly XF provides Sunseeker with more options for customizing its color to the individual needs of its clients.
 
HexPly XF is a lightweight, non-woven semi-preg that eliminates the need to use a traditional in-mold gel coat. The innovative surface technology significantly reduces the costly and time-consuming refinishing work typically required to impart a paint-ready finish to prepreg or semi-preg parts, and yields lightweight, consistent components in short cycle times.

Working with Sunseeker, Hexcel developed a material format, a laminate ply sequence, and a production process that satisfied the structural requirements for the hardtop and enabled the yacht builder’s production team to lay up and cure the part in a single shot – slashing cycle times.

Hexcel supplies Sunseeker with a HexPly XF product that comprises both the surface layer and the first structural reinforcement ply, eliminating the need for a cosmetic barrier coat. Neither the HexPly XF surface layer nor the following layers of HexPly SuperFIT require time-consuming debulking steps – significantly reducing lay-up time – and both are based on Hexcel's rapid-curing M79 epoxy resin system. Adhesive resin films are not needed to bond the hardtop’s foam core, as the resin content of the SuperFIT plies has been adjusted to further reduce overall process time.

Once de-molded, the cured hardtops are inspected before they are passed to Sunseeker’s finishing and painting technicians for final preparation and painting. The HexPly XF resin surface allows the yacht builder’s quality technicians to inspect the laminate below quickly and easily, ensuring the quality and consistency of the structural reinforcement plies.

“Composite materials that improve our production processes, as well as great technical support, are what makes working with Hexcel such a success story," said Stuart Vaughan-Jones, Composite Development Manager, Sunseeker. "With the switch from gel coat and resin infusion to HexPly XF and SuperFIT in the new hardtops, we are now building lighter, more consistent parts, more quickly than before, with a higher quality surface finish. XF really has ticked all the boxes.”  

Garth Thomas, Account Manager – Marine, Hexcel, said: "With the HexPly XF surface technology now well established, XF will soon be used in other large moldings where minimizing weight is critical, as well as additional hardtops across the Sunseeker model range."

08.11.2021

Composites Evolution showcased prepregs and new thermoplastic unidirectional tapes

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution has a family of specialist prepregs for various applications, including Evopreg® EPC epoxy component prepregs which are a range of pre-impregnated fabrics suitable for moulding into high-performance, lightweight, structural components; Evopreg® EPT epoxy tooling prepregs which have been designed to help composite tooling manufacturers improve the flexibility and efficiency of their tooling manufacturing processes; and Evopreg® PFC fire-retardant prepregs a 100% bio-derived alternative to phenolics for applications where fire performance is a critical requirement.

Evopreg® ampliTex™ combines Composite Evolution’s high-performance Evopreg® epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

Composites Evolution launched their new range of Evopreg® PA Thermoplastic Tapes at Advanced Engineering; these are manufactured from polyamide-6 (PA6) polymer with unidirectional carbon fibre and are suitable for automated tape laying, winding and compression moulding into high-performance, lightweight components.

Source:

Composites Evolution Ltd

powerribs with inset bonnet (c) Composites Evolution
04.08.2021

Composites Evolution: New range of flax-epoxy prepreg materials

Composites Evolution Ltd has teamed up with leading natural fibre reinforcement specialists Bcomp to launch a new range of flax-epoxy prepreg materials, designed to offer enhanced sustainability without compromising on performance.

Evopreg ampliTex™ prepregs combine Composites Evolution’s high-performance Evopreg epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

To reach the full performance of natural fibres, Evopreg ampliTex™ prepregs have been tailored to be compatible with Bcomp’s powerRibs™ reinforcement grid, enabling the same stiffness and weight as thin-walled monolithic carbon fibre parts while decreasing the CO2 footprint by 85% and improving safety thanks to a blunt braking behaviour without dangerous debris or sharp edges.

Composites Evolution Ltd has teamed up with leading natural fibre reinforcement specialists Bcomp to launch a new range of flax-epoxy prepreg materials, designed to offer enhanced sustainability without compromising on performance.

Evopreg ampliTex™ prepregs combine Composites Evolution’s high-performance Evopreg epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

To reach the full performance of natural fibres, Evopreg ampliTex™ prepregs have been tailored to be compatible with Bcomp’s powerRibs™ reinforcement grid, enabling the same stiffness and weight as thin-walled monolithic carbon fibre parts while decreasing the CO2 footprint by 85% and improving safety thanks to a blunt braking behaviour without dangerous debris or sharp edges.

Composites Evolution’s Sales & Marketing Director, Ben Hargreaves, explains further.
“Sustainability is an increasingly important factor for many of our customers - particularly those involved in motorsports and high-performance automotive applications. As you’d expect in these sectors though, sustainability can’t come at the expense of performance the two must go hand-in-hand. This is something that other prepreggers can struggle with, as natural fibres behave very differently to carbon or glass, for example.”

Customers would be able to understand the strengths and weaknesses of natural fibre composites, and to show where and how they can be adopted without the need for significant changes to existing composite component production processes.

One such customer is Retrac Group, whose composites division is one of the UK’s most experienced composites engineering companies across motorsports, automotive and aerospace. It recently used Evopreg ampliTex™ + powerRibs™ to produce a demonstrator bonnet panel for a race-bred supercar. Project Manager Alan Purves explains.


“We’re seeing a growing interest in flax fibre composites, particularly in the motorsports and niche vehicle sectors. It is therefore essential that we have developed an in-depth understanding of the processing requirements and performance capabilities of these materials, and are ready to respond to our customers' requirements. Being able to tap into the combined expertise and experience of both Composites Evolution and Bcomp is proving invaluable.”

Source:

Composites Evolution

20.07.2021

Hexcel: Speeding up new Product Development Cycles for Rassini

Hexcel, a global leader in advanced composites technologies, confirms that its HexPly® M901 prepreg system has been selected by Rassini, a Mexico-based technology leader in composite vehicle suspension systems, to speed up prototype and new product development cycles, reducing overall time to market with an easy to process material solution that enables effective early-stage design screening and cost-effective production.  

As a specialist in the mass production of composite helper leaf springs for various leading OEMs, Rassini continuously develops innovative new suspension component designs. Due to cost and timing, however, these new products cannot easily be prototyped using conventional high-pressure resin transfer molding (HP-RTM) technology.

Hexcel, a global leader in advanced composites technologies, confirms that its HexPly® M901 prepreg system has been selected by Rassini, a Mexico-based technology leader in composite vehicle suspension systems, to speed up prototype and new product development cycles, reducing overall time to market with an easy to process material solution that enables effective early-stage design screening and cost-effective production.  

As a specialist in the mass production of composite helper leaf springs for various leading OEMs, Rassini continuously develops innovative new suspension component designs. Due to cost and timing, however, these new products cannot easily be prototyped using conventional high-pressure resin transfer molding (HP-RTM) technology.

With more than 15 years of experience in delivering glass fiber prepregs for the serial production of composite leaf springs, Hexcel developed its high-performance HexPly M901 prepreg system specifically for this type of application. HexPly M901 combines the right level of structural performance required with simple processing, providing Rassini with a reliable material solution optimized for rapid development and fine-tuning iterations.

HexPly M901 is a high Tg epoxy resin prepreg system specifically developed for structural components that will be exposed to harsh thermal and environmental conditions.  With short cure cycles of 10 minutes and below producing excellent green, or handling, strength of the composite part for demolding and unidirectional glass fiber aerial weights up to 1,600gsm, HexPly M901 delivers a powerful combination of benefits for suspension component applications.

More information:
Hexcel’s HexPly® Hexcel
Source:

Hexcel Corporation

02.06.2021

Teijin: Tenax™ Carbon Fiber Prepreg Adopted for Next-Generation Aircraft Engine Nacelle

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin is intensively accelerating its development of mid- to downstream applications for aircraft, one of the strategic focuses of its medium-term management plan for 2020-2022. Going forward, Teijin intends to further strengthen its carbon fiber and intermediate material businesses to contribute to increasing global sustainability, aiming to become a company that supports the society of the future.

Source:

Teijin

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists (c) JEC Group
17.05.2021

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

Sicomin, the formulator and supplier of the leading range of GreenPoxy bio-based epoxy resin systems, supplied its DNV GL approved InfuGreen 810 resin system that was used to infuse the Green Nacelle’s main structural sandwich panels, as well as providing intumescent FR gelcoats, bio-based laminating resins and UV resistant clear coatings for the groundbreaking new nacelle.  Materials, as well as on-site technical support, were delivered by Sicomin’s German distributor TIME OUT Composites.

The winners of the awards will be announced during JEC Connect which will be held on the 1st and 2nd June 2021.

Source:

100% Marketing

15.02.2021

Hexcel’s HexPly® XF Surface Technology for Blade Surface Finishing Process

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Easy to handle and supplied in a ready to use roll form, HexPly XF can be quickly applied by hand or with semi-automated layup equipment. It features one self-adhesive, surface finishing side - indicated by a removable protective foil. This side of the prepreg is placed against a release agent treated mold surface. Once the material has been positioned, the lay-up of the blade shell structure can start immediately, and the laminate can be infused. After curing, the blade is de-molded with the manufacturer benefitting from a pinhole-free surface that needs minimal preparation before painting.

HexPly XF material is less than half the weight of a typical gel coat per square meter, reducing the overall weight of the blade. Additionally, the consistent areal weight and thickness of the prepreg film provide a completely uniform surface coating, ensuring blade weight distribution and balance are maintained, which is critical as rotor diameters continue to increase. With no need to handle or mix liquid chemicals as in the gel coat process, HexPly® XF also improves the health and safety working conditions on the shop floor.

The material has a shelf life of six weeks at ambient temperature, which also minimizes cold storage requirements and helps to reduce scrap.

Source:

100% Marketing

Sonntag Fins Switch to Sicomin’s GreenPoxy® 33 Bio Resin (c) Sicomin
Ben vd Steen Flying high
30.11.2020

Sonntag Fins Switch to Sicomin’s GreenPoxy® 33 Bio Resin

Sicomin’s latest marine collaboration with Sonntag Fins sees its industry leading GreenPoxy® 33 bio-based epoxy resin used for custom carbon fibre windsurf fins - combining speed, fatigue performance and sustainability for some of the fastest sailors afloat.

Targeted at windsurf slalom sailors, racers and speed sailors, each Sonntag fin is a custom made product, tailored specifically to the user based on a discussion about riding style, physical size and weight, as well as how the rider likes to load the fin whilst sailing.  This attention to detail and bespoke manufacturing places a huge importance on the performance and consistency of the raw materials used, with all new materials having to be validated in production, on the test rig in the lab, and on the water by the team riders.

Sicomin’s latest marine collaboration with Sonntag Fins sees its industry leading GreenPoxy® 33 bio-based epoxy resin used for custom carbon fibre windsurf fins - combining speed, fatigue performance and sustainability for some of the fastest sailors afloat.

Targeted at windsurf slalom sailors, racers and speed sailors, each Sonntag fin is a custom made product, tailored specifically to the user based on a discussion about riding style, physical size and weight, as well as how the rider likes to load the fin whilst sailing.  This attention to detail and bespoke manufacturing places a huge importance on the performance and consistency of the raw materials used, with all new materials having to be validated in production, on the test rig in the lab, and on the water by the team riders.

With this in mind, Sonntag Fins approached Time Out Composite, Sicomin’s German distributor,  looking for a new resin system that could reduce cycle times and improve manufacturing output.  Bio-based systems were discussed, but the first product used by Sonntag was Sicomin’s SR1280 laminating system which delivered immediate results, enabling shorter cure cycles, and exceeding all of the previous mechanical test targets.

In 2020, Sonntag and Time Out Composite revisited the topic of a more sustainable epoxy resin system. It was the perfect time for Sonntag Fins, with their new unique bright green UV resistant outer finish, to go green on the inside too with Sicomin’s GreenPoxy® 33 resin.

Test fins were produced with the new material performing well in production trials. Pure resin samples were also tested and post-cured at 140 ̊C, with the new GreenPoxy® 33 samples showing significantly higher elongation at maximum resistance, meaning the cured epoxy was less brittle and susceptible to damage should a customer’s fin meet a rock. With mechanical properties improved, Sonntag switched production to GreenPoxy® 33 in August 2020.

Sonntag fins are manufactured in CNC machined aluminium moulds using GreenPoxy® 33 and a bespoke lay-up of woven, stitched biaxial and heat-set unidirectional carbon fibre fabrics in four steps:
• The first step in the moulding process is the application of Sonntag’s unique green in-mould coating.
• Next, the individual fabric plies, cut using precisely machined templates, are placed into the mould and then wet-out with the low viscosity epoxy. With the laminate stack complete, the mould is closed and loaded into a heated press for around 2 hours to consolidate and cure the fin.
• After curing, the demoulded fins are tempered in an oven at 140 ̊C, then only a light sanding is required to create the final surface roughness for optimum flow characteristics in the water.
• Finally, the fins are cut to the required length and the base adapter is molded to the epoxy-carbon blade in a specific mould.
With each fin being optimized for its rider, it is critical that each piece produced will bend and twist in exactly the way it has been designed to do so, providing the rider with exactly the feel and feedback they want for their board and fin. Each Sonntag fin is tested on a unique CNC controlled servo and stepper motor driven test bench that Joerg has developed, building a database of test results that not only ensures the products perform as designed but also validating the consistency of the manufacturing process and raw materials.
“We produce high-performance windsurfing fins that need to accommodate significant loads during sailing. Fins need to combine flexibility with extremely high torsion stiffness that places high interlaminar shear forces on the resin, especially in our softer fins.” commented Joerg Sonntag, MD, Sonntag Fins. “A key requirement for us is a resin that maintains its mechanical properties for many years, and this is where the Sicomin systems deliver”

Sicomin Launches New Bio Systems at JEC World 2020. (c) Sicomin
Sicomin Launches New Bio Systems at JEC World 2020.
17.02.2020

Sicomin Launches New Bio Systems at JEC World 2020.

Sicomin continues to assert itself as the leading formulator and supplier of high-performance, bio-based epoxy resin systems with the launch of new bioresins at JEC World 2020, Hall 6, Booth 43. The group will unveil a variety of products that are each available in industrial quantities for series production within Automotive, Wind Energy and Civil Engineering.

Sicomin continues to assert itself as the leading formulator and supplier of high-performance, bio-based epoxy resin systems with the launch of new bioresins at JEC World 2020, Hall 6, Booth 43. The group will unveil a variety of products that are each available in industrial quantities for series production within Automotive, Wind Energy and Civil Engineering.

Bio Fire Retardant Epoxy Gelcoat for Wind Energy and Infrastructure
Sicomin will showcase SGi 128, an innovative intumescent epoxy gelcoat developed specifically for fire retardant coating applications for critical components found in the Wind Energy and Civil Engineering markets.
SGi 128 Gelcoat is produced with 38% of its carbon content derived from non-oil sources and is a halogen free gelcoat that provides outstanding fire protection for epoxy laminates and extremely low smoke toxicity. Available with both fast and slow hardeners, this easy to apply epoxy system forms a much tougher and waterproof part surface than traditional intumescent coatings. Sicomin’s SGi 128 is available in industrial volumes with short lead times and has been successfully tested to EN 13501 (EUROCLASS B-S1-d0) and ASTM E84 (Class A).

NEW Bio Resin for HP-RTM processing for Automotive
Sicomin’s new bio-resin specifically formulated for HP-RTM processing, SR GreenPoxy® 28, is the sixth product in Sicomin’s renowned GreenPoxy® range. SR GreenPoxy® 28 is a fast cycle, low toxicity, third generation bio-based formulation aimed specifically at the HP-RTM moulding processes used for both high performance Automotive structural parts and aesthetic carbon fibre components. The new formulation has been optimized for fast production cycle times and superior mechanical performance and is a more sustainable alternative to traditional resins providing exceptional performance and quality for high volume programmes.

GreenPoxy® InfuGreen 810 on display with the GREENBOATS Flax 27 Daysailer on the JEC Planets
With very low viscosity at room temperature, InfuGreen 810 has been formulated to support manufacturers seeking bio-based alternatives for producing parts using injection or infusion techniques. Produced with 38% plant-based carbon content, InfuGreen 810 holds the DNV GL certification, providing extra assurance of the product’s quality, efficiency and safety standards. This high-performance epoxy infusion system is demonstrated at JEC World through the display of the GREENBOATS Flax 27 daysailer on the JEC Planets.

More information:
JEC World Sicomin
Source:

100percentmarketing

(c) Chomarat
09.10.2019

Chomarat fabrics at the KraussMaffei booth during K Messe 2019

Chomarat Group’s composite reinforcements will be featured at the KraussMaffei stand during the next K Messe in Düsseldorf. Chomarat has created a glass reinforcement adapted to the mass production of automotive parts, helping to lighten leaf springs by 60% compared to metal.

Automotive: Producing 60% lighter leaf springs for car's underbody
The new leaf springs made of composites are 60% lighter than their pendants made of steel thanks to KraussMaffei process and the involvement of a network of partners, including Chomarat with G-PLY™ glass reinforcement. Their strength can be deliberately increased in sections where it is required and the corrosion resistance offers further added value.

Chomarat Group’s composite reinforcements will be featured at the KraussMaffei stand during the next K Messe in Düsseldorf. Chomarat has created a glass reinforcement adapted to the mass production of automotive parts, helping to lighten leaf springs by 60% compared to metal.

Automotive: Producing 60% lighter leaf springs for car's underbody
The new leaf springs made of composites are 60% lighter than their pendants made of steel thanks to KraussMaffei process and the involvement of a network of partners, including Chomarat with G-PLY™ glass reinforcement. Their strength can be deliberately increased in sections where it is required and the corrosion resistance offers further added value.

“We created the fabrics, when Engenuity developed the component, Huntsman supplied the matrix system made of epoxy resin, Johns Manville supplied the glass fibers, Schmidt & Heinzmann manufactured the preforms, Alpex designed the RTM mold and Hufschmied (Bobingen, Germany) took charge of post-mold processing of the component by milling. KraussMaffei has taken over the project management for Hengrui and coordinates the project with the partners.” Francisco De Oliveira at Chomarat explains.

More information:
CHOMARAT K 2019
Source:

AGENCE APOCOPE

20th anniversary of the JEC Innovation Awards (c) GROUPE JEC - Thierry-Alain TRUONG
07.03.2018

20th anniversary of the JEC Innovation Awards

  • JEC Group pays tribute to the winners at JEC World 2018

The 2018 session of JEC World, the reference trade show organized by JEC Group, is in full swing and the focus is on innovation!
The JEC Innovation Awards ceremony, which took place on the Agora stage on Wednesday, March 7 at 5 pm, opened with a presentation by Yves Rossy, aircraft pilot and inventor of the first jet-powered wingpack. Then the jury revealed the names of the composite champions up for a JEC Innovation Award. Eleven winning innovations were chosen, out of the thirty finalists that had been previously selected from more than 100 applications from all over the world.

  • JEC Group pays tribute to the winners at JEC World 2018

The 2018 session of JEC World, the reference trade show organized by JEC Group, is in full swing and the focus is on innovation!
The JEC Innovation Awards ceremony, which took place on the Agora stage on Wednesday, March 7 at 5 pm, opened with a presentation by Yves Rossy, aircraft pilot and inventor of the first jet-powered wingpack. Then the jury revealed the names of the composite champions up for a JEC Innovation Award. Eleven winning innovations were chosen, out of the thirty finalists that had been previously selected from more than 100 applications from all over the world.

“JEC Group supports innovation. In 1998, it created the first award dedicated to composites, as a way to promote and reward the sector’s champions. Thanks to the work of JEC Group’s teams, the program has become an international benchmark. Each year, we receive more than a hundred applications from all over the world. Selection is now based on criteria like the level of involvement of the innovation’s partners in the value chain, the technical nature of the innovation, or its commercial applications,” explains JEC Group President & CEO Frédérique Mutel.
A new feature this year is that the jury revealed the winners during the ceremony, and the public could choose their favorite innovation before, during, and after the ceremony. So there is still time to vote! Votes are opened until Thursday March 8th, 5pm http://innovationawards.jec-world.events
Did you miss the ceremony?

11 AWARD WINNERS:
AEROSPACE APPLICATION

Winner:
AeroComposit, JSC (Russia) and its partner Solvay (United Kingdom)

  • Infusion technology for an aircraft wing

The use of infusion technology to manufacture primary structural components for an aircraft wing. The technology makes it possible to create extra-long, integrated composite structures with complex aerodynamic shapes.

AEROSPACE PROCESS 
2 tied winners!
Winner: Airbus (Germany) and its partners, BMW Group (Germany), Technical University of Munich (TUM) (Germany), Neue Materialien Bayreuth GmbH (Germany), Werkzeugbau Siegfried Hofmann GmbH (Germany), BASF SE (Germany), Foldcore GmbH (Germany), Neenah Filtration (Germany) and SGL Carbon GmbH (Germany)

  • Complex structural applications for MAI sandwich technology

Cost-effective production of a complex 2.5D structure made of thermoplastic composite sandwich, with very short cycle times: under 5 minutes for aerospace materials and 2.5 minutes for automotive materials.

Winner: M. Torres Diseños Industriales SAU (Spain)
Moldless process to manufacture one-piece parts
A new manufacturing process for oversized one-piece reinforced composite structures, without requiring the use of complete molds.

AUTOMOTIVE APPLICATION
Winner: Ford Werke GmbH (Germany) and its partners, Gestamp (United Kingdom), GRM Consulting (United Kingdom) and University of Warwick (United Kingdom)

  • Lightweight composite automotive suspension part

Structural suspension part made of lightweight composite, using a brand-new patented process for prepreg/SMC/steel overmolding that was designed using a new computer-aided engineering (CAE) technology.

AUTOMOTIVE PROCESS
Winner: Audi AG (Germany) and its partners, Voith Composites GmbH & Co. KG (Germany), Dow Automotive (Switzerland), and Zoltek Corp. (United States)

  • Series production of a rear panel module made of carbon composite

For the first time, the potential of carbon fiber reinforced plastics (CFRP) is used to full advantage in series production with a new rear panel module and cost-effective production technologies.

CONSTRUCTION & INFRASTRUCTURE
Winner: Komatsu Seiren Co., Ltd. (Japan) and its partners, Kanazawa Institute of Technology (Japan) and Nagase ChemteX Corporation (Japan)

  • Cabkoma cable made of CFRTP

Komatsu Seiren has developed a cable made of molded carbon fiber reinforced thermoplastic (CFRTP), using a very cost-effective process that consists in polymerizing a thermoplastic epoxy resin in situ.

MARINE
Winner: Uljanik JSC (Croatia)

  • Composite cargo decks for a vehicle carrier

On the SIEM Cicero, a vehicle carrier with a capacity of 7,000 vehicles, glass-fiber reinforced composites are used for a number of the structures for the cargo decks, thereby considerably reducing the ship’s weight, fuel consumption and CO2 emissions.

RAILWAY
Winner: ELG Carbon Fibre Ltd. (United Kingdom) and its partners, Alstom Transport (United Kingdom), Magma Structures (United Kingdom), the University of Birmingham (United Kingdom), and the University of Huddersfield (United Kingdom)

  • A bogie frame made of optimized lightweight carbon fiber

This project has developed the very first carbon-fiber bogie frame that uses a recycled material, making it possible to overcome the obstacles to a commercial adoption of this type of structure.

SPORTS & LEISURE
Winner: BMW Group (Germany) and its partners EDAG Engineering GmbH (Germany), KraussMaffei Technologies GmbH (Germany), Chr. Karl Siebenwurst GmbH & Co. KG (Germany), TUM-LCC (Germany), Automation W + R GmbH (Germany), and FHG-IGCV (Germany)

  • A modular construction system for the rear swing arm suspension of a motorcycle

A modular system to produce a complex-shape swing arm suspension reinforced with carbon fiber. The system can adjust the mechanical properties on a case-by-case basis, for a competitive cost and weight compared to metal solutions.

SMART CITIES
Winner: MC Materiales Compuestos (Argentina) and its partners, Plaquimet (Argentina), Purcom (Brazil), IS Groupe - Composite Integrity (France), and G12 Innovation (Brazil)

  • The Wet Core Pod composite housing module

The Wet Core Pod is a composite housing module with an industrialization potential that can facilitate the most complex, costly and difficult step in a construction project.

SUSTAINABLE DEVELOPMENT
Winner: Cetim-Cermat (France) and its partner, CETIM (France)

  • “3-in-1” line for producing recycled composites

A modular line that uses an innovative thermomechanical process to make large panels from recycled composites or plastics. The panels are then thermoformed into parts.
 

Source:

Dorothée David & Marion RISCH, Agence Apocope