From the Sector

Reset
54 results
08.11.2021

Composites Evolution showcased prepregs and new thermoplastic unidirectional tapes

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution has a family of specialist prepregs for various applications, including Evopreg® EPC epoxy component prepregs which are a range of pre-impregnated fabrics suitable for moulding into high-performance, lightweight, structural components; Evopreg® EPT epoxy tooling prepregs which have been designed to help composite tooling manufacturers improve the flexibility and efficiency of their tooling manufacturing processes; and Evopreg® PFC fire-retardant prepregs a 100% bio-derived alternative to phenolics for applications where fire performance is a critical requirement.

Evopreg® ampliTex™ combines Composite Evolution’s high-performance Evopreg® epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

Composites Evolution launched their new range of Evopreg® PA Thermoplastic Tapes at Advanced Engineering; these are manufactured from polyamide-6 (PA6) polymer with unidirectional carbon fibre and are suitable for automated tape laying, winding and compression moulding into high-performance, lightweight components.

Source:

Composites Evolution Ltd

26.10.2021

ITA: New pre-competitive partnership model for industrial companies

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA), their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new strategic positioning: in order to better respond to actual industrial demands and needs, ITA decided to install a partnership model as of January, 25 2022.

The ITA Group comprises the ITA of RWTH Aachen University, a leading research and qualification research institute with 400 employees in the areas of fibre-based high-performance materials, textile semi-finished products and their manufacturing processes and the ITA Technologietransfer GmbH, the partner of the industry in R&D, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA), their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new strategic positioning: in order to better respond to actual industrial demands and needs, ITA decided to install a partnership model as of January, 25 2022.

The ITA Group comprises the ITA of RWTH Aachen University, a leading research and qualification research institute with 400 employees in the areas of fibre-based high-performance materials, textile semi-finished products and their manufacturing processes and the ITA Technologietransfer GmbH, the partner of the industry in R&D, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

Prof. Dr. Thomas Gries, Director of ITA, explains the new partnership model:” The impact of the Covid-19-crisis has shown once more the importance of long-term trustworthy business relationships. Therefore, we are establishing our new partnership model where we will even more closely cooperate with our actual and future industrial partners, providing them with the latest technologies and innovations from R&D side. We will initiate networking and workgroup meetings, offer access to ITA´s large machine parks and labs, carry out joint partner projects and commonly organized publicly-funded projects as well as training for partner´s employees and HR opportunities.”

Dr. Christoph Greb, Scientific Director of ITA: “We are very happy to initiate this new partnership model where science, research and industry are working shoulder to shoulder in pre-competitive projects on our future projects along the entire value-chain from the fibre to the final component in order to close a missing gap and form innovative paths forward in various industrial fields.”

During an initial session of three Innovation days in hybrid format, ITA successfully introduced in September 2021 the first industrial partner projects which will be carried out, among them “Recycling of composite battery cases”, “Recycling of composite pressure vessels”, “Natural Fibre Composites”, “Textile Structures with focus on biaxial Warp-Knitted Structures”, “Factory of the Future”, “Tapes and Hybrid Yarns”.

The next opportunity to meet with ITA is at JEC DACH in Frankfurt (November 23 and 24 2021).

Source:

ITA

19.10.2021

Teijin to boost Heat-Resistant Carbon Fiber Prepreg Production

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Source:

Teijin Carbon Europe GmbH

Visionary building – with composite textiles by vombaur (c)vombaur
From the H-profile to the chamber structure – vombaur offers individually developed composite textiles with complex shapes
13.10.2021

Visionary building – with composite textiles by vombaur

  • Hightech textiles for future-oriented construction projects

Building shells, bridges, staircases, façades ... construction projects are exposed to enormous mechanical loads. Often there are also considerable climatic or environmental influences. This has prompted the increasing use of fibre-reinforced materials in construction projects. After all, besides many other exciting properties, they offer high mechanical rigidity, low weight and excellent corrosion resistance.

Tapes, tubulars, sections and 3D woven textiles by vombaur form the perfect basis for these innovative building materials. The seamless round or shaped woven narrow textiles made of high-performance fibres are extremely loadable because they have neither seams nor welds – and therefore no undesirable breaking points. Their surface properties are identical over the entire length. In challenging tasks, composite textiles by vombaur offer a lightweight solution that is as reliable as it is durable.

  • Hightech textiles for future-oriented construction projects

Building shells, bridges, staircases, façades ... construction projects are exposed to enormous mechanical loads. Often there are also considerable climatic or environmental influences. This has prompted the increasing use of fibre-reinforced materials in construction projects. After all, besides many other exciting properties, they offer high mechanical rigidity, low weight and excellent corrosion resistance.

Tapes, tubulars, sections and 3D woven textiles by vombaur form the perfect basis for these innovative building materials. The seamless round or shaped woven narrow textiles made of high-performance fibres are extremely loadable because they have neither seams nor welds – and therefore no undesirable breaking points. Their surface properties are identical over the entire length. In challenging tasks, composite textiles by vombaur offer a lightweight solution that is as reliable as it is durable.

Safe and durable solutions for challenging applications
The potential applications for lightweight components in the construction industry are as numerous as the project ideas of the planning and construction teams.
•    Ropes and tensioning elements made of carbon fibre reinforced plastic (CFRP)
•    Reinforcement of building structures made of concrete, steel, wood or other materials
•    Sustainable restructuring of constructions and urban districts for bridges and buildings
•    CFC slats as reinforcements in case of repairs
•    (Filled) GRP pipes made of seamless round woven tubes by vombaur as columns/pillars
•    CFRP sections as steel girder substitutes
•    Hollow profiles with individually designed cross-sections
•    Glass fibre reinforced connecting elements for glazing to minimise expansion differences between the connecting element and the glass
•    Individual light wells

Implementing visions – with composite textiles by vombaur
As your development partner, vombaur facilitates innovative composites projects for challenging applications. In innovative and safety-sensitive industries such as automotive and aviation, chemical and plant engineering.  The composites experts at vombaur develop, create samples of and manufacture woven tapes and seamless round or shaped woven textiles by vombaur – in collaboration with the customer's enterprise development teams and individually for the respective projects. This is how novel and unique lightweight components made of high-performance textiles are created for visionary lightweight construction projects.

"Fibre-reinforced composites are the ideal material for future-oriented construction projects," explains Dr.-Ing. Sven Schöfer, Head of Development and Innovation at vombaur. "Their outstanding technical properties and design possibilities open up new and fascinating perspectives for construction projects. From building construction to civil engineering, from bridge construction to interior design. As an experienced development partner for sophisticated lightweight components, we at vombaur contribute our seamless solutions to these kinds of future-oriented projects."

More information:
vombaur Composites carbon fibers
Source:

vombaur GmbH & Co. KG

Composite textiles by vombaur for innovations in architecture and the construction industry (c) vombaur
Low effort, low weight: Maintenance with fibre-reinforce materials
13.10.2021

Composite textiles by vombaur for innovations in architecture and the construction industry

  • Composites in the construction industry - The lightweight construction material of the future

Building with fibre-reinforced materials opens up completely new possibilities. In terms of engineering, design, and organisation. This is due, on the one hand, to the excellent properties of fibre-reinforced materials (FRM) and, on the other hand, to the fact that the material – unlike wood or brick, for example – is not machined or processed for its use, but custom-produced.

Excellent properties – in terms of engineering, design, and organisation
Fibre-composite materials offer a whole range of technical properties for innovative and sustainable building:
•    High mechanical rigidity
•    Low weight
•    High corrosion resistance
•    Low material fatigue
•    Low heat transfer coefficient of the plastic matrix
•    Resistance to frost and de-icing salt
•    Good draping capability

  • Composites in the construction industry - The lightweight construction material of the future

Building with fibre-reinforced materials opens up completely new possibilities. In terms of engineering, design, and organisation. This is due, on the one hand, to the excellent properties of fibre-reinforced materials (FRM) and, on the other hand, to the fact that the material – unlike wood or brick, for example – is not machined or processed for its use, but custom-produced.

Excellent properties – in terms of engineering, design, and organisation
Fibre-composite materials offer a whole range of technical properties for innovative and sustainable building:
•    High mechanical rigidity
•    Low weight
•    High corrosion resistance
•    Low material fatigue
•    Low heat transfer coefficient of the plastic matrix
•    Resistance to frost and de-icing salt
•    Good draping capability

In addition, fibre composites offer numerous design options for novel and exceptional new building and maintenance projects:
•    Unique variety of shapes
•    Different structures of the textiles
•    Large spectrum of colours and colour combinations
•    Translucency of the plastic matrix
Thanks to these properties, composites can be used to produce coloured, phosphorescent, thermochromic or – through the use of LEDs or light-conducting fibres permanently integrated into the matrix – luminescent components.

In addition, there are organisational benefits for planning, construction and maintenance work with fibre-reinforced materials:
•    Easier handling and assembly of the far lighter and more flexible components – compared with steel, concrete or wood
•    Faster installation
•    Shorter construction site times in road and bridge maintenance
•    Shorter delivery times
•    Ability to integrate electronic monitoring systems

Individual composite textiles – for every lightweight engineering project
The composites experts at vombaur develop and manufacture woven tapes and seamless round or shaped woven textiles from carbon, glass, flax or other high-performance fibres on special weaving lines for individually specified round and shaped woven textiles – and can therefore offer you the best possible fibre base for every lightweight construction project.

"Regardless of whether it's a new construction or a renovation project, a façade design, a bridge or a staircase – as your development partner for composite textiles, we have plenty of experience with composites for demanding tasks," emphasises Dr.-Ing. Sven Schöfer, Head of Development and Innovation at vombaur. "We develop, create samples and manufacture woven tapes and seamless round or shaped woven textiles – in collaboration with the customer enterprise development teams and individually for the respective projects." This is how novel and unique lightweight components made of high-performance textiles are created for visionary projects.

CU Bau: Klimaschonendes Sanieren und Bauen (c) IMA Dresden
Faserverbundwerkstoffe im Hochbau
07.10.2021

CU Bau: Klimaschonendes Sanieren und Bauen

Stark steigende Baustoffpreise, immer knapper werdende Rohstoffe sowie steigende Preise für CO2-Zertifkate und Strom erhöhen den Druck, klimafreundliche und doch wettbewerbsfähige Produkte zu verwenden und innovative Produkte, Verfahren und Prozesse dafür zu entwickeln.

Für diese Herausforderungen im Bauwesen bietet der Leichtbau mit Faserverbundwerkstoffen neue Lösungen und ein enormes Anwendungspotential. Bisher sind diese Werkstoffe im Bauwesen noch nicht in ausreichendem Umfang etabliert und bei vielen Entscheidern noch nicht Teil der Lösung. Deshalb treibt das Fachnetzwerk CU Bau des Composites United e.V. (CU) als nationale und internationale Plattform dieses Thema für seine Mitglieder aus Industrie und Wissenschaft voran.

Stark steigende Baustoffpreise, immer knapper werdende Rohstoffe sowie steigende Preise für CO2-Zertifkate und Strom erhöhen den Druck, klimafreundliche und doch wettbewerbsfähige Produkte zu verwenden und innovative Produkte, Verfahren und Prozesse dafür zu entwickeln.

Für diese Herausforderungen im Bauwesen bietet der Leichtbau mit Faserverbundwerkstoffen neue Lösungen und ein enormes Anwendungspotential. Bisher sind diese Werkstoffe im Bauwesen noch nicht in ausreichendem Umfang etabliert und bei vielen Entscheidern noch nicht Teil der Lösung. Deshalb treibt das Fachnetzwerk CU Bau des Composites United e.V. (CU) als nationale und internationale Plattform dieses Thema für seine Mitglieder aus Industrie und Wissenschaft voran.

Hybride Bauweisen
Roy Thyroff, im Netzwerk Composites United e.V. Geschäftsführer CU Bau: „Unser Ziel ist, dass die gesamte Bauwirtschaft – Architekten, Planer, Bauingenieure, Zulassungsstellen sowie Bauunternehmen – Bauprodukte mit faserverstärkter Beton- und Polymermatrix mit entsprechenden Zulassungen einsetzen kann.“ Dabei geht es nicht nur um Bauweisen mit faserverstärkten Kunststoffen und textilbewehrtem Beton, sondern darüber hinaus auch um hybride Bauweisen, wie z.B. Hybridbauwerke aus Holz und Carbonbeton. Denn faserbasierter, hybrider Leichtbau führt die besten Eigenschaften verschiedener Materialien klimafreundlich zusammen, bietet somit gegenüber herkömmlichen Baustoffen große Vorteile für den Klimaschutz und ermöglicht völlig neue Bauweisen.

Vorteile von Faserverbundwerkstoffen
Faserverbundwerkstoffe sind sowohl im Neubau als auch in der Sanierung dank ihrer umwelt- und ressourcenschonenden Eigenschaften im Vorteil. Neben der CO2-Reduktion liegen die wesentlichen Vorteil:

  • in der Geschwindigkeit der Ausführung,
  • dem geringeren Materialeinsatz,
  • der Kostenreduktion,
  • der Leistungsfähigkeit wie hoher Druck- und Biegezugfestigkeit,
  • dem einfacheren Handling
  • den geringeren Transportlasten,
  • der Beständigkeit gegen Korrosion,
  • der Flexibilität bei unterschiedlichen Schädigungsgraden eines Sanierungsfalls und
  • der deutlich verlängerten Nutzungsdauer.
Source:

Composites United e.V. (CU) / bm CONSULTING

29.09.2021

The Renewable Materials Conference 2022

  • 10–12 May 2022, Cologne, Germany (hybrid)
  • The unique concept of presenting all renewable material solutions at one event hits the mark: bio-based, CO2-based and recycled are the only alternatives to fossil-based chemicals and materials

Ready-to-use fossil-free sustainable material solutions with a low carbon footprint are in fast-growing demand. Innovative brand owners are keeping an eye out for such solutions, in particular those that will soon reach the mainstream.

  • 10–12 May 2022, Cologne, Germany (hybrid)
  • The unique concept of presenting all renewable material solutions at one event hits the mark: bio-based, CO2-based and recycled are the only alternatives to fossil-based chemicals and materials

Ready-to-use fossil-free sustainable material solutions with a low carbon footprint are in fast-growing demand. Innovative brand owners are keeping an eye out for such solutions, in particular those that will soon reach the mainstream.

For the second time, nova-Institute presents numerous market highlights from bio- and CO2-based chemicals and materials as well as from chemical recycling: All material solutions based on renewable carbon. Together, there is sufficient potential to completely replace petrochemicals by 2050. To tackle climate change at its roots, all additional fossil carbon from the ground must be substituted with renewable alternatives. Over the course of three days, participants will get a comprehensive overview of the latest developments in the renewable material sector, with a focus on industry-ready solutions from a wide spectrum of sustainable raw materials and technologies.

In 2021, the new concept of the Renewable Materials Conference generated an outstanding response, which exceeded all expectations: 420 online participants witnessed a firework of innovations of non-fossil material. 60 speakers, 11 panel discussions, 500 public posts and 1,500 networking activities were proof of the lively exchange during the three conference days.

In 2022, nova-Institute plans to host the conference physically in the heart of Germany's fourth largest city, Cologne, just a few hours away from France, Belgium and the Netherlands. Expected are 400 participants on-site and many more online. On-site, the conference will be accompanied by a large exhibition where companies and institutes can showcase their recent developments. The supporting program, networking activities and many secluded spots at the location offers excellent opportunities to make new business contacts and refresh old ones.

The focus of the conference: All material solutions based on renewable carbon – avoiding the use of additional fossil carbon. The entire spectrum of renewable materials is covered: bio-based, CO2- based and recycled.

The program includes a diverse range of bio-based materials such as bio-based polymers, plastics and biocomposites (first and second generation, biowaste), CO2-based materials (from fossil and biogenic point sources, atmosphere) as well as mechanically and chemically recycled materials.

Source:

nova-Institut GmbH

Launch of a new ISO certification standard (c) AMAC
Möcke + Mörschel + Effing
22.09.2021

Launch of a new ISO certification standard

Textechno reports launch of a new standard for the drapability and deformability of fabrics and non-wovens: ISO 21765

World market leader for precision testing equipment Textechno and their partner SAERTEX, global market leader in non-crimp fabrics (NCF) are proud to announce that the newly developed international standard ISO 21765:2020 to quantify material behaviour in terms of drapability and deformability was recently published by ISO.

The new standard ISO 21765 allows the world-wide comparable measurement of all relevant parameters regarding the deformability and drapability of all kinds of fabrics, including woven fabrics and NCFs as well as knitted fabrics and non-wovens on Textechno´s precision testing equipment DRAPETEST. This can be very useful in the carbon fibre recycling since one of the most efficient applications of recycled carbon fibres will be in non-wovens.

This is the first testing instrument world-wide to quantify not only the force which is required for deforming a fabric, but also the various defects such as gaps, undulation, or wrinkles which can arise due to the deformation.

Textechno reports launch of a new standard for the drapability and deformability of fabrics and non-wovens: ISO 21765

World market leader for precision testing equipment Textechno and their partner SAERTEX, global market leader in non-crimp fabrics (NCF) are proud to announce that the newly developed international standard ISO 21765:2020 to quantify material behaviour in terms of drapability and deformability was recently published by ISO.

The new standard ISO 21765 allows the world-wide comparable measurement of all relevant parameters regarding the deformability and drapability of all kinds of fabrics, including woven fabrics and NCFs as well as knitted fabrics and non-wovens on Textechno´s precision testing equipment DRAPETEST. This can be very useful in the carbon fibre recycling since one of the most efficient applications of recycled carbon fibres will be in non-wovens.

This is the first testing instrument world-wide to quantify not only the force which is required for deforming a fabric, but also the various defects such as gaps, undulation, or wrinkles which can arise due to the deformation.

In the frame of a publicly funded project which started in 2011, Textechno developed the award-winning automatic drapability tester DRAPETEST along with other partners, amongst them SAERTEX.  

Dietmar Möcke, CTO at SAERTEX says: „With ISO 21765, we finally have a standardized testing method with world-wide validity. It allows us to provide our customers with comparable and reproducible measurement values regarding the draping characteristics of our products.”

Ulrich Mörschel, Managing Director of Textechno adds: “We are grateful for the support from all around the world allowing us to establish the new ISO standard. The standard finally fills a gap in the testing methods for fabrics both in the fields of textiles and composites.”

Dr. Michael Effing, Managing Director of AMAC GmbH and Senior Advisor to Textechno: “A lot of research is dedicated to new production technologies of composites, non-crimp fabrics and classical fabrics for thermosets have with 33 % a significant market share in the production of all composite materials. The application of the new standard for non-wovens from recycled carbon fibres comes perfectly on time for this market sector which will gain more and more importance within the next years.

Source:

AMAC GmbH

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications (c) Hexcel Corporation
07.07.2021

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel Neumarkt was one of eight industrial partners supporting the university team throughout the project, providing all carbon fiber prepreg materials used for the drone’s landing gear as well as the fuselage. The ultra-lightweight 32g landing gear was laid up and cured in the press, whereas the fuselage was autoclave cured by the student team using Hexcel HexPly M901 and HexPly M78.1 prepreg resin systems with a combination of woven and unidirectional carbon fiber reinforcements.

With the development of Unmanned Aerial Vehicles (UAV) as a key emerging market and innovation space in the transportation sector, Hexcel’s collaboration with the University of Applied Sciences Upper Austria team not only creates an important link with the next generation of lightweight composite engineers but also highlights the weight saving and structural benefits of Hexcel composite material solutions.

"The massive weight saving achieved with their updated version of the camera drone is a fantastic achievement by the student team," said Michael Rabl, Dean of FH Wels of the Upper Austria University of Applied Sciences. "The joint study not only illustrates the wide range of complex and innovative composite techniques present in the drone sector but also presents the opportunities that exist for further development in the wider Urban Air Mobility (UAM) and aerospace composites markets.”

Hexcel congratulates the project team which includes Lukas Weninger, Karl-Heinz Schneider, Jakob Schlosser, Matthias Thon, Marla Unter, and Simone Hartl on an exceptional piece of lightweight composite design and thanks them for showcasing the contribution of Hexcel materials with a presentation and drone flight. Johanna Arndt, research and technology group leader at Hexcel Neumarkt, said, “It was a great pleasure to work with the team who were very cooperative and self-motivated to succeed. Watching the drone just fly around the Neumarkt plant was just great.”

Hexcel manufactures a complete range of carbon fibers, dry carbon UD tapes, specialty reinforcements, prepregs, and honeycomb core materials, providing customized manufacturing options for new UAM applications that combine aerospace reliability with the high-rate production required. Hexcel composite materials are the ideal solution for the lightest and most efficient cost-competitive transportation vehicles of the future.

Source:

Hexcel Corporation / 100% Marketing

Montalvo awarded 2021 Exporter of the Year Award (c) The Montalvo Corporation
09.06.2021

Montalvo awarded 2021 Exporter of the Year Award

Montalvo, an international specialists in web tension control, has been awarded the 2021 Exporter of the Year Award from the Maine International Trade Center for outstanding commitment to strengthening Montalvo’s businesses through international markets.

Montalvo Corporation CEO Robin Goodwin. "This award feels like a validation of our strategy and the teamwork we have at Montalvo. This is huge for us. We are a small, family-owned company, and all of us here are excited as this award is something every single one of our employees shares in.  We have some great product development going, new industry’s we are getting into, and expanding our capabilities and solutions offering, so it’s a very exciting time for the company and our employees, and this award has only energized us further."

Montalvo sells to over 70 countries across the globe, with their headquarters in Maine, USA, and with operations in China and Europe.

Montalvo, an international specialists in web tension control, has been awarded the 2021 Exporter of the Year Award from the Maine International Trade Center for outstanding commitment to strengthening Montalvo’s businesses through international markets.

Montalvo Corporation CEO Robin Goodwin. "This award feels like a validation of our strategy and the teamwork we have at Montalvo. This is huge for us. We are a small, family-owned company, and all of us here are excited as this award is something every single one of our employees shares in.  We have some great product development going, new industry’s we are getting into, and expanding our capabilities and solutions offering, so it’s a very exciting time for the company and our employees, and this award has only energized us further."

Montalvo sells to over 70 countries across the globe, with their headquarters in Maine, USA, and with operations in China and Europe.

Source:

The Montalvo Corporation

04.06.2021

Election of a new EPTA Board

During its members meeting of June 2nd, 2021, the European Pultrusion Technology Association (EPTA) elected a new board. All EPTA board members who stood for re-election have been confirmed again. Dr. Elmar Witten, Secretary of the EPTA, is happy about the continuity in the line-up of the EPTA board. "We will continue the current marketing activities to promote the pultrusion process," said Witten.

Thus, the board members for the next 4 years are:
Dr. Luigi Giamundo, ATP srl., Italy (Chairman)
Alfonso Branca, TOP GLASS, Italy
Dietmar Kühne, Ernst Kühne Kunststoffwerk, Germany
Sebastian Mehrtens, Fibrolux, Germany
Eric Moussiaux, Exel Composites, Belgium
Martin Zelinka, Owens Corning, France

Pultrusion is an important and continuously growing segment in the composites industry. It is a continuous manufacturing process of linear composite profiles made of polymeric resins such as polyesters and fiber reinforcement such as glass fibers. Automated Pultrusion Production Technology facilitates today's High Quality and Low-Cost demands by the market.

During its members meeting of June 2nd, 2021, the European Pultrusion Technology Association (EPTA) elected a new board. All EPTA board members who stood for re-election have been confirmed again. Dr. Elmar Witten, Secretary of the EPTA, is happy about the continuity in the line-up of the EPTA board. "We will continue the current marketing activities to promote the pultrusion process," said Witten.

Thus, the board members for the next 4 years are:
Dr. Luigi Giamundo, ATP srl., Italy (Chairman)
Alfonso Branca, TOP GLASS, Italy
Dietmar Kühne, Ernst Kühne Kunststoffwerk, Germany
Sebastian Mehrtens, Fibrolux, Germany
Eric Moussiaux, Exel Composites, Belgium
Martin Zelinka, Owens Corning, France

Pultrusion is an important and continuously growing segment in the composites industry. It is a continuous manufacturing process of linear composite profiles made of polymeric resins such as polyesters and fiber reinforcement such as glass fibers. Automated Pultrusion Production Technology facilitates today's High Quality and Low-Cost demands by the market.

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists (c) JEC Group
17.05.2021

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

Sicomin, the formulator and supplier of the leading range of GreenPoxy bio-based epoxy resin systems, supplied its DNV GL approved InfuGreen 810 resin system that was used to infuse the Green Nacelle’s main structural sandwich panels, as well as providing intumescent FR gelcoats, bio-based laminating resins and UV resistant clear coatings for the groundbreaking new nacelle.  Materials, as well as on-site technical support, were delivered by Sicomin’s German distributor TIME OUT Composites.

The winners of the awards will be announced during JEC Connect which will be held on the 1st and 2nd June 2021.

Source:

100% Marketing

11.05.2021

JEC Composites Innovation Awards 2021: Finalists Line Up Revealed

Innovation is an essential part of this industry – it's how we invest in our future. The top priorities for players in the composites value chain include product solidity, safety, and durability. The JEC Composites Innovation Awards are meant to inspire all participants, the whole industry and shed light on the excellent work carried out by the prize winners.

After pre-selecting the finalists, a selection process and a jury will select one winner in each category (Aerospace; Automotive & road transportation – exterior; Automotive & road transportation – structural; Building; Construction & Infrastructure, Design; Equipment & Machinery and Sustainability)

The awards ceremony will take place during JEC Composites Connect on Wednesday, June 2nd at 2:30 pm CEST.

More information here.

Innovation is an essential part of this industry – it's how we invest in our future. The top priorities for players in the composites value chain include product solidity, safety, and durability. The JEC Composites Innovation Awards are meant to inspire all participants, the whole industry and shed light on the excellent work carried out by the prize winners.

After pre-selecting the finalists, a selection process and a jury will select one winner in each category (Aerospace; Automotive & road transportation – exterior; Automotive & road transportation – structural; Building; Construction & Infrastructure, Design; Equipment & Machinery and Sustainability)

The awards ceremony will take place during JEC Composites Connect on Wednesday, June 2nd at 2:30 pm CEST.

More information here.

Source:

JEC Group

ITA
04.05.2021

2021 Aachen Reinforced! Symposium free of charge for all attendees

Institut für Textiltechnik of RWTH Aachen University has changed the format of the 2021 Aachen Reinforced! Symposium to an online only format. The programme was shortened to suit the new format, with presentations taking place on Monday 10th May and Tuesday 11th May.

Institut für Textiltechnik of RWTH Aachen University has changed the format of the 2021 Aachen Reinforced! Symposium to an online only format. The programme was shortened to suit the new format, with presentations taking place on Monday 10th May and Tuesday 11th May.

The conference program for Monday, 10th May:
The programme will begin with exciting presentations on glass chemistry and fibres. A talk by Dr Anne Berthereau (Owens Corning Composites) on the race for always higher modulus glass fibres will be followed by a talk from Dr Hong Li (Nippon Electric Glass) on the potential of new high-strength and high-modulus glass fibres.
After two further presentations on high modulus and bioactive glass fibres from Muawia Dafir and Julia Eichhorn (TU Bergakademie Freiberg), we will learn about furnace efficiency as well as process monitoring and digitalisation in glass fibre production from René Meulemann (CelSian), Hans Gedon (Gedonsoft) and Julius Golovatchev (Incotelogy) respectively.
A presentation by Felix Quintero Martínez (Universidade de Vigo) will explore a novel method to produce ultra-flexible glass nanofibers.
The afternoon will continue with two presentations by Dr Christina Scheffler (Leibniz-Institut für Polymerforschung Dresden e.V. (IPF)) and Professor James Thomason (University of Strathclyde) in the field of glass fibre sizings and fibre-matrix interfaces. Finally, a closing presentation by Steve Bassetti (Michelman) will conclude the first day of the Symposium.

The entire conference programme is available on the website https://aachen-fibres.com/aachen-reinforced/general-information.
To register for the Symposium, use the following link: https://aachen-fibres.com/aachen-reinforced/registration