From the Sector

Reset
32 results
20.09.2023

Stahl: Second consecutive Platinum EcoVadis rating

Stahl, a leading provider of coating technologies for flexible substrates, has been awarded a Platinum rating by the sustainability rating agency EcoVadis for the second consecutive year. For the 2023 EcoVadis assessment, Stahl’s rating increased by three points compared to its 2022 score, reflecting the company’s improved performance in the area of labour and human rights.

Stahl, a leading provider of coating technologies for flexible substrates, has been awarded a Platinum rating by the sustainability rating agency EcoVadis for the second consecutive year. For the 2023 EcoVadis assessment, Stahl’s rating increased by three points compared to its 2022 score, reflecting the company’s improved performance in the area of labour and human rights.

Progress in the Labour & Human Rights category
The 2023 EcoVadis assessment revealed the progress Stahl is making in the Labour & Human Rights category, where Stahl scored 90 out of a possible 100 points. This reflects the company's recent work to improve its health and safety management systems. In particular, the majority of Stahl’s global manufacturing sites are now ISO 45001 certified and more than 94% are ISO 14001 certified. Stahl has also taken steps to improve its approach to employee career development and well-being. These include the creation of an individual career plan for all employees and the introduction of a new company-wide employee satisfaction survey.
 
Stahl moves forward with 2030 ESG ambitions
Stahl has set a 2030 target to maintain its EcoVadis Platinum rating by working closely with its value chain partners to help them reduce their impact. In 2022, 83% of Stahl’s total spend on raw materials was sourced from EcoVadis-rated suppliers.

EcoVadis is a globally recognised, evidence-based rating platform that assesses the performance of more than 90,000 organisations against key sustainability criteria across four categories: Environment, Labour & Human Rights, Ethics and Sustainable Procurement. For the 2023 EcoVadis assessment, Stahl received an overall score of 80 out of 100, up from 77 in 2022. This score indicates an advanced level of sustainability maturity and ensures that Stahl retains its Platinum rating. This is awarded to the top 1% of companies assessed by EcoVadis. Stahl achieved its first Platinum rating in 2022, having undergone its first EcoVadis assessment in 2015.

More information:
EcoVadis Stahl
Source:

Stahl

20.09.2023

TMAS Members at ITMA Asia + CITME 2023

Members of TMAS – the Swedish Textile Machinery Association – will be taking part in the forthcoming ITMA Asia + CITME exhibition, taking place from November 19-23 2023 at the National Exhibition and Convention Centre in Shanghai, China.

Weaving
In the area of weaving, 93% of the 114,000 new looms delivered in 2022 went to Asia, according to the latest figures from the International Textile Manufacturers Federation (ITMF), with China the top destination, followed by India.
As a result, TMAS members like Vandewiele Sweden AB and Eltex have a huge market to address that has been established over many decades.

Vandewiele Sweden AB benefits from all of the synergies and accumulated know-how of the market-leading Vandewiele Group, supplying weft yarn feeding and tension control units for weaving looms to the majority of weaving machine manufacturers. It also retrofits its latest technologies to working mills to enable instant benefits in terms of productivity and control.

Members of TMAS – the Swedish Textile Machinery Association – will be taking part in the forthcoming ITMA Asia + CITME exhibition, taking place from November 19-23 2023 at the National Exhibition and Convention Centre in Shanghai, China.

Weaving
In the area of weaving, 93% of the 114,000 new looms delivered in 2022 went to Asia, according to the latest figures from the International Textile Manufacturers Federation (ITMF), with China the top destination, followed by India.
As a result, TMAS members like Vandewiele Sweden AB and Eltex have a huge market to address that has been established over many decades.

Vandewiele Sweden AB benefits from all of the synergies and accumulated know-how of the market-leading Vandewiele Group, supplying weft yarn feeding and tension control units for weaving looms to the majority of weaving machine manufacturers. It also retrofits its latest technologies to working mills to enable instant benefits in terms of productivity and control.

Yarn and sewing thread monitoring
With nearly 70 years of expertise in yarn sensor technology, Eltex of Sweden AB has been at the forefront of new product development. Its EYE and EyETM systems are capable of accurately and efficiently monitoring the movement and tension of more than 1,000 yarns simultaneously. These systems are suitable for various applications and fibre types, including warping, winding, multiaxial weaving and new material applications.

Eltex sewing tension monitors, such as the ETM422, have been well-received by customers. This device can monitor the tension of sewing threads in real time, effectively improving the quality and safety of sewn products. Particularly in China's rapidly growing automotive manufacturing sector, the ETM422 has seen widespread use to meet the industry’s escalating demands for product safety and quality.

Dyeing and finishing
“Digitalisation, automation and AI have become the key enablers for sustainable gains across the entire textile industry and so much has been achieved in the past few years, especially in terms of automation,” says TMAS secretary general Therese Premler-Andersson. “One area in which TMAS members are really making a difference right now, is in replacing water and energy-intensive technologies for the dyeing and finishing processes with new digital technologies.”

The TexCoat G4 non-contact spray technology for textile finishing and remoistening, for example, will be showcased in Shanghai by Baldwin. It not only reduces water, chemicals and energy consumption, but also provides the flexibility to adapt to a customer’s requirements in terms of single and double-sided finishing applications. The TexCoat G4 can reduce water consumption by as much as 50% compared to traditional padding application processes.

seat belts Photo Oerlikon Textile GmbH & Co. KG
07.09.2023

Oerlikon Polymer Processing Solutions at the Techtextil India 2023

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

More polyester for airbags
The yarns used in airbags are made predominantly from polyamide. As a result of increasingly diverse airbag applications and also the increasing size of the systems used, polyester is today used as well, depending on the application requirements and cost-benefit considerations. Against this background, the Oerlikon Barmag technol-ogies make an invaluable contribution. In addition to high productivity and low energy consumption, they particularly excel in terms of their stable production processes. Furthermore, they comply with every high quality standard for airbags, which – as in the case of virtually all other textile products used in vehicle construction – must provide the highest level of safety for vehicle occupants - without any loss of function in any climate and for the lifetime of the vehicle

Buckle up!
Seat belts have to withstand tensile forces in excess of three tons and simultaneously stretch in a controlled manner in emergencies in order to reduce the load in the event of impact. A seat belt comprises approximately 300 filament yarns, whose individual, high-tenacity yarn threads are spun from around 100 individual filaments. “With our unique, patented Single Filament Layer Technology, we offer a sophisticated and simultaneously gentle high-tenacity (HT) yarn process for manufacturing these lifesavers and other applications made from industrial yarn”, explains André Wissenberg, Head of Marketing.

Road reinforcement using geotextiles
Low stretch, ultra-high tenacity, high rigidity – industrial yarns offer outstanding properties for the demand-ing tasks carried out by geotextiles; for instance, as geogrids in the base course system under asphalt. Normally, geotextiles have extremely high yarn titers of up to 24,000 denier. Oerlikon Barmag system concepts simultaneously manufacture three filament yarns of 6,000 denier each. Due to the high spinning titers, fewer yarns can be plied together to the required geo-yarn titer in a more cost- and energy-efficient manner.

hycuTEC –  quantum leap for filter media
In the case of its hycuTEC hydro-charging solution, Oerlikon Neumag offers a new technology for charging nonwovens that increases filter efficiency to more than 99.99%. For meltblown producers, this means material savings of 30% with significantly superior filter performance. For end users, the consequence is noticeably improved comfort resulting from significantly reduced breathing resistance. With its considerably lower water and energy consumption, this new development is also a future-proof, sustainable technology.

Source:

Oerlikon Textile GmbH & Co. KG

FET’s stand at ITMA 2023, Milan Photo Fibre Extrusion Technology
FET’s stand at ITMA 2023, Milan
08.08.2023

FET completes sequence of exhibitions for 2023

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has completed an international series of exhibitions, culminating in a very successful ITMA 2023, the world’s largest international textile and garment technology exhibition, which took place in Milan, Italy in June.

 “This was a very hectic period for FET, organising participation in three exhibitions in Europe and Asia over a period of less than four months” commented FET’s Managing Director Richard Slack. “However, this provides a great opportunity for smaller specialist companies like FET to raise our profile on the international stage, showing what we can offer, alongside major corporations. Being able to meet so many customers face-to-face, post pandemic also indicates a welcome return to normal business relationships.”

Prior to this was INDEX 23 in April, the world’s leading nonwovens exhibition in Geneva. The exhibition season began earlier in the year with the “Green Textile and Innovation Technology Forum and Exhibition” in Hong Kong, taking a small booth to support the event and FET’s official agent in the region, Chemtax.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has completed an international series of exhibitions, culminating in a very successful ITMA 2023, the world’s largest international textile and garment technology exhibition, which took place in Milan, Italy in June.

 “This was a very hectic period for FET, organising participation in three exhibitions in Europe and Asia over a period of less than four months” commented FET’s Managing Director Richard Slack. “However, this provides a great opportunity for smaller specialist companies like FET to raise our profile on the international stage, showing what we can offer, alongside major corporations. Being able to meet so many customers face-to-face, post pandemic also indicates a welcome return to normal business relationships.”

Prior to this was INDEX 23 in April, the world’s leading nonwovens exhibition in Geneva. The exhibition season began earlier in the year with the “Green Textile and Innovation Technology Forum and Exhibition” in Hong Kong, taking a small booth to support the event and FET’s official agent in the region, Chemtax.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide and the variety of these three exhibitions illustrates FET’s scope in the industry.

More information:
Fibre Extrusion Technology
Source:

Fibre Extrusion Technology

(c) Mimaki
09.06.2023

Mimaki launches Tiger600-1800TS Dye Sublimation Printer

Mimaki Europe, a provider of industrial inkjet printers, cutting plotters, and 3D printers, is debuting the new Tiger600-1800TS, Mimaki’s most productive sublimation transfer printer, on its stand at ITMA 2023. This latest high-speed, compact and robust roll-to-roll inkjet printer has been designed to accelerate the analogue to digital transformation within the textile printing industry.

The Tiger600-1800TS boasts a maximum printing speed of 550 m2/h (143% faster than the previous model) owing to the renovated high-speed printhead and Mimaki’s proprietary image quality enhancement technologies. The printer’s size has also been halved compared to the previous system, with the paper mounting and winding system both located at the back of the machine. This smaller footprint enables customers to easily install multiple units to meet fluctuating demand, whilst also increasing overall production capacity.

Mimaki Europe, a provider of industrial inkjet printers, cutting plotters, and 3D printers, is debuting the new Tiger600-1800TS, Mimaki’s most productive sublimation transfer printer, on its stand at ITMA 2023. This latest high-speed, compact and robust roll-to-roll inkjet printer has been designed to accelerate the analogue to digital transformation within the textile printing industry.

The Tiger600-1800TS boasts a maximum printing speed of 550 m2/h (143% faster than the previous model) owing to the renovated high-speed printhead and Mimaki’s proprietary image quality enhancement technologies. The printer’s size has also been halved compared to the previous system, with the paper mounting and winding system both located at the back of the machine. This smaller footprint enables customers to easily install multiple units to meet fluctuating demand, whilst also increasing overall production capacity.

A further environmental benefit of the Tiger600-1800TS will be the bluesign® certification of its MLSb510 series sublimation transfer inks. This certificate, expected to be awarded in June 2023, will provide assurance that these inks are of highest quality combined with due consideration for the safety of consumers and print operators, and environmental conservation, and therefore, contributing to the sustainability of the textile industry.

Mimaki’s expertise in developing reliable, easy-to-use and efficient solutions has also not faltered in the development of the Tiger600-1800TS. The printer’s ink tanks can be replaced without interrupting the printing process, minimising down time. Maintenance of the printer is also reduced with its roller paper feeding method eliminating the need for the application of adhesives onto a belt.

Source:

Mimaki Europe

07.06.2023

Mimaki at ITMA 2023

Mimaki Europe, a provider of industrial inkjet printers, cutting plotters, and 3D printers, has announced the introduction of two technologies at ITMA 2023: a Textile Pigment Transfer Printing System and the Neo-Chromato Process. These innovations are showcased for the first time, and ahead of commercial availability, at the exhibition in Milan, Italy, solidifying Mimaki's commitment to sustainable and environmentally friendly solutions in the textile printing industry.

Mimaki’s New Textile Pigment Transfer Printing System
The transfer printing method is more sustainable than both analogue and digital textile dye printing methods with zero water consumption and substantially lower CO2 emissions. The system comprises three essential elements: the Textile Pigment Ink, the Transfer System and the Textile Pigment Transfer paper, Texcol®.

Mimaki Europe, a provider of industrial inkjet printers, cutting plotters, and 3D printers, has announced the introduction of two technologies at ITMA 2023: a Textile Pigment Transfer Printing System and the Neo-Chromato Process. These innovations are showcased for the first time, and ahead of commercial availability, at the exhibition in Milan, Italy, solidifying Mimaki's commitment to sustainable and environmentally friendly solutions in the textile printing industry.

Mimaki’s New Textile Pigment Transfer Printing System
The transfer printing method is more sustainable than both analogue and digital textile dye printing methods with zero water consumption and substantially lower CO2 emissions. The system comprises three essential elements: the Textile Pigment Ink, the Transfer System and the Textile Pigment Transfer paper, Texcol®.

Texcol® is a transfer paper pioneered by Dutch paper manufacturer, Coldenhove that allows for transferring a digital print using an environmentally friendly 3-step transfer process to create a vibrant application on a wide range of materials, including natural fibres. The design is initially printed onto the paper using a customised TS330-1600 - Mimaki’s high-volume, high-quality dye sublimation printer - and Mimaki’s new pigment inks developed for the process. The module that adapts the TS330-1600 will be available as an option for existing and new Mimaki customers in Q3 2023 but is being previewed on the Mimaki stand at ITMA.

Mimaki’s new Textile Pigment Ink is undergoing bluesign certification before commercial availability. bluesign is a renowned certification programme that ensures the highest levels of safety, environmental friendliness, and sustainability within the textile and apparel industry.

As the final stage, the Texcol® paper undergoes a one-step waterless process, through an entry-level calendar machine onto the textile of choice.

Cyclical textile technology
Mimaki is also debuting its new, unique Neo-Chromato Process, which revolutionises the reuse of coloured polyester textiles.

By decolourising polyester textiles that have been dyed using dye sublimation technologies, this innovative process allows materials to be re-printed or dyed immediately, contributing to a smaller circular economy. There is no limit to how many times reused polyester can be treated with the Neo-Chromato Process and the process itself minimises water usage and pollution by enabling the disposal of the absorbent paper and decolouring solvents used in the process as burnable waste.

Source:

Mimaki Europe B.V.

(c) SHIMA SEIKI MFG., LTD.
24.05.2023

SHIMA SEIKI at ITMA 2023

SHIMA SEIKI MFG., LTD. of Wakayama, Japan, will be participating in the International Textile Machinery Association exhibition (ITMA 2023) in Milan, Italy this June.

The Next-Generation group of machines is represented by the letter ‘R,’ first used in the SWG-XR WHOLEGARMENT® knitting machine launched last year in time for SHIMA SEIKI's 60th Anniversary event. The SWG-XR name is based on the original SWG-X four-needlebed WHOLEGARMENT® knitting machine which debuted at the Milan ITMA in 1995. As ITMA returns to Milan, SWG-XR refers to its origin as a pioneering invention that launched a new genre of seam-free knits produced in one entire piece. At the same time it represents a renewal of SHIMA SEIKI's commitment to its customers, the industry and the environment, as all aspects of the machine were re-evaluated in terms of its purpose, the way it is manufactured, how it is used and how it impacts the environment. The same renewal has been applied to the rest of the company's product lineup, and it is this renewal that becomes the core of SHIMA SEIKI's exhibition concept for ITMA 2023: "Reborn."

SHIMA SEIKI MFG., LTD. of Wakayama, Japan, will be participating in the International Textile Machinery Association exhibition (ITMA 2023) in Milan, Italy this June.

The Next-Generation group of machines is represented by the letter ‘R,’ first used in the SWG-XR WHOLEGARMENT® knitting machine launched last year in time for SHIMA SEIKI's 60th Anniversary event. The SWG-XR name is based on the original SWG-X four-needlebed WHOLEGARMENT® knitting machine which debuted at the Milan ITMA in 1995. As ITMA returns to Milan, SWG-XR refers to its origin as a pioneering invention that launched a new genre of seam-free knits produced in one entire piece. At the same time it represents a renewal of SHIMA SEIKI's commitment to its customers, the industry and the environment, as all aspects of the machine were re-evaluated in terms of its purpose, the way it is manufactured, how it is used and how it impacts the environment. The same renewal has been applied to the rest of the company's product lineup, and it is this renewal that becomes the core of SHIMA SEIKI's exhibition concept for ITMA 2023: "Reborn."

Of the 9 knitting machines SHIMA SEIKI is exhibiting, 8 machines will be part of the Next-Generation lineup, ranging from WHOLEGARMENT® knitting machines and computerized flat knitting machines to glove knitting machines. More than 300 items will be on display as proposals for knitted applications in various fields ranging from fashion, sports, shoes, bags and accessories to medical, safety, automotive, aeronautical and other wearable and industrial textile applications.

In addition to machine technology, SHIMA SEIKI's SDS-ONE APEX series computer graphic design system and software will be shown with their latest software upgrades that feature significant improvements in knit programming, 3D functions and speed. Demonstrations will be available for a comprehensive fashion tech solutions package based on realistic virtual sampling and supported by various digital solutions and web services.

More information:
Shima Seiki ITMA 2023 ITMA
Source:

SHIMA SEIKI MFG., LTD.

(c) FET
FET’s Director of Technology, Mark Smith and new R&D Manager, Dr Jonny Hunter
17.05.2023

FET strengthens its technical team

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has strengthened its technical team with the appointment of Dr Jonny Hunter as Research & Development Manager. Hunter brings a wealth of academic credentials to the department, including a Master’s in Medicinal and Biological Chemistry and a PhD in Sustainable Chemistry. This academic background is complemented by over 10 years’ R&D experience in industry, including FMCG and, in particular, medical devices, which encompasses wound care, the medical device manufacturing process and regulatory environment.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has strengthened its technical team with the appointment of Dr Jonny Hunter as Research & Development Manager. Hunter brings a wealth of academic credentials to the department, including a Master’s in Medicinal and Biological Chemistry and a PhD in Sustainable Chemistry. This academic background is complemented by over 10 years’ R&D experience in industry, including FMCG and, in particular, medical devices, which encompasses wound care, the medical device manufacturing process and regulatory environment.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications, so the above research and industrial sectors have great relevance to the company’s focus on the international stage. A significant market for FET’s meltspinning equipment is medical devices, so in-house expertise in this area is a vital commodity. FET is also at the forefront of innovation to promote and develop sustainable fibres, so technical knowhow in sustainability is also essential. In this, Jonny Hunter has considerable experience and has in the past lead a number of innovation projects in sustainable chemistry and management.

This fresh input of knowledge and experience will benefit FET’s customers in their own drive for sustainable innovation in fibre technology. Mark Smith, the previous R&D Manager, is taking a short sabbatical and will be returning in a more strategic role as FET’s Director of Technology, so his continued presence will further contribute to FET’s breadth of technical expertise.

FET has also expanded in a number of other departments to reflect the rapid growth in sales over recent years. Mike Urey is the new Sales Engineer, bringing a wide industrial experience and strengthening all aspects of business development. Three new mechanical and electronic engineers and a new appointment in the design department all combine to take the company forward and sustain growth.

Source:

Fibre Extrusion Technology Ltd (FET)

(c) FET
FET Melt Spinning system
05.05.2023

FET exhibits at ITMA 2023

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting at ITMA 2023, taking place between 8-14 June Milan, Italy. FET has commissioned its biggest ever stand to reflect the company’s commitment to this event and the textile industry.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide. Central to FET’s success has always been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques.

The new FET Fibre Development Centre will further improve this service, allowing clients to trial their own products in an ideal environment. Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients worldwide and will enable continued growth of the company through innovation.  

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting at ITMA 2023, taking place between 8-14 June Milan, Italy. FET has commissioned its biggest ever stand to reflect the company’s commitment to this event and the textile industry.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide. Central to FET’s success has always been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques.

The new FET Fibre Development Centre will further improve this service, allowing clients to trial their own products in an ideal environment. Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients worldwide and will enable continued growth of the company through innovation.  

For the first time at ITMA, the new FET Spunbond range will feature. This system provides opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents. Recent customers to benefit from FET spunbond systems include the University of Leeds and an integrated metlblown / spunbond system at the University of Erlangen-Nuremberg in Germany.

FET’s established expertise remains in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. FET has successfully processed almost 30 different polymer types in multifilament, monofilament and non-woven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

A major theme at ITMA will again be sustainability. The FET range of laboratory and pilot extrusion lines is ideally suited for both process and end product development of sustainable materials. “This year we are celebrating FET’s 25th anniversary” says FET Managing Director Richard Slack “and we look forward to meeting customers at ITMA, where we can discuss their fibre technology needs.”

Source:

Fibre Extrusion Technology Ltd

Photo Fibre Extrusion Technology Ltd (FET)
23.03.2023

FET prepares for INDEX 23 Exhibition in Geneva

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Source:

Fibre Extrusion Technology Ltd (FET)

(c) FET Ltd
17.01.2023

FET looks forward following sucessful year

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

FET is now looking forward to 2023 with a record order book. The company’s newly opened Fibre Development Centre features over £1.5 million investment in customer laboratory systems that will further enable fibre trials and product R&D. Three new polymer types were developed with clients in 2022 and several more are lined up in 2023, which is expected to bring the total of different polymer types to more than 40 in multifilament, monofilament and nonwoven formats.

FET will be exhibiting at two major exhibitions in 2023; INDEX 23, a leading Nonwovens show at Geneva in April; and ITMA, Milan, an international textile and garment technology exhibition in June.

Source:

FET Ltd

(c) FET
Business Secretary Grant Shapps discusses FET’s wet spinning system with Mark Smith, FET R&D Manager
16.12.2022

FET extrusion system features in UK Business Secretary’s visit

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

“R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country. Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.”

The Henry Royce Institute was established in 2015 with an initial £235 million government investment through the Engineering and Physical Sciences Research Council and the latest £95 million sum represents the second phase of the investment.

Opportunities being investigated by Royce include lightweight materials and structures, biomaterials and materials designed for reuse, recycling and remanufacture. Advanced materials are critical to the UK future in various industries, such as health, transport, energy, electronics and utilities.

FET-200LAB wet spinning system Photo: Fibre Extrusion Technology Limited (FET)
21.11.2022

FET wet spinning system selected for major fibre research programme

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

FET-200 Series wet spinning systems complement FET’s renowned range of melt spinning equipment. The FET-200LAB is a laboratory scale system, which is especially suitable for the early stages of formulation and process development. It is used for processing new functional textile materials in a variety of solvent and polymer combinations.

In particular, the FET-200LAB will be utilised in trials for a family of fibres made from wood pulp, a sustainable resource rather than the usual fossil fuels. Bio-based polymers are produced from biomass feedstocks such as cellulose and are commonly used in the manufacture of high end apparel. The key to cellulose and other materials like lyocell and viscose is that they can be recycled, treated and fed back into the wet spinning system for repeat manufacture.

Established in 1998, FET is a leading supplier of laboratory and pilot melt spinning systems with installations in over 35 countries and has now successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

Source:

DAVID STEAD PROJECT MARKETING LTD

(c) Rieter
Autoconer X6
31.10.2022

Rieter at India ITME 2022

Rieter is presenting the latest innovations in its systems, components and services at the upcoming India ITME 2022 in Uttar Pradesh (India), taking place from December 8 – 13, 2022.

Autoconer X6
The automatic winding machine Autoconer X6 completes the Rieter ring and compact-spinning systems. The machine serves as the final quality assurance in the ring and compact-spinning process and is key to the performance of the subsequent process stages. The Multilink system with Multilot offers maximum flexibility to handle a different type of yarn.

The latest splicer generation OZ1 and OZ2 provides an optimum splice quality based on an open prism. With only two prisms spinning mills can splice the entire spectrum of cotton yarns as well as blends. They are also used for the splicing of cotton-based elastic core yarns in combination with the Elastosplicer. The splice zone exhibits an impressive elasticity in the fabric.

Rieter is presenting the latest innovations in its systems, components and services at the upcoming India ITME 2022 in Uttar Pradesh (India), taking place from December 8 – 13, 2022.

Autoconer X6
The automatic winding machine Autoconer X6 completes the Rieter ring and compact-spinning systems. The machine serves as the final quality assurance in the ring and compact-spinning process and is key to the performance of the subsequent process stages. The Multilink system with Multilot offers maximum flexibility to handle a different type of yarn.

The latest splicer generation OZ1 and OZ2 provides an optimum splice quality based on an open prism. With only two prisms spinning mills can splice the entire spectrum of cotton yarns as well as blends. They are also used for the splicing of cotton-based elastic core yarns in combination with the Elastosplicer. The splice zone exhibits an impressive elasticity in the fabric.

Compacting Solutions
The Rieter compacting devices include the COMPACTapron, COMPACTeasy and COMPACTdrum. Spinning mills can change quickly between ring and compact yarn and offer customers a broader product range.

Recycling Expertise from Rotor to Ring
Rieter offers solutions for the integration of recycled raw material into yarn production to help close the textile loop and make fashion more circular. Both rotor and ring yarns can be produced with a considerable amount of mechanically recycled fibers.

ESSENTIALorder
Based on existing customer information, the webshop ESSENTIALorder visualizes which Rieter machines andn systems are available inside each spinning mill. It therefore offers a personalized shopping experience and facilitates order management, enabling spinning mills to optimize their internal stock levels.

ROBOspin
The piecing robot ROBOspin reduces personnel requirements in the ring spinning section by 50%. The robot also attains productivity increases thanks to higher spindle speeds at equal or higher efficiency.

SSM NEO-FD
SSM is presenting NEO-FD, the assembly-winding machine for precision wound packages for twisting. It meets all requirements for efficient production. The machine features the auto-doffing option and the online back-pressure system for low and high package densities.

Temco CoolFlow Disc
Temco’s CoolFlow texturing discs offer longer lifetime thanks to a brand-new geometry and the latest polyurethane technology. The texturing discs now generate a disc surface that operates at a lower temperature, resulting in slower ageing and abrasion. Further benefits are more stable yarn quality, higher productivity, and an overall process cost reduction.

Photo: AWOL
20.09.2022

Halley Stevensons: Unique waxed cotton finishing with new Monforts line

Monforts has installed and commissioned a new Montex finishing range at the Baltic Works of Halley Stevensons in Dundee, Scotland, to further boost the weatherproofing specialist’s highly flexible operations.

The range, with a working width of two metres, was built at the Montex assembly plant in Austria and consists of a Montex®Coat coating unit in knife execution for paste and foam coating and a Montex 8500 6F stenter.

Founded in 1864, Halley Stevensons has amassed unique technical know-how and manufacturing experience in the art of waxed cotton for weatherproofed fabrics and is able to provide international orders in custom colours and finishes to very low minimum quantities where required. The company exports worldwide and its premium brand customers include Belstaff, Barbours, Filson and J.Crew.

The range has replaced one of the company’s older stenter/coating lines and has already enabled Halley Stevensons to recreate various products with lower coating applications at higher speeds than was previously possible.

Monforts has installed and commissioned a new Montex finishing range at the Baltic Works of Halley Stevensons in Dundee, Scotland, to further boost the weatherproofing specialist’s highly flexible operations.

The range, with a working width of two metres, was built at the Montex assembly plant in Austria and consists of a Montex®Coat coating unit in knife execution for paste and foam coating and a Montex 8500 6F stenter.

Founded in 1864, Halley Stevensons has amassed unique technical know-how and manufacturing experience in the art of waxed cotton for weatherproofed fabrics and is able to provide international orders in custom colours and finishes to very low minimum quantities where required. The company exports worldwide and its premium brand customers include Belstaff, Barbours, Filson and J.Crew.

The range has replaced one of the company’s older stenter/coating lines and has already enabled Halley Stevensons to recreate various products with lower coating applications at higher speeds than was previously possible.

Waxed cotton was originally developed by sailors in the early 15th century when Scottish North Sea herring fleets began treating flax sailcloth with fish oils and grease in an attempt to waterproof their sails. Remnants of these sails were used by the sailors as capes to withstand the high winds and sea spray.

By the mid 1850s, sailcloth was being treated with linseed oil, but while initially highly effective, it would yellow and stiffen through weathering over time and eventually lose its waterproofing qualities.

In the years that followed, various treatments were applied to cottons in an attempt to find the most effective weatherproofing solution, and the combination of densely-woven cotton impregnated with a paraffin waxed coating proved most successful. For over 150 years, Halley Stevensons created many different variations of both woven constructions and finishing treatments and now supplies thousands of metres of waxed cotton every year, with each roll produced to custom specifications.

“The beauty of waxed cotton is its durability and longevity,” says Managing Director James Campbell. “The fabrics are breathable, with the wax adjusting to ambient temperatures to be softer and more breathable in warm weather and stiffer and more wind proof in cold conditions.”
While traditional waxes are petroleum or paraffin based, Halley Stevensons has always been comfortable about using a waste product from industry and reusing it to make products that last a lifetime.  

“We are always exploring different finishing techniques and one of our most popular finishes is our hybrid aero – an emulsified blend of waxes,” Campbell says. “This fabric is water repellent but has little wax in the mixture so the handle is much drier to touch than the traditional wet waxes.”

The company has also recently launched a new 100% plant-based wax – Ever Wax Olive – consisting of a blend of olive oil, rape seed and castor bean with comparable water repellence to petroleum and a far better rating than other natural waxes which have come before it.

“The high tradition of skills and fabric innovation imposed by our original guildsmen is still our benchmark standard of honest workmanship today,” Managing Director James Campbell concludes “We use responsibly sourced cotton fabrics and processes that are gentle to the product and low impact to the environment. Our dyeing methods use very low levels of water and our waxes are simply heated up for application and cooled down to store when not in use, meaning no waste discharges. Now, with this new Monforts line, we are also achieving running speeds two-to-three times faster than with the older stenter, combined with less gas usage. It’s proved a great partnership.”

Photo: © 2022, Steiger Participations
11.07.2022

Swiss Textile Machinery technology and innovations for technical textiles

New ideas were exchanged, brainstormed, and discussed freely at members’ booths at the Swiss Textile Machinery Pavilion during the recent Techtextil in Frankfurt. “Customers and researchers met Swiss textile machinery companies to explore the possibility of the not-yet-invented. “We regard our Pavilion as the place where future innovations catch a spark,” says Cornelia Buchwalder, Secretary General of the Swiss Textile Machinery Association. Further developments in the field of hybrid yarns were a hot topic. One example of this involves producing a yarn which has all the typical characteristics and advantages of carbon – but which also prioritizes careful use of resources, combining carbon fibres with thermoplastics.

Technical textiles cover a vast range of applications, and it’s still growing thanks to intensive research by specialist institutes and universities. Many members of the Swiss Textile Machinery Association maintain long-standing partnership with such bodies. Innovations are often joint efforts.

New ideas were exchanged, brainstormed, and discussed freely at members’ booths at the Swiss Textile Machinery Pavilion during the recent Techtextil in Frankfurt. “Customers and researchers met Swiss textile machinery companies to explore the possibility of the not-yet-invented. “We regard our Pavilion as the place where future innovations catch a spark,” says Cornelia Buchwalder, Secretary General of the Swiss Textile Machinery Association. Further developments in the field of hybrid yarns were a hot topic. One example of this involves producing a yarn which has all the typical characteristics and advantages of carbon – but which also prioritizes careful use of resources, combining carbon fibres with thermoplastics.

Technical textiles cover a vast range of applications, and it’s still growing thanks to intensive research by specialist institutes and universities. Many members of the Swiss Textile Machinery Association maintain long-standing partnership with such bodies. Innovations are often joint efforts.

Feel-good technical fabrics
Some technical textiles feel like a second skin. A well-known example is activewear from the ‘sport tech’ field. Activewear includes breathable clothing, usually consisting of a three-layer-laminate: an inner lining, a breathable membrane in the center, and an outer fabric. The challenge is to bond the individual layers without losing breathability or softness, while meeting technical requirements such as resistance to a number of wash cycles.

Bonding solutions meeting top quality requirements, as well as ambitious standards for environmental protection and sustainability, were reinvented by the Cavitec brand from the Santex Rimar Group. This company’s hotmelt technology uses one-component polymers applied to textiles in a hot, molten state. Bonding based on hotmelts is both water- and solvent-free. Drying and exhaust air cleaning are not necessary, which is an ecological advantage. Energy consumption is also significantly lower. Cavitec hotmelt technology is also developed for laminated medical protection fabrics which are safe, high-quality and sustainable. These fabrics can be washed, sterilized, and used again.   

A second skin with added value is the result of Jakob Müller Group’s cooperation with an institute for an established outdoor fashion brand. They have devised a heating mat applied as an inner jacket. Outdoor gear with a heated inlay offers the wearer a comfortable feeling even in a cold climate. The heating mat is particularly light, breathable, flexible and adjustable to three temperature levels.

Fabrics with these advantages are now possible thanks to multi direct weaving (MDW) technology from the Jakob Müller Group. A lacquer-insulated heating strand is inserted into the base textile as a ‘meander’ using MDW technology. The technology is offered with both label weaving machines and the latest generation of ribbon weaving machines. The textile pocket calculator is another MDW based future-oriented application developed in cooperation with a textile research institute.

Safety and health
Life-saving reliability is a must for vehicle airbags. They have to fulfil high security aspects, and must remain inflated for several seconds when an accident occurs. Airbags made of flat-woven fabric – cut and seamed – can show weakness at seams during the inflation phase. Latest Jacquard technology by Stäubli enables one-piece-woven (OPW) airbags to be produced, creating shape and structure in a single process. The final product is an airbag consisting of a sealed cushion with woven seams. OPW airbag weaving reduces the number of production steps, and increases the security aspects.
Another big advantage of Stäubli’s new weaving technology is the flexibility in formats required in today’s mid- and upper-range cars, where lateral protection (in the seat or in the roof over the door) has become standard and is designed in line with the car shape. Safe airbags are woven on modern high-speed weaving machines. The warp material, the variety of fabric patterns, and the importance of precisely shaped airbags require the use of a robust and reliable Jacquard machine.

A revolution for orthopaedic patients is a knitting machine from Steiger Participations, which uses compressive yarns developed to meet the needs of the specific health market. This machine model was exclusively designed for production with inlaid elastic yarns and offers optimum performance with guaranteed final product quality.

In the orthopaedic field, many Steiger flat knitting machines have already been operating as automatic, custom-made production systems. For example, the dimensions of an injured limb are taken by the doctor and fed into a web-based application. The doctor selects the compression class in the various sections of the item and a data file created by the software automatically applies a preconfigured program. With no human intervention required, the program is generated and produced on the machine, precisely matching the patient’s dimensions. Each product is different, and generally available within 48 hours.

Baldwin’s non-contact spray technology Texcoat G4. (Photo: Baldwin)
15.06.2022

Archroma and Baldwin to collaborate for optimized performance and resource saving in textile finishing

Archroma, a global leader in specialty chemicals towards sustainable solutions, and Baldwin, a leading global manufacturer and supplier of precision spray systems and technology for sustainable textile manufacturing, announce a new collaboration to optimize performance and resource saving in the finishing department.

The two companies aim to support textile manufacturers in their development projects, targeting to improve their product safety, performance and functionality, while at the same time maximizing the productivity and resource utilization of the finishing application process.

Archroma and Baldwin are collaborating in multiple projects that combine Archroma’s most sustainable product innovations with Baldwin’s Texcoat G4.

TexCoat G4 is a non-contact spray technology for textile finishing and remoistening, designed to allow a controlled and optimal coverage of the exact amount of finish chemistry for reaching specific characteristics of the fabric. The system can be used to reduce water consumption by as much as 50% compared to traditional padding application processes.

Archroma, a global leader in specialty chemicals towards sustainable solutions, and Baldwin, a leading global manufacturer and supplier of precision spray systems and technology for sustainable textile manufacturing, announce a new collaboration to optimize performance and resource saving in the finishing department.

The two companies aim to support textile manufacturers in their development projects, targeting to improve their product safety, performance and functionality, while at the same time maximizing the productivity and resource utilization of the finishing application process.

Archroma and Baldwin are collaborating in multiple projects that combine Archroma’s most sustainable product innovations with Baldwin’s Texcoat G4.

TexCoat G4 is a non-contact spray technology for textile finishing and remoistening, designed to allow a controlled and optimal coverage of the exact amount of finish chemistry for reaching specific characteristics of the fabric. The system can be used to reduce water consumption by as much as 50% compared to traditional padding application processes.

Archroma and Baldwin are currently testing Archroma’s finishing products and systems, such as the soon-to-be-launched PFC-free* Smartrepel® Hydro SR for water-based soil repellence, as well as metal and inorganic particle-free antimicrobial technologies like Sanitized T 20-19 and TH 15-14, which will be launched at the upcoming Techtextil 2022.

The first test results will be available for discussions with both partners at Techtextil at their respective booths.

(c) Oerlikon
The new Staple Fiber Technology Center in Neumünster
13.05.2022

Oerlikon Polymer Processing Solutions at Techtextil 2022

  • Sustainable infrastructure solutions, road safety and health protection

At this year’s Techtextil, Oerlikon Polymer Processing Solutions will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Among other things, the company will be showcasing new technology for charging nonwovens that sets new standards with regards to quality and efficiency. Between June 21 and 24, the discussions will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

  • Sustainable infrastructure solutions, road safety and health protection

At this year’s Techtextil, Oerlikon Polymer Processing Solutions will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Among other things, the company will be showcasing new technology for charging nonwovens that sets new standards with regards to quality and efficiency. Between June 21 and 24, the discussions will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

More polyester for airbags
Airbags have become an integral part of our everyday automotive lives. The yarns used in them are made predominantly from polyamide. As a result of increasingly diverse airbag applications and also the increasing size of the systems used, polyester is today used as well, depending on the application requirements and cost-benefit considerations. Against this background, the Oerlikon Barmag technologies make an invaluable contribution. In addition to high productivity and low energy consumption, they particularly excel in terms of their stable production processes. Furthermore, they comply with every high quality standard for airbags, which – as in the case of virtually all other textile products used in vehicle construction – must provide the highest level of safety for vehicle occupants. And all this without any loss of function in any climate and anywhere in the world for the lifetime of the vehicle.

Buckle up!
Seat belts play a decisive role in protecting vehicle occupants. They have to withstand tensile forces in excess of three tons and simultaneously stretch in a controlled manner in emergencies in order to reduce the load in the event of impact. A seat belt comprises approximately 300 filament yarns, whose individual, high-tenacity yarn threads are spun from around 100 individual filaments.

Invisible, but essential – road reinforcement using geotextiles
But it not just inside vehicles, but also under them, that industrial yarns reveal their strengths. Low stretch, ultra-high tenacity, high rigidity – industrial yarns offer outstanding properties for the demanding tasks carried out by geotextiles; for instance, as geogrids in the base course system under asphalt. Normally, geotextiles have extremely high yarn titers of up to 24,000 denier. Oerlikon Barmag system concepts simultaneously manufacture three filament yarns of 6,000 denier each. Due to the high spinning titers, fewer yarns can be plied together to the required geo-yarn titer in a more cost- and energy-efficient manner.

hycuTEC – technological quantum leap for filter media
In the case of its hycuTEC hydro-charging solution, Oerlikon Neumag offers a new technology for charging nonwovens that increases filter efficiency to more than 99.99%. For meltblown producers, this means material savings of 30% with significantly superior filter performance. For end users, the consequence is noticeably improved comfort resulting from significantly reduced breathing resistance. With its considerably lower water and energy consumption, this new development is also a future-proof, sustainable technology.

New high-tech Staple Fiber Technology Center
Extending to around 2,100 m2, Oerlikon Neumag in Neumünster is home to one of the world’s largest staple fiber technology centers. As of now, these state-of-the-art staple fiber technologies are also available for customer-specific trials.

The focus during the planning and the design of the Technology Center was on optimizing components and processes. Here, special attention was paid to ensuring the process and production parameters in the Technology Center system could be simply and reliably transferred to production systems. Here, the fiber tape processing line is modular in design. All components can be combined with each other as required. And comprehensive set-up options supply detailed findings for the respective process for various fiber products.

The Technology Center is also equipped with two spinning positions for mono- and bi-component processes. The same round spin packs are used for both processes, characterized by excellent fiber quality and properties and meanwhile very successfully deployed in all Oerlikon Neumag production systems. Furthermore, the spinning plant is complemented by automation solutions such as spin pack scraper robots, for example.

More information:
Oerlikon Neumag Techtextil
Source:

Oerlikon

(c) FET
FET-100 Series Melt Spinning System
13.03.2022

FET gearing up for Techtextil 2022

With just 3 months to go before Techtextil Frankfurt, UK company Fibre Extrusion Technology Limited (FET), is looking forward to exhibiting at this trade show once again. Techtextil attracts international blue-chip companies at the cutting edge of technology, seeking innovative solutions to technical challenges, so this event represents an ideal opportunity to demonstrate how FET can help achieve their goals.

FET is an acknowledged leader in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

However, FET will also showcase at Techtextil its more recent laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers. FET already has a number of spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions.

With just 3 months to go before Techtextil Frankfurt, UK company Fibre Extrusion Technology Limited (FET), is looking forward to exhibiting at this trade show once again. Techtextil attracts international blue-chip companies at the cutting edge of technology, seeking innovative solutions to technical challenges, so this event represents an ideal opportunity to demonstrate how FET can help achieve their goals.

FET is an acknowledged leader in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

However, FET will also showcase at Techtextil its more recent laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers. FET already has a number of spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions.

A major theme to be highlighted on the FET stand is Sustainability. The FET range of laboratory and pilot extrusion lines is ideally suited for both process and end product development of sustainable materials.

FET has successfully processed almost 30 different polymer types in multifilament, monofilament and non-woven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes.

Source:

DAVID STEAD PROJECT MARKETING LTD for FET

Sappi product portfolio of face stock papers ist being expanded with Parade Label SG from its Gratkorn site (c) Sappi Europe
Sappi Label Papers Parade Label SG
12.01.2022

Sappi expands its product portfolio

  • High performing face stock paper delivers convincing results for multiple applications
  • Sappi product portfolio of face stock papers ist being expanded with Parade Label SG from its Gratkorn site

Sappi, manufacturer of numerous packaging and speciality papers for a wide range of markets, is launching the Parade Label SG, a one-side coated face stock label paper that excels in terms of properties such as printability, opacity and stiffness, as well as with its many options for further processing.

  • High performing face stock paper delivers convincing results for multiple applications
  • Sappi product portfolio of face stock papers ist being expanded with Parade Label SG from its Gratkorn site

Sappi, manufacturer of numerous packaging and speciality papers for a wide range of markets, is launching the Parade Label SG, a one-side coated face stock label paper that excels in terms of properties such as printability, opacity and stiffness, as well as with its many options for further processing.

  • Semi-gloss face stock paper with high-quality performance characteristics
  • Suitable for a wide range of applications, e.g. labels for food, non-food, HABA and VIP
  • Available in 77, 78 and 80 gsm
  • Manufactured in Gratkorn, one of the largest and ultra-modern paper mills in Europe

Sappi offers an extensive range of base papers for wet-glue and self-adhesive labels. With its new Parade Label SG, the company is now introducing a one-side coated, semi-gloss face stock label paper that is approved for direct contact with food and that complies with DIN EN 71 for toy safety. The range of applications includes labels for food, non-food, beverages and health and beauty aids (HABA), as well as for logistics and variable information printing (VIP) due to its excellent thermal transfer printability.

The fibre-based face stock solution guarantees high-quality results in printing and finishing, through the entire production and converting chain. It features high stiffness and resilience, so the label will not be damaged and will fit accurately even after labelling.

Sappi invests in customer proximity
To ensure 100 percent availability and fast delivery of its label papers, Sappi has proactively positioned itself for the future and set the course for reliable production and seamless supply chains – with its plants in Alfeld, Carmignano and Condino. The plant in Gratkorn, where Sappi has invested in new technical equipment, has now been added to the list. With modern production facilities, from paper machines to finishing technology, as well as extensive expertise in the production of coated papers, the site has everything in place to ensure top-class products. Available capacity is being expanded gradually to include the production of Parade Label papers alongside existing graphical grades.

Because of the central location of Sappi’s production site in Gratkorn, Parade Label SG can be supplied quickly throughout Europe and beyond. The short transportation distances save greenhouse emissions and protect the environment; shorter production cycles then enable good availability and fast supply. Parade Label SG is certified for direct food contact and available in grammages of 77, 78 and 80 g/m². Sappi can provide Parade Label SG with FSC or PEFC certificates on request.

Sappi will be presenting its new developments in the field of label papers, among others, at the upcoming LabelExpo Europe in Brussels in April 2022.