From the Sector

Reset
206 results
Winner of Cellulose Fibre Innovation Award 2024 (c) nova-Institute
Winner of Cellulose Fibre Innovation Award 2024
27.03.2024

Winner of Cellulose Fibre Innovation Award 2024

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

40 international speakers presented the latest market trends in their industry and illustrated the innovation potential of cellulose fibres. Leading experts introduced new technologies for the recycling of cellulose-rich raw materials and gave insights into circular economy practices in the fields of textiles, hygiene, construction and packaging. All presentations were followed by exciting panel discussions with active audience participation including numerous questions and comments from the audience in Cologne and online. Once again, the Cellulose Fibres Conference proved to be an excellent networking opportunity to the 214 participants and 23 exhibitors from 27 countries. The annual conference is a unique meeting point for the global cellulose fibre industry.  

For the fourth time, nova-Institute has awarded the “Cellulose Fibre Innovation of the Year” Award at the Cellulose Fibres Conference. The Innovation Award recognises applications and innovations that will lead the way in the industry’s transition to sustainable fibres. Close race between the nominees – “The Straw Flexi-Dress” by DITF & VRETENA (Germany), cellulose textile fibre from unbleached straw pulp, is the winning cellulose fibre innovation 2024, followed by HONEXT (Spain) with the “HONEXT® Board FR-B (B-s1, d0)” from fibre waste from the paper industry, while TreeToTextile (Sweden) with their “New Generation of Bio-based and Resource-efficient Fibre” won third place.

Prior to the event, the conference advisory board had nominated six remarkable innovations for the award. The nominees were neck and neck, when the winners were elected in a live vote by the audience on the first day of the conference.

First place
DITF & VRETENA (Germany): The Straw Flexi-Dress – Design Meets Sustainability

The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

Second place
Honext Material (Spain): HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry

HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, the product is verified in the Product Environmental Footprint.

Third Place
TreeToTextile (Sweden): A New Generation of Bio-based and Resource-efficient Fibre

TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn’t exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

The next conference will be held on 12-13 March 2025.

Source:

nova-Institut für politische und ökologische Innovation GmbH

Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

Thomas Stegmaier appointed Sustainability Officer Photo: DITF
Dr.-Ing. habil. Thomas Stegmaier
11.03.2024

DITF: Thomas Stegmaier appointed Sustainability Officer

The EU directive on the further development of sustainability reporting (CSRD) poses major challenges for companies and the public sector. Until now, the regulations have only applied to large capital market-oriented companies. However, far-reaching changes to sustainability reporting are expected when the CSRD is transposed into national law in 2024. The German Institutes of Textile and Fiber Research (DITF) are facing up to this challenge of external reporting and at the same time the responsibility for sustainable and resource-conserving science. The Textile Research Center has therefore set up a specialist department reporting to the Executive Board.

The DITF are reaffirming their commitment to sustainability with the appointment of the previous Head of the Competence Center Textile Chemistry, Environment & Energy, Dr.-Ing. habil. Thomas Stegmaier, as Chief Sustainability Officer (CSO). In addition to this new role, Stegmaier will continue to provide his expertise to the Competence Center Textile Chemistry, Environment & Energy as Deputy Head.

The EU directive on the further development of sustainability reporting (CSRD) poses major challenges for companies and the public sector. Until now, the regulations have only applied to large capital market-oriented companies. However, far-reaching changes to sustainability reporting are expected when the CSRD is transposed into national law in 2024. The German Institutes of Textile and Fiber Research (DITF) are facing up to this challenge of external reporting and at the same time the responsibility for sustainable and resource-conserving science. The Textile Research Center has therefore set up a specialist department reporting to the Executive Board.

The DITF are reaffirming their commitment to sustainability with the appointment of the previous Head of the Competence Center Textile Chemistry, Environment & Energy, Dr.-Ing. habil. Thomas Stegmaier, as Chief Sustainability Officer (CSO). In addition to this new role, Stegmaier will continue to provide his expertise to the Competence Center Textile Chemistry, Environment & Energy as Deputy Head.

The task of the Chief Sustainability Officer is to develop solutions to reduce the DITF's energy and resource consumption, promote renewable energies and implement efficient energy use. The management team, the operational organizational units and all employees are involved in the process.

The CSO also acts as a driving force for both the Executive Board and the research departments to promote sustainability issues.

01.03.2024

AkzoNobel: New manufacturing plant in Pakistan

A new €26 million manufacturing plant with its own forest has been opened by AkzoNobel in Faisalabad – the company’s largest investment in Pakistan to date.

The 25-acre site, which has facilities for making decorative paint, wood finishes, automotive and specialty coatings, coil coatings and protective coatings, will help to meet increasing customer demand across a variety of markets.

Also incorporated into the Faisalabad location is a forest spanning an area of 5,450 square feet. More than 1,400 native trees and shrubs – planted using the Japanese Miyawaki gardening technique – are expected to grow into a flourishing self-sustaining ecosystem over the next two years.

The site, which employs nearly 200 people, has been constructed to comply with the company’s strict environmental standards and includes a series of sustainability features, such as renewable energy generation and energy efficient design.

A new €26 million manufacturing plant with its own forest has been opened by AkzoNobel in Faisalabad – the company’s largest investment in Pakistan to date.

The 25-acre site, which has facilities for making decorative paint, wood finishes, automotive and specialty coatings, coil coatings and protective coatings, will help to meet increasing customer demand across a variety of markets.

Also incorporated into the Faisalabad location is a forest spanning an area of 5,450 square feet. More than 1,400 native trees and shrubs – planted using the Japanese Miyawaki gardening technique – are expected to grow into a flourishing self-sustaining ecosystem over the next two years.

The site, which employs nearly 200 people, has been constructed to comply with the company’s strict environmental standards and includes a series of sustainability features, such as renewable energy generation and energy efficient design.

Source:

AkzoNobel

Graphic CHT Germany GmbH
28.02.2024

PERFORMANCE DAYS: CHT presents sustainable textile innovations

At the PERFORMANCE DAYS Functional Fabric Fair in Munich on 20 and 21 March 2024, CHT will present its latest sustainable textile technologies with a focus on dyeing and effect chemicals.

These products are used to finish textiles with special functions such as water repellency, breathability and efficient moisture transport. Significant amounts of water and energy can be saved during the dyeing and finishing process, resulting in a lower CO2 footprint.

In addition to effect chemicals, CHT will be presenting its dyeing products with a focus on the use of bio-based, biodegradable and recycled materials to support the circular economy.

At the PERFORMANCE DAYS Functional Fabric Fair in Munich on 20 and 21 March 2024, CHT will present its latest sustainable textile technologies with a focus on dyeing and effect chemicals.

These products are used to finish textiles with special functions such as water repellency, breathability and efficient moisture transport. Significant amounts of water and energy can be saved during the dyeing and finishing process, resulting in a lower CO2 footprint.

In addition to effect chemicals, CHT will be presenting its dyeing products with a focus on the use of bio-based, biodegradable and recycled materials to support the circular economy.

Source:

CHT Germany GmbH

RUDOLF: Bio-based products for HYDROCOOL® technology (c) Rudolf GmbH
05.02.2024

RUDOLF: Bio-based products for HYDROCOOL® technology

RUDOLF announces a significant leap in textile performance with the introduction of bio-based innovations for its HYDROCOOL® technology, a moisture management product line.

HYDROCOOL® technologies have long been the standard for wicking moisture away from the skin to keep athletes and active people comfortable and dry. RUDOLF has taken this performance to a higher level with the integration of bio-based raw materials and their new products, RUCO®-PUR BIO SLB and FERAN® BIO ICR. These bio-based ingredients, derived from renewable sources offering:

RUDOLF announces a significant leap in textile performance with the introduction of bio-based innovations for its HYDROCOOL® technology, a moisture management product line.

HYDROCOOL® technologies have long been the standard for wicking moisture away from the skin to keep athletes and active people comfortable and dry. RUDOLF has taken this performance to a higher level with the integration of bio-based raw materials and their new products, RUCO®-PUR BIO SLB and FERAN® BIO ICR. These bio-based ingredients, derived from renewable sources offering:

  • Reduced environmental impact: By using bio-based materials, RUDOLF reduces its reliance on traditional petroleum-based raw materials, minimizing the environmental footprint of its products.
  • High performance: The new bio-based formulations are as efficient as the traditional HYDROCOOL® products and offer maximum wash resistance.
  • RUCO®-PUR BIO SLB is a bio-based finishing agent that is ideal for synthetics, cellulosic and blends. It offers a bio-based content of 43% and is therefore an important step towards a more sustainable textile industry.
  • FERAN® BIO ICR is a bio-based soil release agent specially developed for polyester and its blends. It has a 87% bio-based content, further underlining the commitment from RUDOLF for sustainable innovation.
Source:

Rudolf GmbH

MACH2®XS Photo SHIMA SEIKI MFG., LTD.
MACH2®XS
28.01.2024

SHIMA SEIKI at Dhaka International Textile & Garment Machinery Exhibition 2024

Operating in Bangladesh since 1996, this is the fourteenth time the Japanese manufacturer is participating in DTG.

As the Bangladeshi textile industry calls for sustainable production through innovation and digitalization, the market is keen to establish effective business models that support such production. In response, for the first time in its DTG exhibition history, SHIMA SEIKI's lineup consists entirely of WHOLEGARMENT® knitting machines. Capable of knitting an entire garment in one piece without the need for linking or sewing while using only the material required to knit one garment at a time, WHOLEGARMENT® knitting is famous for promoting sustainability in the knit factory.

Operating in Bangladesh since 1996, this is the fourteenth time the Japanese manufacturer is participating in DTG.

As the Bangladeshi textile industry calls for sustainable production through innovation and digitalization, the market is keen to establish effective business models that support such production. In response, for the first time in its DTG exhibition history, SHIMA SEIKI's lineup consists entirely of WHOLEGARMENT® knitting machines. Capable of knitting an entire garment in one piece without the need for linking or sewing while using only the material required to knit one garment at a time, WHOLEGARMENT® knitting is famous for promoting sustainability in the knit factory.

The company is showing its MACH2®XS153 WHOLEGARMENT® knitting machine in 15L gauge, as well as its SWG®091N2 "Mini" WHOLEGARMENT® knitting machine in 15 gauge. MACH2®XS features 4 needle beds and SHIMA SEIKI's original SlideNeedle™, capable of producing high-quality fine gauge WHOLEGARMENT® knitwear in all needles. SWG®091N2 provides opportunities in WHOLEGARMENT® knitting across a wide range of items in a compact, economical package. A different approach to WHOLEGARMENT knitting is also shown in the form of the N.SVR®183 machine. SHIMA SEIKI's global standard in shaped knitting, the N.SVR® series now features a model for producing WHOLEGARMENT® knitwear using every other needle in fine gauge. Shown in 18 gauge at DTG, N.SVR®183 is the ideal machine for flexible, entry-level WHOLEGARMENT® production, with the versatility to respond to fluctuating market demand.

Demonstrations are performed on SHIMA SEIKI's SDS®-ONE APEX4 design system. At the core of the company’s "Total Fashion System" concept, it provides comprehensive support throughout the supply chain, integrating production into one smooth and efficient workflow from yarn development, product planning and design, to machine programming, production and even sales promotion.

Source:

SHIMA SEIKI MFG., LTD.

26.01.2024

Solvay reduces transportation carbon footprint

Solvay is partnering with transportation providers KIITOSIMEON and ADAMS LOGISTICS to reduce the carbon footprint of its facility in Voikkaa, Finland. Known for its hydrogen peroxide technology, the site has a yearly capacity of 85 kilotons, making it the largest hydrogen peroxide unit in the country and one of the largest in Europe. However, the transportation of its products results in more than 850 tons of CO2 emissions annually, attributed to the several thousands deliveries conducted each year.

While the Voikkaa site has been operating on 100% wind-generated electricity since 2023, the journey towards decarbonization takes another step forward as it transitions transportation fuel from diesel to biofuel in the first quarter of 2024. This shift will result in a significant annual reduction of over 700 tons of CO2 emissions, representing more than 8O% reduction in the site's transportation carbon footprint.

Solvay is partnering with transportation providers KIITOSIMEON and ADAMS LOGISTICS to reduce the carbon footprint of its facility in Voikkaa, Finland. Known for its hydrogen peroxide technology, the site has a yearly capacity of 85 kilotons, making it the largest hydrogen peroxide unit in the country and one of the largest in Europe. However, the transportation of its products results in more than 850 tons of CO2 emissions annually, attributed to the several thousands deliveries conducted each year.

While the Voikkaa site has been operating on 100% wind-generated electricity since 2023, the journey towards decarbonization takes another step forward as it transitions transportation fuel from diesel to biofuel in the first quarter of 2024. This shift will result in a significant annual reduction of over 700 tons of CO2 emissions, representing more than 8O% reduction in the site's transportation carbon footprint.

As part of its commitment to carbon neutrality by 2050, Solvay has outlined a sustainability roadmap with around 40 energy transition projects. These projects focus on eliminating coal usage, emphasizing renewable energy sources, prioritizing energy efficiency, and driving process innovation. Solvay has further committed to reduce its emissions* along the value chain by 20% by 2030.

*scope 3 emissions, focus 5 categories, 2021 baseline

22.01.2024

Fashion for Good addresses challenges of sorting for rewearable textiles

Fashion for Good's Sorting for Circularity framework expands to address the challenge of ensuring rewearable textiles remain in use as opposed to finding their way into global waste streams or landfills. This 18-month project tests automated sorting technologies using artificial intelligence and machine learning to optimise the sorting of rewearable garments and enable greater circularity.

This project will test automated sorting technologies using machine learning and artificial intelligence (AI) to collect product information — such as colour, style, garment type, and quality. This will enable sorters and brands to make better decisions and sort efficiently based on product data and criteria from local, European, and export resale market requirements, thus optimising the flow of textiles to achieve their highest value potential.

To ensure accuracy and representation in capturing data on the flow of textiles within the EU and export markets, this project will focus on specific geographical regions: Lithuania (Nordic/Baltic), the Netherlands (Western), Poland (Central-Eastern), and Spain (Southern Europe).

Fashion for Good's Sorting for Circularity framework expands to address the challenge of ensuring rewearable textiles remain in use as opposed to finding their way into global waste streams or landfills. This 18-month project tests automated sorting technologies using artificial intelligence and machine learning to optimise the sorting of rewearable garments and enable greater circularity.

This project will test automated sorting technologies using machine learning and artificial intelligence (AI) to collect product information — such as colour, style, garment type, and quality. This will enable sorters and brands to make better decisions and sort efficiently based on product data and criteria from local, European, and export resale market requirements, thus optimising the flow of textiles to achieve their highest value potential.

To ensure accuracy and representation in capturing data on the flow of textiles within the EU and export markets, this project will focus on specific geographical regions: Lithuania (Nordic/Baltic), the Netherlands (Western), Poland (Central-Eastern), and Spain (Southern Europe).

The findings will be shared in a report with a supporting business case and implementation roadmap to inform investment decisions in infrastructure, Circular Business Models (CBM) and repair centres.

The Rewear Project builds on Fashion for Good’s Sorting for Circularity framework initiated in 2021 and subsequently launched in Europe, India and the United States harmonising the collection, sorting and recycling industries in order to advance textile-to-textile recycling technologies and the resale industry.

It is funded by brand partners adidas, BESTSELLER, Bonprix, C&A, Inditex, Levi Strauss & Co., Otto Group, PVH Corp., and Zalando. Circle Economy Foundation leads the creation and implementation of the methodology, with support from Consumption Research Norway, Oslo Metropolitan University and Revaluate.

Source:

Fashion for Good 

Archroma showcases Super Systems+ at Colombiatex 2024 Photo: Archroma
19.01.2024

Archroma showcases Super Systems+ at Colombiatex 2024

Archroma is showcasing its planet conscious innovations and solution systems at this year’s Colombiatex de Las Américas, being held from January 23 to 25, 2024.

Archroma is using its attendance at Colombiatex 2024 to introduce a new concept that promises to help the region’s brands and mills optimize their productivity, add value to their products and create a positive impact on the environment: Super Systems+.

The Super Systems+ solutions offer great performance, including end-product durability, while meeting sustainability targets with cleaner chemistries that comply with current and anticipated industry regulations or deliver resource savings, or both. Solutions are currently available for popular end-use segments, from denim to cotton and poly-cotton knits.

Archroma is showcasing its planet conscious innovations and solution systems at this year’s Colombiatex de Las Américas, being held from January 23 to 25, 2024.

Archroma is using its attendance at Colombiatex 2024 to introduce a new concept that promises to help the region’s brands and mills optimize their productivity, add value to their products and create a positive impact on the environment: Super Systems+.

The Super Systems+ solutions offer great performance, including end-product durability, while meeting sustainability targets with cleaner chemistries that comply with current and anticipated industry regulations or deliver resource savings, or both. Solutions are currently available for popular end-use segments, from denim to cotton and poly-cotton knits.

For black denim with a cleaner environmental footprint, brands and mills can choose DIRESUL® EVOLUTION BLACK to create unique shade and wash-down effects with an overall impact reduction of 57% compared to standard Sulfur Black 1 liquid.* For authentic blue denim, Archroma’s aniline-free** pre-reduced DENISOL® PURE INDIGO 30 LIQ produces coveted indigo colors with the same performance and efficiency as conventional indigo dye, but in a more planet-friendly way.

To embrace circularity and create natural shades on cellulosic-based fibers including cotton, kapok, linen and viscose, brand owners can now turn to Archroma’s patented EarthColors® technology. It makes high-performance biosynthetic dyes from non-edible natural waste, such as almond shells, bitter orange residues and cotton production byproducts, helping conserve natural resources. For next-generation processing of polyester and its blends, Archroma’s ERIOPON® E3-SAVE all-in-one auxiliary combines pre-scouring, dyeing and reduction clearing in a single bath to achieve substantial savings of water, energy and time.

For weather protection and stain resistance that is both economically and environmentally sustainable, Archroma Super Systems+ draw on an extensive portfolio of fluorine-free durable water repellents.

* Ecotarrae lifecycle analysis
** Below limits of detection according to industry standard test methods

Source:

Archroma

20.12.2023

CARBIOS: €1.2M to further optimize its PET depolymerization process

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

This collaborative R&D program focuses on the technical and economic optimization of process stages, while preserving the quality of the monomers obtained. These optimizations, new developments and the exploration of innovative solutions should enhance the technology's flexibility with regards to incoming waste. Raw materials could come from different sources that are currently rarely or not recycled, notably food trays and textiles, or a mix of incoming materials. It also aims to limit input and water consumption, as well as regenerate or reduce co-products and ultimate residual waste. Finally, it seeks to support enzyme optimization to maximize the process’ economic profitability and competitiveness.

The project therefore aims to achieve an overall improvement in performance, combining efficiency, quality and environmental sustainability, to benefit the Longlaville plant which is currently under construction, and future licensed plants.

In May 2023, CARBIOS, the project leader and coordinator, announced that it had been awarded a total of €11.4M in funding by the French State as part of France 2030, operated by ADEME, including €8.2M directly for CARBIOS (€3.2M in grants and €5M in repayable advances) and €3.2M for its academic partners INRAE, INSA and CNRS (via the TWB mixed service and TBI research units). This funding, which is made up of grants and repayable advances, will be paid out in several instalments over the course of the project, including an initial instalment of 15%, equivalent to €1.2 million, received by CARBIOS on 5 December 2023. The first Monitoring Committee with ADEME for the first key stage of the project will be held in February 2024 to validate the granting of the second instalment of funding.

This project 2282D0513-A is funded by the French State as part of France 2030 operated by ADEME.

Source:

Carbios

Photo: Archroma
15.12.2023

Archroma unveils SuperSystems+ at ChromaTexChem 2023

Archroma is bringing its most impactful planet-conscious innovations, including SuperSystems+, to ChromaTexChem 2023 in Mumbai from December 19-20.

Super Systems+ is a new set of end-to-end systems that combine processing solutions and intelligent effects for the entire textile processing workflow, from sizing to finishing. Developed for different end-use segments – from blue and colored denim to performance athletic wear, bottom weights, towels and sheeting – Super Systems+ aims to empower fashion and textile brands and mills to add value to their products while they deliver measurable environmental impact and enhance production efficiency.

Archroma is bringing its most impactful planet-conscious innovations, including SuperSystems+, to ChromaTexChem 2023 in Mumbai from December 19-20.

Super Systems+ is a new set of end-to-end systems that combine processing solutions and intelligent effects for the entire textile processing workflow, from sizing to finishing. Developed for different end-use segments – from blue and colored denim to performance athletic wear, bottom weights, towels and sheeting – Super Systems+ aims to empower fashion and textile brands and mills to add value to their products while they deliver measurable environmental impact and enhance production efficiency.

Super Systems+ leverages the industry’s broadest product portfolio and authentic evidence-based data to support informed decision making. It is supported by The SafeEdge by Archroma, an online portal that gives Archroma customers and brands real-time access to product-related regulatory and compliance certifications and information, as well as the Archroma ONE WAY Impact Calculator, a process simulation and calculation tool designed and used by our textile processing experts to provide our customers and partners with an accurate estimate of the process costs, resource utilization, effluent discharge quality, and CO2 emissions of the existing production process and of the newly evaluated system. These help them to select solutions that meet their performance requirements and deliver against significant sustainability targets.

Source:

Archroma

Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta. Abbildung 1 © W. Barthlott, M. Mail/Universität Bonn
Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta.
14.12.2023

Self-driven and sustainable removal of oil spills in water using textiles

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

For many technical applications, unexpected solutions come from the field of biology. Millions of years of evolution led to optimized surfaces of living organisms for their interaction with the environment. Solutions - often rather unfamiliar to materials scientists and difficult to accept. The long-time routine examination of around 20,000 different species showed that there is an almost infinite variety of structures and functionalities. Some species in particular stand out for their excellent oil adsorption properties. It was shown that, e.g., leaves of the floating fern Salvinia molesta, adsorb oil, separate it from water surfaces and transport it on their surfaces (Figure 1, see also the video of the phenomon.).

The observations inspired them to transfer the effect to technical textiles for separating oil and water. The result is a superhydrophobic spacer fabric that can be produced industrially and is therefore easily scalable.

The bio-inspired textile can be integrated into a device for oil-water separation. This entire device is called a Bionic Oil Adsorber (BOA). Figure 2: Cross-section of computer-aided (CAD) model of the Bionic Oil Adsorber. The scheme shows an oil film (red) on a water surface (light blue). In the floating cotainer(gray), the textile (orange) is fixed so that it is in contact with the oil film and the end protrudes into the container. The oil is adsorbed and transported by the BOA textile. As shown in the cross-section, it enters the contain-er, where it is released again and accumulates at the bottom of the container. See also the video regarding the oil absorption on the textile, source ITA).
 
Starting from the contamination in the form of an oil film on the water surface, the separation and collection process works according to the following steps:

  • The BOA is introduced into the oil film.
  • The oil is adsorbed by the textile and separated from the water at the same time.
  • The oil is transported through the textile into the collection container.
  • The oil drips from the textile into the collection container.
  • The oil is collected until the container is emptied.

The advantage of this novel oil separation device is that no additional energy has to be applied to operate the BOA. The oil is separated from the surrounding water by the surface properties of the textile and transported through the textile driven solely by capillary forces, even against gravity. When it reaches the end of the textile in the collection container, the oil desorbs without any further external influence due to gravitational forces. With the current scale approximately 4 L of diesel can be separated from water by one device of the Bionic Oil Adsorber per hour.

  • It seems unlikely that a functionalized knitted spacer textile is cheaper than a conventional nonwoven, like it is commonly used for oil sorbents. However, since it is a functional material, the costs must be related to the amount of oil removed. In this respect, if we compare the sales price of the BOA textile with the sales prices of various oil-binding nonwovens, the former is 5 to 13 times cheaper with 10 ct/L oil removed.
    Overall, the BOA device offers a cost-effective and sustainable method of oil-water separation in contrast to conventional cleaning methods due to the following advantages:
  • No additional energy requirements, such as with oil skimmers, are necessary
  • No toxic substances are introduced into the water body, such as with oil dispersants
  • The textiles and equipment can be reused multiple times
  • No waste remains inside the water body
  • Inexpensive in terms of the amount of oil removed.
  • The team of researchers from the ITA, the University of Bonn and Heimbach GmbH was able to prove that the novel biomimetic BOA technology is surprisingly efficient and sustainable for a self-controlled separation and automatic collection of oil films including their complete removal from the water. BOA can be asapted for open water application but also for the use in inland waters. Furthermore, it is promising, that the textile can be used in various related separation processes. The product is currently being further developed so that it can be launched on the market in 2-3 years.

 

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Carbios at two-year anniversary of France 2030 (c) Carbios
Emmanuel Ladent, Carbios CEO, on stage to present Carbios' industrial project advancements at the two-year anniversary of France 2030
13.12.2023

Carbios at two-year anniversary of France 2030

Carbios was one of eight beneficiaries selected to present the progress of its industrial project in the presence of the President of the French Republic on the occasion of the two-
year anniversary of the launch of the France 2030 investment plan. Carbios is receiving €42.5 million in public funding (€30 million from the State as part of France 2030 and €12.5 million from the Grand-Est Region) for the construction of the plant for the enzymatic depolymerization of PET. Carbios is an emblematic example of the France 2030 initiative to support innovative projects that contribute to reindustrialization through innovation in strategic sectors, such as recycling. This plant, located in Longlaville in the Grand-Est Region, will be Carbios' first industrial site. Construction has just begun.

Carbios was one of eight beneficiaries selected to present the progress of its industrial project in the presence of the President of the French Republic on the occasion of the two-
year anniversary of the launch of the France 2030 investment plan. Carbios is receiving €42.5 million in public funding (€30 million from the State as part of France 2030 and €12.5 million from the Grand-Est Region) for the construction of the plant for the enzymatic depolymerization of PET. Carbios is an emblematic example of the France 2030 initiative to support innovative projects that contribute to reindustrialization through innovation in strategic sectors, such as recycling. This plant, located in Longlaville in the Grand-Est Region, will be Carbios' first industrial site. Construction has just begun.

Carbios' technology enables PET circularity and provides an alternative raw material to virgin fossil-based monomers, allowing PET producers, waste management companies, public entities, and brands to have an efficient solution to meet regulatory requirements and fulfill their own sustainability commitments. The plant will have a processing capacity of 50,000 tons of post-consumer PET waste per year (equivalent to 2 billion colored PET bottles, 2.5 billion PET trays, or 300 million T-shirts) and will address waste with little or no value such as colored PET bottles, food trays, and textiles. The plant will create 150 direct and indirect jobs in the region. In October 2023, Carbios obtained the building permit in 10 months (the average duration in France is 17 months) and the site operating permit, allowing construction to begin. The plant is currently under construction in Longlaville in the Grand-Est Region.

Source:

Carbios

Complete ANDRITZ textile recycling line for Italian recycling specialist Photo: ANDRITZ
08.12.2023

Complete ANDRITZ textile recycling line for Italian recycling specialist

ANDRITZ recently started up a new textile recycling line at Sfilacciatura Negro’s plant in Biella, Italy. Designed for processing post-consumer textile waste with automatic removal of hard parts, the tearing line supports the company’s expansion into new recycling segments.

In view of the growing demand for sustainable fibers in the re-spinning and nonwoven industries, Sfilacciatura Negro Biella decided to expand its recycling capabilities. The company has extensive experience in recycling industrial textile waste and already operates two tearing lines. Based on its long-term collaboration with ANDRITZ, it is now stepping into the recycling of post-consumer clothing waste.

ANDRITZ recently started up a new textile recycling line at Sfilacciatura Negro’s plant in Biella, Italy. Designed for processing post-consumer textile waste with automatic removal of hard parts, the tearing line supports the company’s expansion into new recycling segments.

In view of the growing demand for sustainable fibers in the re-spinning and nonwoven industries, Sfilacciatura Negro Biella decided to expand its recycling capabilities. The company has extensive experience in recycling industrial textile waste and already operates two tearing lines. Based on its long-term collaboration with ANDRITZ, it is now stepping into the recycling of post-consumer clothing waste.

The new generation recycling line ANDRITZ supplied to Sfilacciatura Negro is the result of ten years of close cooperation, trials in its technical center, and visits to customer lines in Spain and Portugal. ANDRITZ has tailored a complete line from feeding of sorted waste bales to baling of the recycled fibers. It is designed for highly efficient, energy-saving operation and features automated separation of hard points while maintaining a good material yield. An automated filtration unit is provided for airflow and dust management. Only one operator is needed to manage the entire line up to the recycled fiber baler. The baler can produce film-wrapped and tied bales with a weight of up to 350 kg.

Source:

ANDRITZ AG

Online session “Redefining Textile Waste Sorting: Impulses and findings for the future of next-gen sorting facilities” Graphic Texaid
27.11.2023

Redefining textile waste sorting

To meet future demands on the amount of textile waste which needs to be collected and sorted, as well as the demand on recycling feedstock, it is necessary to match the demand and need for sorting of waste in Europe and create cost efficiency sorting capacities with larger scale and automation are necessary.

In an online session “Redefining Textile Waste Sorting: Impulses and findings for the future of next-gen sorting facilities” Texaid and partners talk about the current state of development and the challenges for the future.  Anna Pehrsson (Texaid), Gesine Köppe (ITA Augsburg GmbH) and partners present the results of a Technology Assessment conducted within The Transform Textile Waste into Feedstock Project (initiated by TEXAID within the ReHubs initiative) to assess the best available sorting techniques and process.

Details:  
December 4th 2023
12:30-13:30pm   
Online
For registration follow the link.

To meet future demands on the amount of textile waste which needs to be collected and sorted, as well as the demand on recycling feedstock, it is necessary to match the demand and need for sorting of waste in Europe and create cost efficiency sorting capacities with larger scale and automation are necessary.

In an online session “Redefining Textile Waste Sorting: Impulses and findings for the future of next-gen sorting facilities” Texaid and partners talk about the current state of development and the challenges for the future.  Anna Pehrsson (Texaid), Gesine Köppe (ITA Augsburg GmbH) and partners present the results of a Technology Assessment conducted within The Transform Textile Waste into Feedstock Project (initiated by TEXAID within the ReHubs initiative) to assess the best available sorting techniques and process.

Details:  
December 4th 2023
12:30-13:30pm   
Online
For registration follow the link.

Source:

Texaid

22.11.2023

Re:NewCell initiates a strategic review

Re:NewCell AB (publ) has created a patented process for 100% textile-to-textile recycling and has invested over SEK 1,300 million to establish an innovative and efficient textile recycling plant. The industrial scale plant in Ortviken currently has a capacity to produce up to 60,000 tonnes on an annual basis.

As communicated on 12 October, the Company has experienced lower than anticipated sales volumes to fiber producers in the third quarter and as communicated on 1 November and 7 November, the Company had low sales volumes in October. In addition, sales volumes in November are now expected to be lower than previously anticipated and in line with October sales volume. Discussions are ongoing with a number of customers to secure orders, but it is uncertain when they will materialise.

Re:NewCell AB (publ) has created a patented process for 100% textile-to-textile recycling and has invested over SEK 1,300 million to establish an innovative and efficient textile recycling plant. The industrial scale plant in Ortviken currently has a capacity to produce up to 60,000 tonnes on an annual basis.

As communicated on 12 October, the Company has experienced lower than anticipated sales volumes to fiber producers in the third quarter and as communicated on 1 November and 7 November, the Company had low sales volumes in October. In addition, sales volumes in November are now expected to be lower than previously anticipated and in line with October sales volume. Discussions are ongoing with a number of customers to secure orders, but it is uncertain when they will materialise.

Therefore, Re:NewCell hereby announces that its Board of Directors has decided to immediately initiate a strategic review to explore and evaluate various funding alternatives. As part of this process, the Board of Directors will consider all potential alternatives to secure funding and optimise shareholder value. Such alternatives may include additional debt funding, equity injection through the form of a rights issue, equity injection through a directed issue targeted to a financial or strategic investor or other possible strategic transactions.
The Board of Directors has retained ABG Sundal Collier as financial advisor to assist in its review of alternatives. Vinge has been appointed as legal advisor in connection with the review process.

The Board of Directors has not set a timetable for completion of its review, but the process will be initiated immediately. Subject to compliance with its ongoing disclosure obligations pursuant to applicable laws and regulations, Re:NewCell undertakes no obligation to make any further announcements regarding the strategic review until a final decision is made by the Company’s Board of Directors.

Source:

Re:NewCell AB (publ)

Carbios and L’Oréal win Pioneer Award for PET recycling solution Photo: Carbios
Emmanuel Ladent (CEO Carbios, on the left) and Jacques Playe (Packaging and Development Director at L’Oréal, on the right)
15.11.2023

Carbios and L’Oréal win Pioneer Award for PET recycling solution

Carbios and L’Oréal have won the “Pioneer Awards” in the Industry category, presented by the Solar Impulse Foundation at the first World Alliance Summit. This prize was awarded to Carbios for its enzymatic PET recycling solution, labeled “Efficient Solution” by the Solar Impulse Foundation since 2019, and to L’Oréal for using this technology for the first time in a cosmetics bottle prototype. Carbios’ solution offers brands an alternative to petro-sourced plastic that helps them meet their sustainability commitments. This advancement paves the way for future applications in other sectors such as packaging, food and beverage, and textiles.

Carbios and L’Oréal have won the “Pioneer Awards” in the Industry category, presented by the Solar Impulse Foundation at the first World Alliance Summit. This prize was awarded to Carbios for its enzymatic PET recycling solution, labeled “Efficient Solution” by the Solar Impulse Foundation since 2019, and to L’Oréal for using this technology for the first time in a cosmetics bottle prototype. Carbios’ solution offers brands an alternative to petro-sourced plastic that helps them meet their sustainability commitments. This advancement paves the way for future applications in other sectors such as packaging, food and beverage, and textiles.

Carbios and L’Oréal: a long-term collaboration
Since 2017, Carbios and L’Oréal have been working together with a shared vision of accelerating the transition to a circular economy for plastic. In 2017, both companies created a Consortium to improve the recyclability and circularity of PET packaging.  Nestlé Waters, PepsiCo and Suntory Beverage & Food Europe joined this Consortium in 2019 to scale up Carbios’ innovation. The world’s first enzymatically recycled PET packaging was made in 2021 using Carbios’ biorecycling process. The world’s first PET biorecycling plant is scheduled to be commissioned in 2025. In parallel, Carbios is rolling out its technology internationally through licensing agreements.

The environmental benefits of biorecycling developed by Carbios
Recent life-cycle analyses[1] show a 57% reduction in CO2 emissions compared with the production of virgin plastic[2], and for every tonne of recycled PET produced, 1.3 tonnes of petrol are avoided. Compared with conventional recycling, enzymatic recycling is 4 times more circular (calculated according to the Ellen MacArthur Foundation’s Material Circularity Indicator). Thanks to its highly selective enzyme, optimized for efficient PET degradation, Carbios’ depolymerization process can process all types of PET waste, including colored, multilayer or textile waste that cannot be recycled using current technologies. Furthermore, the two monomers produced (PTA and MEG) make it possible to recreate recycled PET products of identical quality to virgin ones, and suitable for food contact.
 
 
[1] Database ecoinvent 3.8
[2] French scenario, taking into account the detour of 50% of PET waste from conventional end-of-life. Virgin PET: 2.53 kg CO2/kg (cradle to gate)

Source:

Carbios

Kelheim Fibres and Santoni win ITMF International Cooperation Award 2023 Foto: ITMF
From left to right: Mr. Ruizhi Sun, CNTAC President and former ITMF President; Patrick Silva Szatkowski, Santoni S.p.A., Betty Wu, Kelheim Fibres; Mr. Juan Parés, Textilsantanderina Spain, Jury Member and Vice President ITMF; Dr. Christian Schindler, ITMF Director General
10.11.2023

Kelheim Fibres and Santoni win ITMF International Cooperation Award 2023

Kelheim Fibres GmbH and the Italian textile machinery manufacturer, Santoni Spa, were honoured with the ITMF International Cooperation Award 2023 during the ITMF Annual Conference in Keqiao, China. This recognition by the International Textile Manufacturers Federation (ITMF) acknowledges outstanding achievements in international collaboration within the textile industry in alignment with the values of the 17 Sustainable Development Goals (SDGs) of the 2030 Agenda for Sustainable Development.

Together, Kelheim Fibres and Santoni have developed a sustainable period panty, built upon advanced machine technology and high-performance viscose fibres.

Santoni's specialized machinery enables a reduction in fabric waste, or even the potential for entirely waste-free production. Simultaneously, it enhances production efficiency, leading to cost savings. Kelheim Fibres' wood-based specialty fibres, such as the trilobal Galaxy® and the hollow Bramante fibre, replace synthetic materials in the absorbent core of the menstrual underwear. They offer excellent performance and reliable protection for the wearer.

Kelheim Fibres GmbH and the Italian textile machinery manufacturer, Santoni Spa, were honoured with the ITMF International Cooperation Award 2023 during the ITMF Annual Conference in Keqiao, China. This recognition by the International Textile Manufacturers Federation (ITMF) acknowledges outstanding achievements in international collaboration within the textile industry in alignment with the values of the 17 Sustainable Development Goals (SDGs) of the 2030 Agenda for Sustainable Development.

Together, Kelheim Fibres and Santoni have developed a sustainable period panty, built upon advanced machine technology and high-performance viscose fibres.

Santoni's specialized machinery enables a reduction in fabric waste, or even the potential for entirely waste-free production. Simultaneously, it enhances production efficiency, leading to cost savings. Kelheim Fibres' wood-based specialty fibres, such as the trilobal Galaxy® and the hollow Bramante fibre, replace synthetic materials in the absorbent core of the menstrual underwear. They offer excellent performance and reliable protection for the wearer.

Responsible Care Federal Competition 2023 Photo Rudolf GmbH
12.10.2023

RUDOLF wins Responsible Care Federal Competition 2023

The innovative company RUDOLF has been honoured for its outstanding achievements in the field of sustainability and environmental protection and has won the coveted Responsible Care Federal Competition 2023 in the category SME.

The innovative company RUDOLF has been honoured for its outstanding achievements in the field of sustainability and environmental protection and has won the coveted Responsible Care Federal Competition 2023 in the category SME.

The award was presented as part of a competition organised by the German Chemical Industry Association (VCI). Responsible Care is a voluntary initiative of the chemical industry. Its aim is continuous improvement in the areas of environmental protection, health and safety. Chemical companies and associations in more than 50 countries support the initiative. The award-winning project of the innovative company RUDOLF impressed the jury with its pioneering technology, which reduces CO2 emissions by up to 99.9 % compared to conventional cooling systems. „The project uses near-surface geothermal energy for industrial cooling - according to the motto „Efficiency First“ the most efficient way has been chosen!“ - Jury statement
 
TerraCool‘s winning system uses near-surface geothermal energy as the most natural form of cooling. It utilises the constant temperature of around 10°C at a depth of around 10 metres below ground. A specially developed heat exchanger system takes advantage of this natural cooling effect. In the future, it will be used to cool chemical production processes at RUDOLF. The main advantage of this technology is that it is CO2 neutral. The technology is highly efficient and consumes only 0.1 % of the electricity used by conventional cooling systems.  By using natural resources, the system reduces CO2 emissions by up to 99.9 % compared to conventional cooling systems, resulting in a very presentable carbon footprint. Another impressive aspect is its high energy efficiency. With just 1 kW of electrical energy, the system generates up to 600 kW of cooling capacity, thanks to the use of a highly energyefficient circulating pump system. Energy is, and will continue to be, a valuable „raw material“ for our industry and one that we need to manage carefully. The system is self-contained and has no contact with groundwater. No environmentally harmful refrigerants or antifreeze are required. With this technology, RUDOLF has made a pioneering contribution to the climate-neutral transformation of the economy, proving that innovative solutions can go hand in hand with environmental protection and sustainability. The Responsible Care award recognises the company‘s commitment to a greener future.

Source:

Rudolf GmbH