From the Sector

Reset
225 results
Flax for Composites: Woven tapes made of natural fibres by vombaur (c) Elke Wetzig, Wikimedia
Lightweight, firm, sustainable: Flax tape by vombaur
02.12.2020

Flax for Composites: Woven tapes made of natural fibres by vombaur

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Circular Economy
Circular Economy – this also works in lightweight design. The number of recycling cycles without loss of quality is higher for natural fibre reinforced plastics than for glass or carbon fibre reinforced plastics: the thermoplastic matrix of the composite can be melted and recycled after a product life cycle. The natural fibres can "live on" in other products – injection moulded products for example.

Versatile applications
"Composites from our flax tapes are used to reinforce high-tech skis as well as for extruding state-of-the-art window sections – the applications are countless," explains Tomislav Josipovic, Sales Manager with vombaur. "As a development partner, we support applications for the automotive, wind energy, construction, sports and many other industries with our composite textiles."

More information:
vombaur Naturfasern Composites
Source:

stotz-design.com

Oerlikon: Manual lever (c) Oerlikon
26.11.2020

Oerlikon: Manual lever now even more ergonomic

Finer adjustment of the yarn suction force, lower compressed air consumption for the same yarn tension, smooth, ergonomic compressed-air valve – all promises fulfilled by the modernized AS H 32 and AS H 38 yarn suction devices.

Also known as hand injectors, these yarn suction devices are standard components of all spinning positions. The AS H 32- and AS H 38-series are high-performance hand injectors with lower compressed air consumption for the same yarn tension. This is made possible due to the higher yarn suction forces, particularly in the case of the AS H 38 series. In addition to this, string-up without ‘ramp-up’ is possible in certain applications. Also new is a smoother, more ergonomic compressed-air valve, which makes deploying the yarn suction devices more comfortable for users. Furthermore, the required yarn suction force can be adjusted more finely.

The new ‘high-performance devices’ have been designed for applications that require a particularly high suction performance. For several months now, they have been successfully operating in pilot projects within the context of a BCF yarn application in Europe and a tape yarn system located in the US.

Finer adjustment of the yarn suction force, lower compressed air consumption for the same yarn tension, smooth, ergonomic compressed-air valve – all promises fulfilled by the modernized AS H 32 and AS H 38 yarn suction devices.

Also known as hand injectors, these yarn suction devices are standard components of all spinning positions. The AS H 32- and AS H 38-series are high-performance hand injectors with lower compressed air consumption for the same yarn tension. This is made possible due to the higher yarn suction forces, particularly in the case of the AS H 38 series. In addition to this, string-up without ‘ramp-up’ is possible in certain applications. Also new is a smoother, more ergonomic compressed-air valve, which makes deploying the yarn suction devices more comfortable for users. Furthermore, the required yarn suction force can be adjusted more finely.

The new ‘high-performance devices’ have been designed for applications that require a particularly high suction performance. For several months now, they have been successfully operating in pilot projects within the context of a BCF yarn application in Europe and a tape yarn system located in the US.

Source:

Oerlikon

COBRA provides high-quality mass production for ARE Tahiti’s new composite canoes (c) COBRA
23.11.2020

COBRA provides high-quality mass production for ARE Tahiti’s new composite canoes

Cobra International, Chonburi, Thailand: COBRA International, one of the world’s largest OEM manufacturers of composite goods for Water Sports, Automotive, Marine and Civil Engineering, is pleased to confirm the shipment of its first 36 composite canoes to ARE Tahiti.

COBRA has collaborated with leading outrigger canoe brand ARE Tahiti to mass produce its new OC-1 canoe, ‘Mana’. Designed by former professional windsurfer Baptiste Gossein  (JP Australia and Neil Pryde), ‘Mana’ features a closed deck on which the paddler sits on top of the hull. Available in two models; a hybrid version weighing 12kg, using an 80:20 mix of E-glass and carbon fibre reinforcement fabrics, and the PRO model – a weight optimized, ultra-light, full carbon version that weighs as little as 9kg.   

“We required the best in composite construction for both models, a stunning final finish and a build rate that could keep up with our growing order book”, comments Baptiste Gossein.

Cobra International, Chonburi, Thailand: COBRA International, one of the world’s largest OEM manufacturers of composite goods for Water Sports, Automotive, Marine and Civil Engineering, is pleased to confirm the shipment of its first 36 composite canoes to ARE Tahiti.

COBRA has collaborated with leading outrigger canoe brand ARE Tahiti to mass produce its new OC-1 canoe, ‘Mana’. Designed by former professional windsurfer Baptiste Gossein  (JP Australia and Neil Pryde), ‘Mana’ features a closed deck on which the paddler sits on top of the hull. Available in two models; a hybrid version weighing 12kg, using an 80:20 mix of E-glass and carbon fibre reinforcement fabrics, and the PRO model – a weight optimized, ultra-light, full carbon version that weighs as little as 9kg.   

“We required the best in composite construction for both models, a stunning final finish and a build rate that could keep up with our growing order book”, comments Baptiste Gossein.

As with all of COBRA’s watersports’ projects, a perfect master model formed the basis of the mass production tooling and two sets of composite hull tooling were taken from the master plug allowing a build rate of up to 50 OC-1 canoes per month.

For the lay-up and construction process, COBRA’s high-performance PVC foam sandwich windsurf board construction provided a solid starting point.  Having selected vacuum consolidated epoxy wet layup for the mix of woven and stitched biaxial reinforcements, COBRA was able to build down to the customer’s weight target with the absolute minimum of waste and additional consumables.  Top and bottom sections of the hull were moulded separately then bonded together, with the smaller outrigger hull – known as the ‘ama’ – produced in the same way.  Prepreg carbon fibre and in-house split mould tooling was also used for the two ‘Iakos’ - the two cross beams that join the ama to the main hull. 

An in-mould applied finish coat was then used for the hybrid OC-1 while the PRO carbon fibre model benefits from COBRA’s ultra-light paint system.

“COBRA is able to provide mass production capability and rapid new model turnaround, as well as delivering consistently high quality. We are delighted with the first COBRA built OC-1s and have received exceptionally positive feedback from both customers and racers” comments Baptiste Gossein.

The next ARE project to enter mass production at COBRA will be the V-1 canoe. Similar to the OC-1 but an open boat that the paddler sits inside, the V-1 will have no rudder or steering system, requiring more finesse to manage underway.

“The OC-1 outrigger canoe is a superb example of our customer focused approach to production process development.  By working closely with Baptiste and the ARE team, COBRA is able to provide mass production capability and a rapid new model turnaround, as well as delivering consistently high quality.  This is a sector in which we expect to see significant expansion over the next few years”, comments Danu Chotikapanich, CEO, COBRA International.

Monforts (c) Monforts
19.11.2020

İlay puts a premium on energy with new Monforts installation

The company, founded in 1993, has established a reputation for leadership in new printing techniques and technologies with customers across Europe, as well as with many of the leading Turkish brands.

Mission
On its mission to achieving continuous progress in error-free and resource-efficient manufacturing, İlay has just taken delivery of a new Monforts Montex stenter range, with a working width of two metres and eight TwinAir chambers.

“This installation provides us with much improved control options for all process parameters and compared to the old stenter it is replacing, we are particularly impressed with the energy savings we are making,” Mr Savaş says.

Achieving energy savings on Montex stenters has been a key focus for Monforts designers and engineers in Germany for many years.

The company, founded in 1993, has established a reputation for leadership in new printing techniques and technologies with customers across Europe, as well as with many of the leading Turkish brands.

Mission
On its mission to achieving continuous progress in error-free and resource-efficient manufacturing, İlay has just taken delivery of a new Monforts Montex stenter range, with a working width of two metres and eight TwinAir chambers.

“This installation provides us with much improved control options for all process parameters and compared to the old stenter it is replacing, we are particularly impressed with the energy savings we are making,” Mr Savaş says.

Achieving energy savings on Montex stenters has been a key focus for Monforts designers and engineers in Germany for many years.

With the TwinAir heating chamber system within a Montex stenter, top and bottom airflows can be regulated completely independently of each other, ensuring heat is only applied when and where it is required. The Optiscan balancing system ensures continuous automatic evaluation of the distance between the nozzles and the fabric for highly economical and contact-free drying.

The resulting constant evaporation rate within the stenter ensures optimum energy utilisation. In addition, TwinAir chambers feature special panelling for low heat radiation, careful sealing of all connecting positions and chamber access points, and air locks at both the entry and the exit.

“Monforts stenters set the benchmark in terms of energy efficiency and help conserve resources,” says Ahmet Kılıç, founder of Neotek, the representative for Monforts in Turkey. “Automatically setting the initial moisture content requirement for a specific process before drying to a minimum value helps reduce heat evaporation and consequently, energy consumption. The hermetic sealing of the stenter frame further prevents the loss of heated air as well as the ingress of excessive cold air – which has to be heated back up if it is not kept out in the first place.”

The new Montex line was completed at İlay Textile in August 2020, with no problems during either installation or commissioning.

 

Source:

AWOL Media

Ascend Performance Materials: HiDURA (c) Ascend Performance Materials
17.11.2020

Ascend introduces HiDura™ long-chain polyamides

Ascend Performance Materials has launched several new grades of its HiDura™ long-chain polyamides for engineered plastics, monofilaments and cable ties. HiDura polyamide 610 and 612 are designed to provide exceptional dimensional stability and long life with enhanced resistance to chemicals, impact and abrasion.

Ascend, one of the largest fully integrated producer of PA66 resin, has developed multiple new grades of HiDura PA610 and 612 for use in automotive fuel system and brake line applications, cable ties for solar power systems, battery seals and monofilaments for brush bristles.

“Customers choose Ascend because they can rely on our materials’ performance in some of their most challenging applications,” said Kaan Gunes, HiDura business manager. “We developed HiDura to endure in extreme conditions and uses. Whether used in a connector for solar panels or as brush bristles, our customers can count on HiDura LCPAs to perform well over the life of the application.”

Ascend Performance Materials has launched several new grades of its HiDura™ long-chain polyamides for engineered plastics, monofilaments and cable ties. HiDura polyamide 610 and 612 are designed to provide exceptional dimensional stability and long life with enhanced resistance to chemicals, impact and abrasion.

Ascend, one of the largest fully integrated producer of PA66 resin, has developed multiple new grades of HiDura PA610 and 612 for use in automotive fuel system and brake line applications, cable ties for solar power systems, battery seals and monofilaments for brush bristles.

“Customers choose Ascend because they can rely on our materials’ performance in some of their most challenging applications,” said Kaan Gunes, HiDura business manager. “We developed HiDura to endure in extreme conditions and uses. Whether used in a connector for solar panels or as brush bristles, our customers can count on HiDura LCPAs to perform well over the life of the application.”

“Our customers are responding to broader shifts in the market and their products’ reliability is a key differentiator,” said Isaac Khalil, senior vice president of Ascend’s polyamide business. “We support our customers’ growth plans with high-performance materials and the application development, processing and technical expertise to get the most out of those materials.”

Information about HiDura, including application profiles and technical data sheets, can be found at https://www.ascendmaterials.com/hidura.

Source:

EMG/ Ascend Performance Materials

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group (c) Composites United
Skeletal windshield design based on injection molding with carbon fiber profiles
16.11.2020

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

In the vehicle, the windshield is a connecting element between the roof frames and thus has an important stabilizing function. The carbon fiber profiles add the required stiffness and crash safety to the component. At the same time, they help to significantly reduce the weight of the roof and thus also support the driving dynamics. The injection molding process also enables particularly complex and material-efficient structures. In the BMW Group model, this innovative component concept will cut weight by 40 percent compared to conventional steel designs of the component while creating important space for cable ducts and sensors.

The production of the carbon fiber profiles themselves is also particularly geared to material and process efficiency in large-scale production. The profiles consist of several smaller fiber strands, the so-called rods, and are manufactured using the modern continuous pultrusion process. During product and process development it was one key objective to ensure that material loss during production is almost completely avoided.

"At SGL Carbon, we have been working on the development of thermoplastic carbon fiber profiles for use in injection molding for some time already. This development work is now beginning to pay off. Due to the many advantages and competitive costs, we see a great potential for the technology to be used in other automotive projects too," explains Sebastian Grasser, Head of the Automotive Segment in the Business Unit Composites - Fibers & Materials at SGL Carbon.

"Innovative lightweight construction with hybrid designs has developed into a strategically conclusive concept for Koller Group's OEM customers," confirms Max Koller, CEO of Koller Group. "SGL Carbon's high level of material expertise, combined with the process know-how of KOLLER Kunststofftechnik and KOLLER Formenbau, create the basis for a promising future in innovative lightweight construction technologies. With this order, the BMW Group has confirmed its confidence in the successful cooperation between SGL and Koller; we are particularly pleased about this", said Max Koller.
 
The Koller Group is a globally operating technology company with plants in Europe and China, as well as NAFTA. The Koller Group develops and manufactures lightweight construction, tools and serial components, primarily for the automotive industry.

Source:

SGL CARBON SE

Pump components made from zirconium oxide ceramic (c) Oerlikon
Pump components made from zirconium oxide ceramic
12.11.2020

Oerlikon: Robust pumps for sophisticated special fibers

At first glance, rowing boats, the Airbus 380, safety equipment and stadium roofing have very little on common. They receive their specific properties as a result of the use of special fibers, among other things: aramid fibers and carbon fibers are processed into special yarns that are frequently deployed as compound materials. These fibers are growing in demand as the world seeks to reduce its reliance on fossil fuels; new solutions are required to reduce weight and replace heavy metallic parts.

Aramid fibers are produced in a highly-chemical process that is extremely aggressive; the acrylic precursor used to manufacture carbon fibers is a different process, but again no less difficult. In these sophisticated processes, the gear metering pumps are not only responsible for the high-precision control of the melt transport; durability, resistance within aggressive environments and cost efficiency also play decisive roles.

At first glance, rowing boats, the Airbus 380, safety equipment and stadium roofing have very little on common. They receive their specific properties as a result of the use of special fibers, among other things: aramid fibers and carbon fibers are processed into special yarns that are frequently deployed as compound materials. These fibers are growing in demand as the world seeks to reduce its reliance on fossil fuels; new solutions are required to reduce weight and replace heavy metallic parts.

Aramid fibers are produced in a highly-chemical process that is extremely aggressive; the acrylic precursor used to manufacture carbon fibers is a different process, but again no less difficult. In these sophisticated processes, the gear metering pumps are not only responsible for the high-precision control of the melt transport; durability, resistance within aggressive environments and cost efficiency also play decisive roles.

Special materials for special tasks
The process, the expected pump lifespan and the maintenance frequency are the decisive factors for choosing the materials from which the pumps and their components are manufactured. For optimum results, Oerlikon Barmag offers solutions that intelligently combine the various materials and the latest technologies. Whether in the case of surfaces with ceramic coatings, gears and shafts featuring DLC coatings, pumps made from cobalt alloys (StelliteTM) or robust and durable Oerlikon Barmag hybrid constructions comprising zirconium oxide ceramic and duplex stainless steel – the high-precision ZP- and GM-series pumps are design-optimized depending on the intended use. Various seal systems and customized drive concepts round off the pump program.

Source:

Oerlikon

ECONNECTION: new collaborative business model (c) GB Network
11.11.2020

ECONNECTION: new collaborative business model

  • A new collaborative business model gives life to ECONNECTION: an eco-high-tech collection designed thinking of the “end of life”

Three premium textile companies, one common goal: jointly offer ready to use, coordinated solutions that are design driven, performing and responsible also at the end of life.

Penn Textile Solutions/Penn Italia - international company producing and developing innovative fabrics through warp and weft knitting technologies, Tessitura Colombo Antonio, famous for the processing of lace and ribbons dedicated to the world of corsetry , Elastici Besana specialized in the production of narrow elastic for corsetry and underwear, have been working together to expand the frontiers of sustainable manufacture practices and to offer an innovative collection , a new set of incredible eco high tech innovations delivering a responsibility concept including also the end of life : ECONNECTION.

The responsible ECONNECTION collection, in which the words ECO and CONNECTION mixed to underline the importance of connect and come together for a sustainable project, features:

  • A new collaborative business model gives life to ECONNECTION: an eco-high-tech collection designed thinking of the “end of life”

Three premium textile companies, one common goal: jointly offer ready to use, coordinated solutions that are design driven, performing and responsible also at the end of life.

Penn Textile Solutions/Penn Italia - international company producing and developing innovative fabrics through warp and weft knitting technologies, Tessitura Colombo Antonio, famous for the processing of lace and ribbons dedicated to the world of corsetry , Elastici Besana specialized in the production of narrow elastic for corsetry and underwear, have been working together to expand the frontiers of sustainable manufacture practices and to offer an innovative collection , a new set of incredible eco high tech innovations delivering a responsibility concept including also the end of life : ECONNECTION.

The responsible ECONNECTION collection, in which the words ECO and CONNECTION mixed to underline the importance of connect and come together for a sustainable project, features:

  • 7 advanced knitted stretch fabrics by Penn Textile Solutions/Penn Italia,
  • 3 precious laces by Tessitura Colombo Antonio
  • 3 functional bands by Elastici Besana

So, 3 key leading companies with a key target : to design and deliver the market amazing responsible fabrics able to offer a responsible end of life. This opened up the door to new generation of ingredients such as:

  • ROICA™ V550 made by leading fiber manufacturer Asahi Kasei, a premium sustainable stretch yarn that at the end of his life smartly breaks down without releasing harmful substances in the environment according to Hohenstein Environment Compatibility Certification and also boasting the Gold Level Material Health Certificate by Cradle-to-Cradle Product Innovation Institute** as it has been evaluated for impact on human and environmental health.
  • Amni Soul Eco®, the world’s first biodegradable in anaerobic conditions polyamide 6.6 yarn that degrades in around 5 years* after disposing in landfill, developed by SOLVAY and produced and distributed in Italy by FULGAR.

The collection is presented in its BIO -BOX that will be sent to selected brands at worldwide level

A smart project that highlights the importance of synergies between companies know how, and new generation of materials , that is able to take products to a new level of responsible innovation, technology and exceptional performances where beauty and function will be able to carry the smart factor for the values they represent for the consumer and highlighting for the first time also the importance of their end of life.

Moncler launches Grenoble collection with Dyneema® Composite Fabric (c) DSM Protective Materials
DSM Protective Materials DSMPMPR003b
11.11.2020

Moncler launches Grenoble collection with Dyneema® Composite Fabric

  • Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, today announced that, for the first time, Dyneema® Composite Fabrics are used by Moncler in the Fall/Winter 2020 Grenoble collection, which fuses form and function into high performance skiwear.

Moncler Grenoble is born of a passion for research and implements cutting-edge technology to push the limits of its potential. The design team identified Dyneema® as an innovative fabric it could use to push the level of its performance to the next peak, incorporating the material into the new collection as a departure from the conventional use of cotton and polyester.

  • Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, today announced that, for the first time, Dyneema® Composite Fabrics are used by Moncler in the Fall/Winter 2020 Grenoble collection, which fuses form and function into high performance skiwear.

Moncler Grenoble is born of a passion for research and implements cutting-edge technology to push the limits of its potential. The design team identified Dyneema® as an innovative fabric it could use to push the level of its performance to the next peak, incorporating the material into the new collection as a departure from the conventional use of cotton and polyester.

Sandro Mandrino, the Head of Design for Moncler Grenoble, was the first designer of the luxury fashion brand to incorporate Dyneema® into one of his creations through the Moncler Genius project. The Moncler Genius project advocates radical co-creation where multiple designers create their own signature collections in collaboration with the house. Together, these collections translate into one vision of the future and, as one of the nine designers, Mandrino’s interpretation of the future of fashion features Dyneema® Composite Fabric.

Using variations of the fabric in both white and black allowed Mandrino to bring his vision to life by merging skiwear, space suits and technology all in one. “ 3 Moncler Grenoble is first and foremost about performance,” states Mandrino, who integrated constructive solutions with fabric technology to develop a line that was meant to perform both on and off the ski slopes.

Dyneema®, the world’s strongest and lightest fiber, is 15 times stronger than steel yet light enough to float on water. The unmatched performance and protection of products made with Dyneema® have made it the material of choice in critical applications where failure is not an option for more than 30 years. In fabric form, Dyneema® is available in composites, denim, knits, wovens and hybrids for composite reinforcements. And because Dyneema® fabrics are made using Dyneema® fiber, they intrinsically provide high strength, low weight, waterproof and breathable properties – allowing designers to fuse the technical performance of ultra-light products with aesthetic design that doesn’t sacrifice strength or durability.

The Moncler team used the Grenoble collection as an opportunity to experiment and further understand the nature and behavior of Dyneema® fabrics, while simultaneously incorporating material performance with practical design. “Future collections will focus on expanding to new designs and fabric options in collaboration with DSM,” adds Mandrino.

“We are very excited to be working with the Moncler team to launch a collection of wonderful garments that allow people to explore the outdoors more safely and for longer periods of time,” states Marcio Manique, Global Business Director, Consumer & Professional Protection, DSM Protective Materials. “We look forward to further supporting Moncler as they develop innovative, high-tech garments that are also sustainably sourced through the introduction of bio-based Dyneema® fabrics.”

In line with DSM’s commitment to protect people and the environment they live in, the world’s first-ever bio-based ultra-high molecular weight polyethylene fiber was introduced in May 2020. Bio-based Dyneema® boasts the same exact performance as conventional Dyneema® with a carbon footprint that is 90 percent lower than generic HMPE. DSM and Moncler’s continued partnership will not only provide high performance, light weight garments for outdoor enthusiasts but also environmentally sustainable alternatives that contribute to a more circular economy.

Bandagenband (c) JUMBO Textil
20.10.2020

JUMBO-Textil: Narrow textiles with a function

Technical textiles fulfil many functions: they hold, they lift, they fixate, they stretch – and they tension. In this function narrow textiles fulfil an important task in product development. And they offer significant advantages over metal or plastic tensioning devices such as springs, clamps or cable ties.

Properties
Textiles are light: a property that plays a central role in modern mobility. Textiles are flexible: from extremely high to extremely low elasticity: the force-elongation behaviour of elasticated narrow textiles can be precisely defined. Depending on the tensioning task to be performed. Textiles tension in tight packaging spaces: elastics can also be used where space is too tight for springs and clasps. Textiles are energy efficient: lightweight, with high tensioning force. Textiles are easy to handle: replace a connector spontaneously and without tools, quickly change the length or roll up and store a supply. And textiles are sustainable: natural fibres and rubber are natural and ecologically degradable raw materials; synthetic fibres can be completely produced from recycled materials.

Technical textiles fulfil many functions: they hold, they lift, they fixate, they stretch – and they tension. In this function narrow textiles fulfil an important task in product development. And they offer significant advantages over metal or plastic tensioning devices such as springs, clamps or cable ties.

Properties
Textiles are light: a property that plays a central role in modern mobility. Textiles are flexible: from extremely high to extremely low elasticity: the force-elongation behaviour of elasticated narrow textiles can be precisely defined. Depending on the tensioning task to be performed. Textiles tension in tight packaging spaces: elastics can also be used where space is too tight for springs and clasps. Textiles are energy efficient: lightweight, with high tensioning force. Textiles are easy to handle: replace a connector spontaneously and without tools, quickly change the length or roll up and store a supply. And textiles are sustainable: natural fibres and rubber are natural and ecologically degradable raw materials; synthetic fibres can be completely produced from recycled materials.

Applications
Development teams in numerous industries leverage these properties for their products. For example, for flexible machine parts in mechanical engineering, for switch contacts in electrical engineering, for oscillation-capable locking systems in the construction industry, for noise- and vibration-free seating systems in the automotive sector or for grip rings in the toys industry.

Tasks
Particularly en vogue today, when we are spending more time than usual in our own homes: applications for narrow textiles in the furniture industry. They go far beyond the area of legacy home textiles: as tensioning elements in armchairs, sofas and chairs, as hinge solutions in cupboards, as fixation elements in extendable or folding tables. Narrow textiles are used for gripping tasks almost everywhere in the living room.

"JUMBO-Textil specialises in precisely implementing the individual requirements for defined force-elongation values of elasticated narrow textiles: we adapt the technical properties of our products precisely to the specific task and the respective raw materials," explains Werner Thiex, Sales Director Automotive. "Precise technical specification plus sustainable raw materials – this is a crucial combination in the 21st century".

Source:

stotz-design.com

With the PFAFF 4520, engineers and technicians from PFAFF have designed a full-automatic production line (CE compliant) for processing multi-layer disposable masks, which meets the requirements of "German engineering" in a unique way. (c) PFAFF
PFAFF 4520: Full-automatic mask production unit
05.10.2020

PFAFF 4520: Full-automatic mask production unit

With the PFAFF 4520, engineers and technicians from PFAFF have designed a full-automatic production line (CE compliant) for processing multi-layer disposable masks, which meets the requirements of "German engineering" in a unique way. The product combines 150 years of expertise in joining textile materials and a concentrated know-how of the PFAFF INDUSTRIAL and KSL brands in the areas of process control, automation and robotics.

The PFAFF 4520 is an investment in a robust and sophisticated production line (MADE IN GERMANY) with an exceptionally reliable working process. In times of Covid-19 it is so important to rely on the right equipment for the mask production and avoid costly readjustments or an unnecessary second investment!

Key facts of the unit:

With the PFAFF 4520, engineers and technicians from PFAFF have designed a full-automatic production line (CE compliant) for processing multi-layer disposable masks, which meets the requirements of "German engineering" in a unique way. The product combines 150 years of expertise in joining textile materials and a concentrated know-how of the PFAFF INDUSTRIAL and KSL brands in the areas of process control, automation and robotics.

The PFAFF 4520 is an investment in a robust and sophisticated production line (MADE IN GERMANY) with an exceptionally reliable working process. In times of Covid-19 it is so important to rely on the right equipment for the mask production and avoid costly readjustments or an unnecessary second investment!

Key facts of the unit:

-    Size of the mask: 175 x 95 mm
-    Output:  3,500 – 4,000 masks per hour
-    1-, 2- or 3 ply processing  (Non-woven/filtration fabric)
-    SPS (PLC) control of the entire mask system
-    Exceedingly quiet working process of the whole unit
-    Ultrasonic welding components from German manufacturers
-    Protective housing for occupational safety of the operator
-    Packing station + printing station for personalized masks (on request)

The machine package also includes important features in the pre- and after sales:

PFAFF technicians ensure the adjustment of the desired customer material (non-woven or similar filter material) and the number of layers (1-, 2-, 3-ply) to the machine and make a "Ready to production" installation of the whole unit at the customer.  A fast service response time in after-sales (by involvement of the PFAFF sales- and service partner on site) ensures a maximum production output.

JUMBO Exoskeleton (c) JUMBO-Textil
01.10.2020

Jumbo Textil: Textile solutions for Exoskeletons

Elastics for power support in medicine and the work environment
People who do physically hard work are relieved; people who are learning how to walk again after an accident or a stroke receive support; people with a handicap gain greater mobility – exoskeletons offer valuable support in many areas. An important component for "power suits": elastics by JUMBO-Textil.

Support construction with and without drive
An exoskeleton is a kind of robot that you wear: a construction of mainly textile components that is slipped over the body and strapped on. Integrated sensors register the body movements. These impulses are converted into electrically driven movements of the exoskeleton, which support or amplify the human movement. In addition, exoskeletons without drive are also being developed: these designs aim to transfer the weight of heavy tools or loads directly into the ground.

Elastics for power support in medicine and the work environment
People who do physically hard work are relieved; people who are learning how to walk again after an accident or a stroke receive support; people with a handicap gain greater mobility – exoskeletons offer valuable support in many areas. An important component for "power suits": elastics by JUMBO-Textil.

Support construction with and without drive
An exoskeleton is a kind of robot that you wear: a construction of mainly textile components that is slipped over the body and strapped on. Integrated sensors register the body movements. These impulses are converted into electrically driven movements of the exoskeleton, which support or amplify the human movement. In addition, exoskeletons without drive are also being developed: these designs aim to transfer the weight of heavy tools or loads directly into the ground.

Tough requirements, individual solutions
Since the skeletons are worn on the body, the textiles and textile components used here need to be skin-friendly and as light as possible. The body's own temperature regulating systems must not be impeded. The contact surfaces must not create pressure points. And the exoskeletons must be individually adaptable to the user's body measurements.

High-tech elastics by JUMBO-Textil offer solutions for the development of exoskeletons – in terms of functionality, safety and wearing comfort: they hold, clamp, close and secure. They relieve and cushion movements and force impact. They illuminate and forward signals. The breathable narrow textiles stretch in both directions as required. They fit snugly on the body and follow every movement. Full-surface hook-and-loop-ready elastic tapes offer a simple, secure and individually adjustable fastening option. JUMBO-Textil consistently uses components made of plastic or light metal for textile components as fastening solutions. As a solution partner for demanding tasks – e.g., in occupational safety – JUMBO-Textil also developes cooled or heated textiles in collaboration with their customers. Also possible: the development of self-luminous narrow textiles – for additional safety.

Source:

(c) stotz-design.com GmbH & Co. KG

JUMBO Exoskelett (c) JUMBO-Textil
01.10.2020

Jumbo Textil: Textile Lösungen für Exoskelette

Elastics für die Kraftunterstützung in Medizin und Arbeitswelt
Menschen, die körperlich schwer arbeiten, werden entlastet; Menschen, die nach einem Unfall oder Schlaganfall wieder zu gehen trainieren, erhalten Support; Menschen mit Handicap gewinnen größere Mobilität – Exoskelette bieten in vielen Bereichen wertvolle Unterstützung. Wichtiges Bauteil für die „Kraft-Anzüge“: Elastics von JUMBO-Textil.

Unterstützungskonstruktion mit und ohne Antrieb
Ein Exoskelett ist eine Art Roboter zum Anziehen: eine Konstruktion aus vorwiegend textilen Komponenten, die über den Körper gestreift und angeschnallt wird. Integrierte Sensoren registrieren die Körperbewegungen. Diese Impulse werden in elektrisch angetriebene Bewegungen des Exoskeletts umgewandelt, die die menschliche Bewegung unterstützen oder verstärken. Daneben werden auch Exoskelette ohne Antrieb entwickelt: Diese Konstruktionen zielen darauf ab, Gewicht von schweren Werkzeugen oder Lasten direkt in den Boden abzuleiten.

Elastics für die Kraftunterstützung in Medizin und Arbeitswelt
Menschen, die körperlich schwer arbeiten, werden entlastet; Menschen, die nach einem Unfall oder Schlaganfall wieder zu gehen trainieren, erhalten Support; Menschen mit Handicap gewinnen größere Mobilität – Exoskelette bieten in vielen Bereichen wertvolle Unterstützung. Wichtiges Bauteil für die „Kraft-Anzüge“: Elastics von JUMBO-Textil.

Unterstützungskonstruktion mit und ohne Antrieb
Ein Exoskelett ist eine Art Roboter zum Anziehen: eine Konstruktion aus vorwiegend textilen Komponenten, die über den Körper gestreift und angeschnallt wird. Integrierte Sensoren registrieren die Körperbewegungen. Diese Impulse werden in elektrisch angetriebene Bewegungen des Exoskeletts umgewandelt, die die menschliche Bewegung unterstützen oder verstärken. Daneben werden auch Exoskelette ohne Antrieb entwickelt: Diese Konstruktionen zielen darauf ab, Gewicht von schweren Werkzeugen oder Lasten direkt in den Boden abzuleiten.

Hohe Anforderungen, individuelle Lösungen
Da die Skelette am Körper getragen werden, müssen die verbauten Textilien und textilen Bauteile hautfreundlich und so leicht wie möglich sein. Die körpereigene Temperaturregulation darf nicht behindert werden. Die Auflageflächen dürfen keine Druckstellen erzeugen. Und die Exoskelette müssen sich individuell an die Körpermaße der Nutzer*innen anpassen (lassen).

Hightech-Elastics von JUMBO-Textil bieten Lösungen für die Entwicklung von Exoskeletten – in puncto Funktionalität, Sicherheit und Tragekomfort: Sie halten, spannen, schließen und sichern. Sie entlasten und dämpfen Bewegungen und Krafteinwirkungen. Sie leuchten und leiten Signale weiter. Die atmungsaktiven Schmaltextilien sind je nach Bedarf in beide Richtungen dehnbar. Sie schmiegen sich eng an den Körper an und machen jede Bewegung mit. Vollflächig klettfähige Elastikbänder bieten eine einfache, sichere und individuell anpassbare Befestigungsmöglichkeit. Für textile Bauteile als Befestigungslösung nutzt JUMBO-Textil konsequent Komponenten aus Kunststoff oder Leichtmetall. Als Lösungspartner für anspruchsvolle Aufgaben – z. B. im Arbeitsschutz – entwickelt JUMBO-Textil ¬mit seinen Kunden gern auch gekühlte oder beheizte Textilien. Ebenso möglich: die Entwicklung selbstleuchtender Schmaltextilien – für zusätzliche Sicherheit.

More information:
Jumbo-Textil Jumbo Exoskelette
Source:

stotz-design.com GmbH & Co. KG

The CHT Group is constantly expanding its sustainable product range for a circular economy according to the Cradle to Cradle principles (c) CHT
Cradle to Cradle principles in the CHT Group
30.09.2020

Cradle to Cradle principles in the CHT Group

  • The CHT Group is constantly expanding its sustainable product range for a circular economy according to the Cradle to Cradle principles

Progress in itself does not necessarily have to be sustainable but in the CHT Group it certainly does. For this reason the company has defined progress more precisely. The developers and chemists from Tübingen show true inventive talent with sustainable innovations.

According to the CHT Group's self-perception, sustainable innovation always includes a responsibility component for the future. With decades of experience along the textile value chain, the globally active CHT Group offers an incomparably wide range of services focusing on sustainable, resource-saving and forward-looking speciality chemicals and the efficient shaping of textile processes.

  • The CHT Group is constantly expanding its sustainable product range for a circular economy according to the Cradle to Cradle principles

Progress in itself does not necessarily have to be sustainable but in the CHT Group it certainly does. For this reason the company has defined progress more precisely. The developers and chemists from Tübingen show true inventive talent with sustainable innovations.

According to the CHT Group's self-perception, sustainable innovation always includes a responsibility component for the future. With decades of experience along the textile value chain, the globally active CHT Group offers an incomparably wide range of services focusing on sustainable, resource-saving and forward-looking speciality chemicals and the efficient shaping of textile processes.

The circular economy takes over a decisive role: In the CHT Group we are convinced that recyclable textile products are the right means to protect resources and reduce the environmental impact. Therefore, our team works closely with textile manufacturers and brands to achieve the common goal of avoiding waste and harmful substances along the textile production process and thus producing more ecological textiles.

The Cradle to Cradle approach provides a trend-setting concept in the textile world that perfectly fits the company's sustainable strategy: Right from the start products shall be created which are suited for the biological (compostable) or technical (recyclable) circulation.

The CHT Group focuses on the development of dyes, pigments and auxiliaries for textile finishing which can be decomposed without leaving any residues and easily returned to the natural circulation.

For textiles which are to be developed and produced strictly according to the Cradle to Cradle principle, CHT offers a comprehensive, constantly growing, compostable range for textile finishing. With 57 textile auxiliaries and 32 dyes/pigments CHT has succeeded in achieving the highest rating, the Platinum Material Health Certificate of the Cradle to Cradle Products Innovation Institute.

These products help textile manufacturers to achieve the Platinum rating in Material Health, one of five categories of the Cradle to Cradle Certified™ product standard on finished textiles. This contributes to giving textiles a positive ecological footprint.

Textiles can be given the decisive distinguishing feature through the Cradle to Cradle Certified™ product standard. Cradle to Cradle Certified™ is the world's leading science-based standard for safe, recyclable and sustainable materials and products. CHT offers the possibility of designing tomorrow's sustainable textiles already today and is therefore part of the Circular Economy.

Cradle to Cradle Certified™ is a registered trademark of the Cradle to Cradle Products Innovation Institute.

Source:

 CHT Germany GmbH

Baldwin Technology (c) Baldwin Technology Company Inc. / Barry-Wehmiller
29.09.2020

Customers invited to learn about Baldwin’s finishing systems at virtual textile events

Baldwin Technology Company Inc. will be offering two virtual opportunities for customers to learn more about the company’s innovative non-contact spray finishing systems. These technologies will be showcased in October during an in-depth webinar event, as well as during the Innovate Textile and Apparel Virtual Trade Show.

The interactive and free webinar “How to Deliver Sustainability with Non-Contact Spray” will be held twice on October 13, with a recording provided for all who register for later viewing. During this event, industry veteran Rick Stanford, Baldwin’s Business Development Leader for textiles, will discuss the sustainable functionality of the Precision Spray and Ahlbrandt Rotor Spray technologies.

Baldwin Technology Company Inc. will be offering two virtual opportunities for customers to learn more about the company’s innovative non-contact spray finishing systems. These technologies will be showcased in October during an in-depth webinar event, as well as during the Innovate Textile and Apparel Virtual Trade Show.

The interactive and free webinar “How to Deliver Sustainability with Non-Contact Spray” will be held twice on October 13, with a recording provided for all who register for later viewing. During this event, industry veteran Rick Stanford, Baldwin’s Business Development Leader for textiles, will discuss the sustainable functionality of the Precision Spray and Ahlbrandt Rotor Spray technologies.

The Innovate Textile and Apparel Virtual Trade Show will take place online October 15 to 30. In Baldwin’s virtual booth, the company will showcase its non-contact spray systems for finishing and remoistening. Its TexCoat G4, TexMoister G2 and Ahlbrandt Rotor Spray technologies are designed to save chemistry, time and production costs, while enabling sustainable textile production.

“We are excited to present our revolutionary non-contact spray systems during the webinar and the virtual Innovate Textile and Apparel show,” said Stanford. “Participants will learn how non-contact spray has become a game-changing technology in sustainable textile finishing. It dramatically cuts chemical waste and energy consumption, while increasing productivity and quality. We will show attendees how our systems work and in what applications they are ideal for, as well as take questions. These are great opportunities to experience innovations that drastically improve both the process and product quality, while saving time and chemistry, and contributing to a more sustainable future.”

More information:
spray application
Source:

Baldwin Technology Company Inc. / Barry-Wehmiller

Photo: Hexcel Corporation
14.09.2020

True Temper Sports partners with Hexcel

True Temper Sports, leading designers and manufacturers of golf shafts, has chosen to partner with Hexcel on its latest product line, the HZRDUS Smoke Black RDX. The HZRDUS Smoke Black RDX is the first golf shaft to use Hexcel’s new HexTow® HM54 carbon fiber, which is ideal for recreational applications.

HZRDUS has emerged as one of the most dominant shafts at all levels of golf over the past 50 years, and the RDX is the next evolution in the HZRDUS line. By partnering with Hexcel to incorporate HexTow HM54, True Temper has taken its designs to the next level. HZRDUS Smoke Black RDX is the first golf shaft to use HexTow HM54 high modulus carbon fiber and combines it with high tensile strength HexTow® IM2C carbon fiber to provide the ideal blend of stiffness and stability desired by engineers to build into the HZRDUS shafts.

True Temper Sports is the No. 1 shaft in golf. It has been used to win more professional golf tournaments than any other shaft manufacturer. True Temper Sports offer shafts under the True Temper, Project X, ACCRA, Aerotech, and Grafalloy brands.

True Temper Sports, leading designers and manufacturers of golf shafts, has chosen to partner with Hexcel on its latest product line, the HZRDUS Smoke Black RDX. The HZRDUS Smoke Black RDX is the first golf shaft to use Hexcel’s new HexTow® HM54 carbon fiber, which is ideal for recreational applications.

HZRDUS has emerged as one of the most dominant shafts at all levels of golf over the past 50 years, and the RDX is the next evolution in the HZRDUS line. By partnering with Hexcel to incorporate HexTow HM54, True Temper has taken its designs to the next level. HZRDUS Smoke Black RDX is the first golf shaft to use HexTow HM54 high modulus carbon fiber and combines it with high tensile strength HexTow® IM2C carbon fiber to provide the ideal blend of stiffness and stability desired by engineers to build into the HZRDUS shafts.

True Temper Sports is the No. 1 shaft in golf. It has been used to win more professional golf tournaments than any other shaft manufacturer. True Temper Sports offer shafts under the True Temper, Project X, ACCRA, Aerotech, and Grafalloy brands.

More information:
Hexcel Golf
Source:

Hexcel Corporation

20.08.2020

Energy efficiency in textile dyeing and finishing - VDMA continues technology webtalks

  • Energy efficiency will be the topic of VDMA’s next edition of Textile Machinery Webtalks on 27 August 2020 (2 pm - 4 pm CEST).  

Efficient energy management is of increasing importance in textile dyeing and finishing. Innovative machine designs with minimal water and energy consumption as well as the recovery and use of the heat energy produced in the processes represent valuable potential savings for any modern company.

The presenters at a glance:

  • Energy efficiency will be the topic of VDMA’s next edition of Textile Machinery Webtalks on 27 August 2020 (2 pm - 4 pm CEST).  

Efficient energy management is of increasing importance in textile dyeing and finishing. Innovative machine designs with minimal water and energy consumption as well as the recovery and use of the heat energy produced in the processes represent valuable potential savings for any modern company.

The presenters at a glance:

  • Ludger Sommer, Thies, will show how to manage heat energy in wetprocessing.
  • Benjamin Schnabel, Brückner Textilmaschinen is going to demonstrate how to make one of the most energy consuming processes in textile manufacturing more sustainable, eco-friendly and cost effective.
  • Fabian Buckenmayer, PLEVA Sensors and Controls will inform about the specific opportunities for an energy-efficient textile production via measuring and controlling process parameters.  

After the presentations, the experts will be available to answer the participants' questions. The webtalk series is very well received by the textile industry. During the first three webtalks, VDMA welcomed almost 900 registered participants from more than 50 countries. Registration is still possible.

Source:

VDMA e. V. Textilmaschinen

 

Sustainable leadership for GtA with new Monforts Montex wide width lines (c) AWOL Media
GtA Managing Director Andreas Niess
27.07.2020

Sustainable leadership for GtA with new Monforts Montex wide width lines

Following the successful commissioning of two new Monforts Montex wide-width stenter lines and additional environmental management equipment at its plant in Germany, GtA – Society for Textile Equipment GmbH – is aiming to be the first textile finishing company to become entirely CO2-neutral in the manufacture of all of its products by 2025.

GtA is a partner company to Germany’s large-format digital printing fabric leader, Georg and Otto Friedrich GmbH, which has has this year been able to considerably expand its portfolio due to the new Monforts lines.

Headquartered in Gross-Zimmern, close to Frankfurt, Georg and Otto Friedrich GmbH and its partners in Germany have an annual production of 37 million square metres of warp knits for a range of end-use applications, including garments, automotive interiors and technical textiles, but increasingly with a concentration on digital printing substrates.

Fault-free textiles

Following the successful commissioning of two new Monforts Montex wide-width stenter lines and additional environmental management equipment at its plant in Germany, GtA – Society for Textile Equipment GmbH – is aiming to be the first textile finishing company to become entirely CO2-neutral in the manufacture of all of its products by 2025.

GtA is a partner company to Germany’s large-format digital printing fabric leader, Georg and Otto Friedrich GmbH, which has has this year been able to considerably expand its portfolio due to the new Monforts lines.

Headquartered in Gross-Zimmern, close to Frankfurt, Georg and Otto Friedrich GmbH and its partners in Germany have an annual production of 37 million square metres of warp knits for a range of end-use applications, including garments, automotive interiors and technical textiles, but increasingly with a concentration on digital printing substrates.

Fault-free textiles

A new standard in pure white, 100% clean and fault-free textile substrates has been demanded by this market in recent years due to the rapid growth in digitally-printed banners and billboards – often referred to as ‘soft signage’.

The substrates of choice for digital printing are 100% polyester warp knits which are resilient and allow excellent take-up of inks, and vibrant colours and clear and precise images to be achieved with digital printing techniques. The knitted construction also has the advantage of elasticity, which is a plus in terms of flexibility for installers.

Critically, the warp knitted fabrics have extremely smooth surfaces which is becoming increasingly important due to the general move away from PVC coatings which were the standard in the past.

It was to finish these fabrics for Georg and Otto Friedrich GmbH as well as providing such services for many other customers, that the GtA plant in Neresheim, Baden-Württemberg, was established in 2015.

The purpose-built plant on a greenfield site was initially equipped with a fully-automated, 72 metre long Monforts installation comprising a washing machine integrated with a 3.6 metre wide, seven-chamber Montex stenter. The line quickly went from single to double shift production and then to 24/7 operation  to meet demand.

Expanded widths

Building on the success of this installation, GtA has now installed two more Montex stenter lines – both in expanded working widths of 5.6 metres and purpose-built at Montex GmbH in Austria.

A six-chamber Montex unit is combined with a washing machine to guarantee the purity of the substrates, while a five-chamber line is integrated with a wide-width coating machine. This new coating capability at GtA has led to a number of new additions to the Georg and Otto Friedrich DecoTex range for digital printing, including wide width fabrics with flame retardant, antimicrobial and non-slip finishes.

The new Montex stenter lines benefit from all of the latest innovations from Monforts, including the Smart Sensor system for the optimised maintenance planning of key mechanical wear components on the stenters. A comprehensive overview of the condition of all parts at any time is now available for operators within the highly intuitive Qualitex visualization software.

With Qualitex, all article-specific settings can be stored and the formulations for thousands of treatment processes called up again at any time. Individual operators can also personalise their dashboards with the most important machine functions and process parameters.

Environmental commitment

GtA is run by a seasoned team of textile professionals led by Managing Director Andreas Niess.

“We have received excellent service from Monforts from the outset and we were happy to place the order for these two new lines as part of our ongoing cooperation,” he says. “With all of the latest Monforts advances in technology we are fully in control of all production and quality parameters with these lines, as part of our significant commitment to innovative environmental technology.”

The GtA plant, which operates in near-cleanroom conditions, has also been equipped with proprietary technology to fully exploit the Monforts air-to-air heat recovery systems that are now standard with Montex stenters.

“Around 30 per cent of our investment volume at the site goes to energy-saving measures and we are sure that this commitment is worthwhile,” Mr Niess says. “As an example, our integrated heat recovery system fully exploits the waste heat from the process exhaust air and the burner exhaust gases of the Monforts stenters, allowing us to achieve an exhaust air temperature of  between 30 to 34°C, compared to what would conventionally be between 140 to 160°C. Another focus has been on exhaust air purification technology and here too, the latest technology has been installed with integrated heat recovery elements.”

This, he adds, saves 52% of the energy that would normally be used – equating to 5,800,000 KwH per year. The necessary audits for energy-efficient companies are also carried out annually.

In addition, GtA has purpose-designed the automatic chemical mixing and dosing systems that feed the padders for the key treatments that are carried out on the fabrics through the stenters.

The company is going further, however, in its pursuit of clean production and raw materials.

"We want to be an asset and not a burden on our immediate environment and therefore do not use any additives containing solvents," Mr Niess says. “We were the first to use fully halogen-free flame retardant chemistry, and we use bio-based, finely ground alumina products for the washing process instead of surfactants. PES polyester yarns made from recycled material are also increasingly used and the latest additions to our raw materials portfolio, the RC-Ocean products, are made from recycled sea plastic.

“We are now planning a combined heat and power plant for the production of electrical energy and heat and we will also build a photovoltaic system that converts solar radiation into electrical energy. GtA wants to be the first textile finishing company to be CO2-neutral in the manufacture of all of its products by 2025. The complete heat supply and heating for the 13,000 square metre production hall, as well as the office building and the hot water supply for the domestic water, is already energy-neutral. We are convinced that this commitment will pay off in the long term and our positive business development proves that sustainability and business profitability are perfectly compatible.”

In addition to the products for Georg and Otto Friedrich GmbH, GtA  offers its manufacturing capacities for other customers as a contract service.

All products are manufactured in accordance with Öko-Tex Standard 100, product class 1 and the company is also involved in the research and development of new sustainable manufacturing processes, in cooperation with many regional universities and funding project partners.

Source:

AWOL Media for A. Monforts Textilmaschinen GmbH & Co. KG

Bemberg™ Natural Stretch linings by Gianni Crespi Foderami : “the preciousfabric that naturally stretches without tricks” (c) Bemberg™
Bemberg™ Natural Stretch by Gianni Crespi Foderami s.r.l
27.07.2020

Bemberg™ Natural Stretch linings by Gianni Crespi Foderami

  • “the preciousfabric that naturally stretches without tricks”

Bemberg™ Natural Stretch, the ground-breakingprecious fabric by Gianni Crespi Foderami s.r.l. is the 100% sustainable lining fabric created from a cutting-edge highly engineered process Specialized  in  the  creation  of linings for high quality menswear,   womenswear   and childrenwear,  Gianni  Crespi Foderami  s.r.l.has  teamed  up with Bemberg™, the Japanese brand of regenerated cellulose fibers by leading    materials manufacturer  Asahi  Kasei, to develop a precious 100% Bemberg™ lining with outstanding stretch performance  woven in its DNA.

  • “the preciousfabric that naturally stretches without tricks”

Bemberg™ Natural Stretch, the ground-breakingprecious fabric by Gianni Crespi Foderami s.r.l. is the 100% sustainable lining fabric created from a cutting-edge highly engineered process Specialized  in  the  creation  of linings for high quality menswear,   womenswear   and childrenwear,  Gianni  Crespi Foderami  s.r.l.has  teamed  up with Bemberg™, the Japanese brand of regenerated cellulose fibers by leading    materials manufacturer  Asahi  Kasei, to develop a precious 100% Bemberg™ lining with outstanding stretch performance  woven in its DNA.

Bemberg™ Natural    Stretch was   achieved   thanks   to the leading  Italian  manufacturer’s ability  to  vertically  set  up,  control,  engineer  and  design  a  whole  integrated  production process, ranging from sectional warping the shipment service.Bemberg™  Natural  Stretch  achieve  maximum  flexibility,  resistance,  and  comfort  without the use of elastomers and polyesters. How? The secret is in the process indeed.Elasticity is achieved thanks to a complex way of yarn twisting, weaving, and finishing.Bemberg™  yarns  are  smart,  responsible  and  high-tech.  Made  from  a  cotton  linter  bio-utility material,  the  natural  derived  source  does  not  deplete  forestry  resources. 

The company’s matchless, high-tech natural fibers are characterized by a unique touch and feel as well as unique performances such as moisture control and is antistatic.Bemberg™Natural Stretch: a smart solution for contemporary living.

Source:

GB Network

Oerlikon Barmag: Largest single industrial yarn order (c) Oerlikon Barmag
And the new Oerlikon Barmag systems at Fujian Billion will also be used to manufacture yarns for the automotive sector.
23.07.2020

Oerlikon Barmag: Largest single industrial yarn order

  • Textile yarn manufacturer Fujian Billion kicks off industrial yarn production

Remscheid – from the end of this year, the southern Chinese yarn manufacturer Fujian Billion Polymerization Technology Industrial Co., Ltd. will be producing industrial yarns using systems supplied by Oerlikon Barmag. With this, the company – considered to be the largest polyester yarn manufacturer in southern China – is now also entering the industrial yarn market.

With 124 positions and a capacity of around 250,000 tons per annum, this project is the largest single industrial yarn order placed with Oerlikon Barmag to date. And with this order, the southern Chinese yarn manufacturer instantly positions itself as one of the ten largest Chinese industrial yarn producers. “The systems at Fujian Billion come with our latest draw unit design, which has been optimized for use with Oerlikon Barmag automation solutions”, comments Roy Dolmans, Head of Development for the Industrial Yarn Process. As a result, the newcomer in the industrial yarn sector is now superbly equipped for the future.

  • Textile yarn manufacturer Fujian Billion kicks off industrial yarn production

Remscheid – from the end of this year, the southern Chinese yarn manufacturer Fujian Billion Polymerization Technology Industrial Co., Ltd. will be producing industrial yarns using systems supplied by Oerlikon Barmag. With this, the company – considered to be the largest polyester yarn manufacturer in southern China – is now also entering the industrial yarn market.

With 124 positions and a capacity of around 250,000 tons per annum, this project is the largest single industrial yarn order placed with Oerlikon Barmag to date. And with this order, the southern Chinese yarn manufacturer instantly positions itself as one of the ten largest Chinese industrial yarn producers. “The systems at Fujian Billion come with our latest draw unit design, which has been optimized for use with Oerlikon Barmag automation solutions”, comments Roy Dolmans, Head of Development for the Industrial Yarn Process. As a result, the newcomer in the industrial yarn sector is now superbly equipped for the future.

The well-known company – located in the Chinese Fujian Province – will be predominantly manufacturing high-tenacity (HT) and low-shrinkage (LS) yarns from the end of this year. These sophisticated yarns are deployed both in the automotive, geotextiles and safety sectors (HT yarns) and in the manufacture of coated industrial textiles such as truck tarpaulins and tents (LS yarns).

Founded in Jinjiang, Quanzhou, in 2003, Fujian Billion Polymerization Technology Industrial Co., Ltd. is one of the top 500 privately-owned enterprises in China. Annually, the yarn manufacturer produces around 2.8 million tons of filament yarn and ethylene-propylene side-by-side (ES) fibers.