From the Sector

Reset
28 results
STFI: Finalisten im Wettbewerb um Landesbaupreis 2024 (c) STFI
Verleihung des sächsischen Landesbaupreises 2024 in Dresden: Staatsminister Thomas Schmidt überreicht die Anerkennungsurkunden an Vertreter und Vertreterinnen des IHD, des STFI und der Firma Holzbau Meyer GmbH, Stollberg
25.03.2024

STFI: Finalisten im Wettbewerb um Landesbaupreis 2024

Im Rennen um den sächsischen Landespreis „Baupraxis der Zukunft – nachhaltig, innovativ, zirkulär“ gehören zu den zehn Finalisten zwei Entwicklungen, die aus sächsischen Industrieforschungsprojekten erwachsen sind. Zum einen überzeugte das Holz-Textil-Faltwerk die Jury als innovatives Raumkonzept für modulares Arbeiten und Wohnen. Zum anderen fand die Jury Gefallen an einem Hybridbauteil für Holz-Beton-Verbunddecken, bei dem ein biobasiertes Hanffaserkunststofflaminat als Balkenverstärkung größere Spannweiten ermöglicht. Beide Projekte wurden am 8. März 2024 zur Preisverleihung im Rahmen der Baumesse HAUS in Dresden mit einer undotierten Anerkennung gewürdigt.

Im Rennen um den sächsischen Landespreis „Baupraxis der Zukunft – nachhaltig, innovativ, zirkulär“ gehören zu den zehn Finalisten zwei Entwicklungen, die aus sächsischen Industrieforschungsprojekten erwachsen sind. Zum einen überzeugte das Holz-Textil-Faltwerk die Jury als innovatives Raumkonzept für modulares Arbeiten und Wohnen. Zum anderen fand die Jury Gefallen an einem Hybridbauteil für Holz-Beton-Verbunddecken, bei dem ein biobasiertes Hanffaserkunststofflaminat als Balkenverstärkung größere Spannweiten ermöglicht. Beide Projekte wurden am 8. März 2024 zur Preisverleihung im Rahmen der Baumesse HAUS in Dresden mit einer undotierten Anerkennung gewürdigt.

Holz-Textil-Faltwerke
Ein interdisziplinäres Entwicklerteam hat Holz-Textil-Faltwerke (HTF) konzipiert, die temporär zum Zweck des Schallschutzes, Sichtschutzes oder der räumlichen Abgrenzung aufstellbar sind. Die HTF sind selbsttragend und zeichnen sich durch kleines Packvolumen und Leichtbauweise aus. Unter Nutzung der Origami-Mathematik wurden mehrschichtige Holz-Textil-Verbunde entwickelt. Das Textil dient als zweidimensionales Scharnier der fertigen Konstruktion. Auf der Oberseite des Textils ist je nach technischer Anforderung eine entsprechende funktionale Schicht (z. B. Holz- oder Kunststoffelemente) zu fixieren. Dabei wird die Faltkinematik durch die Geometrie der biegesteifen Holzelemente bestimmt. Durch den Verbund aus biegeschlaffen textilen Materialien mit biegesteifen Holzelementen sind Faltbewegungen möglich, die eine selbsttragende Struktur entstehen lassen. Ein wahlweiser Einbau von Funktionselementen erhöht die Schallabsorption und -dämmung. Insgesamt entsteht durch die Origamifaltung von Holz und Textil ein ästhetisches Design. An der Entwicklung waren das Ressort Physik und Bauteile des Instituts für Holztechnologie Dresden gemeinnützige GmbH (IHD), die Hochschule für nachhaltige Entwicklung Eberswalde (HNEE) mit seinem Fachbereich Holzingenieurwesen sowie das Sächsische Textilforschungsinstitut e.V. (STFI) (Chemnitz) beteiligt.
Das IGF-Vorhaben 20946BR der Forschungsvereinigung Trägerverein Institut für Holztechnologie Dresden e.V. (TIHD) wurde unter dem Titel „Akustisch wirksame Origami-Faltwerke mit bedarfsgerecht anpassbarer Raumgeometrie auf Basis von Holz/Textilverbunden“ über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz auf Grund eines Beschlusses des Deutschen Bundestages gefördert

Gro-Coce – Zukunftsfähiges Hybridbauteil aus Holz, Beton und Hanffasern
Zukunftsweisende Materialien bieten die Entwicklungen aus dem Bereich nachwachsender Rohstoffe in Kombination mit biobasierten Harzsystemen. Ein interdisziplinäres Team modifizierte die Herstellungstechnologie von Holz-Beton-Verbunddecken. Das Forschungsprojekt Gro-Coce verfolgte das Ziel, durch die Verbindung nachhaltiger Bauprodukte und -weisen ein innovatives Deckensystem zu entwickeln, welches auf Grundlage der Holz-Beton-Verbundbauweise (HBV-Bauweise) als ökonomische und ökologisch vorteilhafte Alternative zu den momentan vorherrschenden, energie- und ressourcenintensiven Deckenkonstruktionen aus Stahlbeton funktioniert. Das Deckensystem besteht aus Holzstegen, deren Zugzone durch hochleistungsfähige hanffaserbasierte Armierungstextilien verstärkt wird. Dadurch gelingt eine deutliche Reduktion des notwendigen Holzquerschnittes und eine anforderungsgerechtere sowie verantwortungsvollere Nutzung des Querschnitts für alle üblichen Spannweiten des Hoch- und Geschossbaus. Ziel war die Nutzbarmachung bisher nicht erreichter mechanischer Kennwerte der Hanfbastfasern, durch die Entwicklung neuartiger Bastfasergewinnungs- und Aufbereitungsmethoden. Für die Entwicklung des neuartigen Deckensystems kooperierten die Partner Hanffaser Uckermark (Prenzlau), Holzbau Meyer (Stollberg/Erzgebirge), Hochschule für Technik, Wirtschaft und Kultur (Leipzig) sowie das Sächsische Textilforschungsinstitut e.V. (STFI), Fachbereich Web- und Maschenwaren, Verstärkungsstrukturen (Chemnitz). Das Forschungsprojekt ZIM KF4013848KI9 wurde unter dem Titel „Green organic reinforced high performance Timber Concrete Ceilings – Hanffaserkunststoffverstärkte, hochleistungsfähige und ressourceneffiziente Holz-Beton-Verbund-Decken“ über das Zentrale Innovationsprogramm Mittelstand (ZIM) vom Bundesministerium für Wirtschaft und Klimaschutz auf Grund eines Beschlusses des Deutschen Bundestages gefördert.

Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

Robot system (c) STFI
20.03.2024

STFI: Highlights of textile research at Techtextil 2024

STFI will be presenting high-end textile products and solutions at Techtextil 2024. The highlights from current research results and innovations provide an insight into the digitalisation of textile production, show applications for 3D printing and smart technical textiles and provide examples of particularly sustainably designed products as well as innovative approaches for protective and medical textiles.

The central highlight of STFI's presence at Techtextil is a robot system that demonstrates the automated processing of a bobbin frame on a small scale. The pick-and-place application demonstrates camera-supported gripping of the bobbins. The robot is part of the STFI's “Textile Factory of the Future” which demonstrates automation solutions for the textile industry in a laboratory environment.

STFI will be presenting high-end textile products and solutions at Techtextil 2024. The highlights from current research results and innovations provide an insight into the digitalisation of textile production, show applications for 3D printing and smart technical textiles and provide examples of particularly sustainably designed products as well as innovative approaches for protective and medical textiles.

The central highlight of STFI's presence at Techtextil is a robot system that demonstrates the automated processing of a bobbin frame on a small scale. The pick-and-place application demonstrates camera-supported gripping of the bobbins. The robot is part of the STFI's “Textile Factory of the Future” which demonstrates automation solutions for the textile industry in a laboratory environment.

From the field of sustainable products and solutions, a sleeping bag with bio-based and therefore vegan filling material and a natural fibre-based composite element for furniture construction, in which LEDs and capacitive proximity sensors for contactless function control have been applied using embroidery technology, will be on show. Printed heating conductor structures demonstrate current research work for the e-mobility of the future, as the individually controllable seat and interior heating should ultimately reduce weight and save energy compared to conventional heating systems.

While a protective suit for special task forces protects against the dangers of a Molotov cocktail attack, a shin guard and a knee brace with patellar ring illustrate the process combination of 3D printing and UV LED cross-linking. Other highlights from lightweight textile construction include the rib of a vertical rudder of an Airbus A320 and a green snowboard made from recycled carbon fibres.

More information:
STFI Techtextil Smart textiles
Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

DITF: Biopolymers from bacteria protect technical textiles Photo: DITF
Charging a doctor blade with molten PHA using a hot-melt gun
23.02.2024

DITF: Biopolymers from bacteria protect technical textiles

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

These biopolymers have the advantage that they can be produced in anything from small laboratory reactors to large production plants. The most promising biopolymers include polysaccharides, polyamides from amino acids and polyesters such as polylactic acid or polyhydroxyalkanoates (PHAs), all of which are derived from renewable raw materials. PHAs is an umbrella term for a group of biotechnologically produced polyesters. The main difference between these polyesters is the number of carbon atoms in the repeat unit. To date, they have mainly been investigated for medical applications. As PHAs products are increasingly available on the market, coatings made from PHAs may also be increasingly used in technical applications in the future.

The bacteria from which the PHAs are obtained grow with the help of carbohydrates, fats and an increased CO2 concentration and light with suitable wavelength.

The properties of PHA can be adapted by varying the structure of the repeat unit. This makes polyhydroxyalkanoates a particularly interesting class of compounds for technical textile coatings, which has hardly been investigated to date. Due to their water-repellent properties, which stem from their molecular structure, and their stable structure, polyhydroxyalkanoates have great potential for the production of water-repellent, mechanically resilient textiles, such as those in demand in the automotive sector and for outdoor clothing.

The DITF have already carried out successful research work in this area. Coatings on cotton yarns and fabrics made of cotton, polyamide and polyester showed smooth and quite good adhesion. The PHA types for the coating were both procured on the open market and produced by the research partner Fraunhofer IGB. It was shown that the molten polymer can be applied to cotton yarns by extrusion through a coating nozzle. The molten polymer was successfully coated onto fabric using a doctor blade. The length of the molecular side chain of the PHA plays an important role in the properties of the coated textile. Although PHAs with medium-length side chains are better suited to achieving low stiffness and a good textile handle, their wash resistance is low. PHAs with short side chains are suitable for achieving high wash and abrasion resistance, but the textile handle is somewhat stiffer.

The team is currently investigating how the properties of PHAs can be changed in order to achieve the desired resistance and textile properties in equal measure. There are also plans to formulate aqueous formulations for yarn and textile finishing. This will allow much thinner coatings to be applied to textiles than is possible with molten PHAs.

Other DITF research teams are investigating whether PHAs are also suitable for the production of fibers and nonwovens.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

Testfahrt im Erzgebirge (c) silbaerg GmbH
09.02.2024

Grünes Snowboard mit JEC Innovation Award ausgezeichnet

Naturfasern und Rezyklate sind die Grundlage der neuesten Produktlinie von silbaerg Snowboards. silbaerg fertigt seit 2011 hochwertige Snowboards mittels patentierter A.L.D.-tech®. A.L.D. steht für anisotropic layer design und ermöglicht eine bisher ungesehene Anpassungsfähigkeit an verschiedene Fahrsituationen.  

Handgefertigte A.L.D.tech®-Lagen umgeben den Holzkern und nicht, wie bei anderen Anbietern üblich, klassische industriell gefertigte Bi-, Tri- oder Quadraxialgelege. Bereits 2015 wurden dabei erstmals Naturfasern in Form von Tapes verwendet.

Naturfasern und Rezyklate sind die Grundlage der neuesten Produktlinie von silbaerg Snowboards. silbaerg fertigt seit 2011 hochwertige Snowboards mittels patentierter A.L.D.-tech®. A.L.D. steht für anisotropic layer design und ermöglicht eine bisher ungesehene Anpassungsfähigkeit an verschiedene Fahrsituationen.  

Handgefertigte A.L.D.tech®-Lagen umgeben den Holzkern und nicht, wie bei anderen Anbietern üblich, klassische industriell gefertigte Bi-, Tri- oder Quadraxialgelege. Bereits 2015 wurden dabei erstmals Naturfasern in Form von Tapes verwendet.

silbaerg setzt auf den Einsatz regionaler Produkte. So kommen Hanffasertapes von Sachsenleinen GmbH (Markkleeberg, Sachsen) zum Einsatz, deren Rohstoff seinen Ursprung auf den Feldern zwischen Chemnitz und Leipzig hat. Für die Versteifung der Boards werden weiterhin Carbonfasertapes benötigt. Hier greift silbaerg auf Forschungsergebnisse des Sächsischen Textilforschungsinstitutes e. V. (STFI) in Chemnitz zurück: Carbonfaserabfälle von silbaerg werden in Form von Recyclingvliesstoffen wiedereingesetzt. Die Verschnittreste, die bei silbaerg in der Produktion anderer Boards anfallen, werden am STFI auf der Anlagentechnik des Zentrums für Textilen Leichtbau aufbereitet und zu Carbonfaservliesstoffen verarbeitet. Diese werden anschließend zu Carbonfasertapes konfektioniert und dienen zusammen mit Hanffasertapes als Verstärkungsstruktur im grünen Snowboard, die damit absolut made in Saxony sind.

Aktuell werden erste Boards von silbaerg-Teamfahrern im Schnee getestet. Diese Testboards nutzen ein neues biobasiertes Harzsystem der bto-epoxy GmbH (Amstetten, Österreich), welches einen Bio-Anteil von 31 % im Harz und 54 % im Härter aufweist. Es ist geplant, die neue Produktlinie noch im Jahr 2024 auf den Markt zu bringen.  

Durch den Einsatz von Hanffasern und recycelten Carbonfasern und die damit verbundene Substitution von Primärmaterial werden Ziele für eine nachhaltige Entwicklung erfüllt. Durch die Nutzung von hauseigenen Rezyklaten lässt sich zudem die Abfallmenge von Carbonfasern im Unternehmen um ca. 75 % reduzieren. Welchen Einfluss dies auf die LCA der Produkte hat, wird aktuell berechnet. 

Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

Per Ultraschallschweißverfahren hergestellter Demonstrator. Foto: feelSpace
Per Ultraschallschweißverfahren hergestellter Demonstrator.
05.12.2023

E-Textiles: Navigationsgürtel für Sehbehinderte

Vibrationen weisen den Weg: Ein Navigationsgürtel hilft Sehbehinderten, ihr Ziel zu erreichen. Man gibt über eine App die Strecke ein, die man zurücklegen möchte, drückt auf „Start“ und der Gürtel führt wie ein Kompass in die richtige Richtung. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) haben ein Kontaktierverfahren entwickelt, womit diese Orientierungshilfe - und E-Textiles allgemein -wirtschaftlicher und komfortabler hergestellt werden können.

Wenn man in eine Straße abbiegen muss, vibriert der naviGürtel® der Firma feelSpace. Er signalisiert, in welcher Richtung man steht und hilft so nicht nur draußen, sondern auch in geschlossenen Räumen bei der Orientierung. Dafür sorgen 16 Vibrationselemente, die rings um den Gürtel angeordnet sind. Der Projektpartner AMOHR entwickelte hierzu ein spezielles leitfähiges Band, das einerseits durch seine hohe Elastizität einen angenehmen Tragekomfort bietet und andererseits durch eingearbeitete Versteifungen die Kontaktierung der Vibrationselemente ermöglicht.

Vibrationen weisen den Weg: Ein Navigationsgürtel hilft Sehbehinderten, ihr Ziel zu erreichen. Man gibt über eine App die Strecke ein, die man zurücklegen möchte, drückt auf „Start“ und der Gürtel führt wie ein Kompass in die richtige Richtung. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) haben ein Kontaktierverfahren entwickelt, womit diese Orientierungshilfe - und E-Textiles allgemein -wirtschaftlicher und komfortabler hergestellt werden können.

Wenn man in eine Straße abbiegen muss, vibriert der naviGürtel® der Firma feelSpace. Er signalisiert, in welcher Richtung man steht und hilft so nicht nur draußen, sondern auch in geschlossenen Räumen bei der Orientierung. Dafür sorgen 16 Vibrationselemente, die rings um den Gürtel angeordnet sind. Der Projektpartner AMOHR entwickelte hierzu ein spezielles leitfähiges Band, das einerseits durch seine hohe Elastizität einen angenehmen Tragekomfort bietet und andererseits durch eingearbeitete Versteifungen die Kontaktierung der Vibrationselemente ermöglicht.

Im herkömmlichen Verfahren werden Kontaktierungen gelötet. Das Team um Tobias Hecht hat für die Herstellung von E-Textiles ein Verfahren erschlossen, das bisher bei der Kontaktierung von Mikrochips verwendet wird: das Ultraschallschweißen. Damit können die Kontaktstellen verglichen mit einem Lötverfahren deutlich verkleinert werden, die Kontaktierungen werden punktgenau fixiert. Beim Löten wird das Lötmaterial aufgeschmolzen und die Kontaktstellen werden erhitzt. Das heiße Lot zerfließt, wodurch man einen relativ großflächigen Wärmeeintrag erhält. Durch das Fließen des Lotes entstehen auch abseits der Kontaktstelle ungewollte Versteifungen, die vor allem bei E-Textiles die Funktion beeinträchtigen. Beim Ultraschallschweißen entsteht weniger Hitze, was das Material schont.

Darüber hinaus hat das Ultraschweißen gegenüber dem Lötverfahren Vorteile für Gesundheit und Umwelt. Lötzinn ist mit Flussmittel versetzt, das gesundheitsschädliche Dämpfe erzeugt, die abgesaugt und gefiltert werden müssen.

Das Forschungsprojekt wurde im Rahmen des Zentralen Innovationsprogrammes Mittelstand (ZIM) gefördert.

Source:

Deutsche Institute für Textil- und Faserforschung

DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

12.10.2023

STFI auf der A+A 2023 in Düsseldorf

Das STFI präsentiert sich vom 24. bis 27. Oktober 2023 mit eigenem Messestand auf der A+A vor Ort. Experten rund um Hendrik Beier, den Leiter der Zertifizierungsstelle PSA (CE 0516), informieren zu Schutzkleidung sowie Produktnormen.

Mit Erfahrung und Kompetenz in der Prüfung und Zertifizierung Persönlicher Schutzausrüstung (PSA) unterstützt das STFI einen wichtigen Bestandteil für die Marktbereitstellung von Schutzkleidung. Die Prüf- und Zertifizierungsstelle des STFI bietet ein breites Spektrum an Dienstleistungen im Bereich textiler PSA. Sowohl für Schutzkleidung gegen Hitze und Flammen gemäß EN ISO 11612 als auch für Schutzkleidung zum Schweißen und verwandte Verfahren nach EN ISO 11611 bietet das sächsische Institut alle Prüfverfahren aus einer Hand. Auch die Prüfung und Bewertung von Schutztextilien gegen die thermischen Risiken elektrischer Störlichtbogen gehört zum Portfolio der Prüf- und Zertifizierungsstelle.

Das STFI präsentiert sich vom 24. bis 27. Oktober 2023 mit eigenem Messestand auf der A+A vor Ort. Experten rund um Hendrik Beier, den Leiter der Zertifizierungsstelle PSA (CE 0516), informieren zu Schutzkleidung sowie Produktnormen.

Mit Erfahrung und Kompetenz in der Prüfung und Zertifizierung Persönlicher Schutzausrüstung (PSA) unterstützt das STFI einen wichtigen Bestandteil für die Marktbereitstellung von Schutzkleidung. Die Prüf- und Zertifizierungsstelle des STFI bietet ein breites Spektrum an Dienstleistungen im Bereich textiler PSA. Sowohl für Schutzkleidung gegen Hitze und Flammen gemäß EN ISO 11612 als auch für Schutzkleidung zum Schweißen und verwandte Verfahren nach EN ISO 11611 bietet das sächsische Institut alle Prüfverfahren aus einer Hand. Auch die Prüfung und Bewertung von Schutztextilien gegen die thermischen Risiken elektrischer Störlichtbogen gehört zum Portfolio der Prüf- und Zertifizierungsstelle.

Von der Verfahrensentwicklung bis zur internationalen Normung tragen die Fachleute dazu bei, die Arbeit im Bereich elektrischer Anlagen sicherer machen. Für die Bewertung elektrostatisch ableitfähiger Schutzkleidung beschäftigen sich die Experten des STFI neben der Prüfung und Zertifizierung intensiv mit der Erforschung elektrostatischer Phänomene und der daraus abgeleiteten Entwicklung geeigneter Prüfverfahren. Wurde bereits vor vielen Jahren die EN 1149-3 als europaweit harmonisierter Prüfstandard für Textilien mit eingebauten leitfähigen Fasersystemen maßgeblich im Institut entwickelt, arbeiten die Spezialisten heute an Methoden zur Prüfung und Bewertung kompletter Kleidungssysteme.

More information:
STFI A+A
Source:

Sächsisches Textilforschungsinstitut e.V.

Frankfurt Skyline Foto Tobias Rehbein, Pixabay
10.10.2023

6. Symposium ADDITIVE FERTIGUNG in der Textilindustrie

Am 8. November 2023 findet das 6. Symposium ADDITIVE FERTIGUNG in der Textilindustrie in Frankfurt für Interessierte aus Textilindustrie, Kunststoffverarbeitung, Forschung und Praxis statt. Neue Materialien, innovative Fertigungstechnologien und zukunftsweisende Anwendungen sind Themen der Vorträge aus Wissenschaft und Wirtschaft.

Das Programm umfasst die neuesten Entwicklungen beim thermoplastischen Fused Layer Modeling, dem Druck mittels Dispenser oder Siebdruck sowie Materialien und Technologien für Schutzanwendungen und Architektur. Ergänzt werden die Vorträge durch eine begleitende Fachausstellung, auf der Unternehmen, die bereits mit additiven Fertigungs-verfahren arbeiten, ihre Produkte und Dienstleistungen präsentieren.

Veranstalter des Symposiums sind KARL MAYER STOLL R&D GmbH, das Textilforschungsinstitut Thüringen Vogtland e. V. (TITV Greiz) und das Sächsische Textilforschungsinstitut e.V. (STFI).

Am 8. November 2023 findet das 6. Symposium ADDITIVE FERTIGUNG in der Textilindustrie in Frankfurt für Interessierte aus Textilindustrie, Kunststoffverarbeitung, Forschung und Praxis statt. Neue Materialien, innovative Fertigungstechnologien und zukunftsweisende Anwendungen sind Themen der Vorträge aus Wissenschaft und Wirtschaft.

Das Programm umfasst die neuesten Entwicklungen beim thermoplastischen Fused Layer Modeling, dem Druck mittels Dispenser oder Siebdruck sowie Materialien und Technologien für Schutzanwendungen und Architektur. Ergänzt werden die Vorträge durch eine begleitende Fachausstellung, auf der Unternehmen, die bereits mit additiven Fertigungs-verfahren arbeiten, ihre Produkte und Dienstleistungen präsentieren.

Veranstalter des Symposiums sind KARL MAYER STOLL R&D GmbH, das Textilforschungsinstitut Thüringen Vogtland e. V. (TITV Greiz) und das Sächsische Textilforschungsinstitut e.V. (STFI).

Das Symposium ist eingebettet in die internationale Fachmesse für additive Fertigungstechnologien Formnext, der Branchenplattform für Additive Fertigung und industriellen 3D-Druck. Dank einer Vereinbarung der Veranstalter erhalten Teilnehmende des Symposiums den 4-Tage Expo Pass zur Formnext vom 7. - 10. November 2023.

Veranstaltungsort: Messe Frankfurt GmbH, Portalhaus, Ebene VIA, Raum Frequenz 2, Ludwig-Erhard-Anlage 1, 60327 Frankfurt am Main

Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

25.08.2023

Exist research transfer project FoxCore successfully launched

The FoxCore founding team and the ITM at TU Dresden aim to usher in a new era for fastening solutions in lightweight construction with the start of the Exist research transfer project FoxCore. The project started on June 1, 2023, and will run until November 30, 2024, with support from the German Federal Ministry of Economics and Climate Protection (BMWK) and the European Social Fund (ESF).

The innovative company is to develop and offer new and customer-oriented fastening solutions for lightweight construction applications. Safety and performance of lightweight solutions in various industries are to be increased. FoxCore's objective is to take a leading role in fastening technology.

Daniel Weise, Philipp Schegner, Michael Vorhof and Cornelia Sennewald form the FoxCore team; they will work closely with the Institute of Textile Machinery and Textile High Performance Materials (ITM) at TU Dresden. Together, they will develop optimal manufacturing technologies and establish a widespread network of customers and suppliers.

The FoxCore founding team and the ITM at TU Dresden aim to usher in a new era for fastening solutions in lightweight construction with the start of the Exist research transfer project FoxCore. The project started on June 1, 2023, and will run until November 30, 2024, with support from the German Federal Ministry of Economics and Climate Protection (BMWK) and the European Social Fund (ESF).

The innovative company is to develop and offer new and customer-oriented fastening solutions for lightweight construction applications. Safety and performance of lightweight solutions in various industries are to be increased. FoxCore's objective is to take a leading role in fastening technology.

Daniel Weise, Philipp Schegner, Michael Vorhof and Cornelia Sennewald form the FoxCore team; they will work closely with the Institute of Textile Machinery and Textile High Performance Materials (ITM) at TU Dresden. Together, they will develop optimal manufacturing technologies and establish a widespread network of customers and suppliers.

Source:

Institute of Textile Machinery and High Performance Material Technology (ITM)
TU Dresden

Photo: AVK
26.05.2023

AVK: Successful Flame Retardancy Conference in Berlin

  • Flame Retardancy for Composites Applications in the Transport Sector

On 10-11 May 2023, the AVK - Industrievereinigung Verstärkte Kunststoffe e. V. in cooperation with the FGK - Forschungsgesellschaft Kunststoffe e.V. in Berlin organised for the first time an international, English-language conference on flame retardancy.

In 18 compact lectures, more than 20 experts informed nearly 80 participants about new developments, requirements and innovations regarding specific flame retardant properties of components made of fibre-reinforced plastics/composites for the transport sector.

Among others, there were presentations by industry representatives from Saertex, BÜFA, Clariant, Diehl Aviation and Airbus, but also from institutes such as the Fraunhofer Institutes or the Federal Institute for Materials Research and Testing. Presentations on the topics of standardisation, raw materials, automotive or recycling were on the agenda, but also flame retardants for connectors and battery housings for electric vehicles or fire-retardant systems for rail vehicles or fire-retardant CFRP made from recycled CF nonwoven were presented.

  • Flame Retardancy for Composites Applications in the Transport Sector

On 10-11 May 2023, the AVK - Industrievereinigung Verstärkte Kunststoffe e. V. in cooperation with the FGK - Forschungsgesellschaft Kunststoffe e.V. in Berlin organised for the first time an international, English-language conference on flame retardancy.

In 18 compact lectures, more than 20 experts informed nearly 80 participants about new developments, requirements and innovations regarding specific flame retardant properties of components made of fibre-reinforced plastics/composites for the transport sector.

Among others, there were presentations by industry representatives from Saertex, BÜFA, Clariant, Diehl Aviation and Airbus, but also from institutes such as the Fraunhofer Institutes or the Federal Institute for Materials Research and Testing. Presentations on the topics of standardisation, raw materials, automotive or recycling were on the agenda, but also flame retardants for connectors and battery housings for electric vehicles or fire-retardant systems for rail vehicles or fire-retardant CFRP made from recycled CF nonwoven were presented.

More information:
AVK Composites flame retardant
Source:

AVK

Foto STFI
24.01.2023

STFI Akademie macht textile Fachkräfte fit

Das STFI bietet unter dem Namen „STFI Akademie“ Module und Kurse zur Fachkräftequalifizierung und -weiterbildung an. Einige der Kurse sind in Grund- und Intensivkurse unterteilt.

Geleitet wird die Akademie von den langjährigen Instituts-Mitarbeiter Jens Stopp und Denise Braun. Die Akademiedozenten sind ausgebildete Fachleute in den verschiedenen technologischen Gebieten.

Die Verbundausbildung, die sich Unternehmen zum Teil durch die Sächsische Aufbaubank (SAB) fördern lassen können, richtet sich an Firmen, die Teile des Rahmenlehrplanes nicht allein abdecken können und so fachliche Unterstützung benötigen. Die Weiterbildung und Qualifizierung richten sich an Facharbeiter, die in ihrem Bereich eine Vertiefung ihres fachlichen Wissens anstreben bzw. ihren beruflichen Horizont erweitern möchten. Darüber hinaus sollen auch Berufs- und Quereinsteiger angesprochen werden, Fachwissen zu erlangen.

Das STFI bietet unter dem Namen „STFI Akademie“ Module und Kurse zur Fachkräftequalifizierung und -weiterbildung an. Einige der Kurse sind in Grund- und Intensivkurse unterteilt.

Geleitet wird die Akademie von den langjährigen Instituts-Mitarbeiter Jens Stopp und Denise Braun. Die Akademiedozenten sind ausgebildete Fachleute in den verschiedenen technologischen Gebieten.

Die Verbundausbildung, die sich Unternehmen zum Teil durch die Sächsische Aufbaubank (SAB) fördern lassen können, richtet sich an Firmen, die Teile des Rahmenlehrplanes nicht allein abdecken können und so fachliche Unterstützung benötigen. Die Weiterbildung und Qualifizierung richten sich an Facharbeiter, die in ihrem Bereich eine Vertiefung ihres fachlichen Wissens anstreben bzw. ihren beruflichen Horizont erweitern möchten. Darüber hinaus sollen auch Berufs- und Quereinsteiger angesprochen werden, Fachwissen zu erlangen.

Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

Sächsisches Textilforschungsinstitut
10.01.2023

16. Symposium TEXTILE FILTER in Chemnitz

Branchentreffen für Filtration vom 14. bis zum 15. März 2023 in Chemnitz

Das zweitägige Symposium TEXTILE FILTER widmet sich in diesem Jahr innovativen, hochleistungsfähigen textilen Filtermedien verschiedener Anwendungen und Anlagen zur Gas- und Flüssigkeitsfiltration vor dem Hintergrund der Technologie im Wandel. Die Themen Nachhaltigkeit und Digitalisierung werden aus verschiedenen Perspektiven während des Symposiums vertieft.

Branchentreffen für Filtration vom 14. bis zum 15. März 2023 in Chemnitz

Das zweitägige Symposium TEXTILE FILTER widmet sich in diesem Jahr innovativen, hochleistungsfähigen textilen Filtermedien verschiedener Anwendungen und Anlagen zur Gas- und Flüssigkeitsfiltration vor dem Hintergrund der Technologie im Wandel. Die Themen Nachhaltigkeit und Digitalisierung werden aus verschiedenen Perspektiven während des Symposiums vertieft.

Unter dem Stichwort Nachhaltigkeit zählen zu den anhalten Trends in der Filtermedienentwicklung die Minimierung von Luft- und Wasserverschmutzungen, die Reduzierung von Umwelt- und Gesundheitsbelastungen sowie Ressourcenschonung bei gleichzeitiger Erhöhung von Filterstandzeiten und Maximierung der Wirtschaftlichkeit. Hochwertige Filtermedien werden zukünftig weitere Aufgaben übernehmen, z.B. den Schutz elektronischer Komponenten vor Flüssigkeiten und Partikel. Neue Mobilitätskonzepte auf Straßen und Schienen erfordern zukunftsweisende Filtrationslösungen. Filter werden zudem immer individueller. Die Produktion der Zukunft erfolgt digital. Smarte Filter überwachen zukünftig Betriebsparameter und übermitteln beispielsweise Daten zur Protokollierung von filterspezifischen Informationen zu Ersatzteilen und Ersatzfiltern.

Die Chemnitzer Tagung bietet die Gelegenheit, die Zusammenarbeit zwischen FuE mit der Industrie zu intensivieren und neue Impulse für die nachhaltige Filtermediengestaltung aufzunehmen. Begleitet wird das zweitägige Symposium wieder durch eine Fachausstellung.

Source:

Sächsisches Textilforschungsinstitut

Foto: 4k-stream.tv
Team beim Videodreh im Textile Prototyping Lab in Berlin
21.12.2022

futureTEX: Video soll Interesse von jungen Menschen an Technischen Textilien wecken

Als interdisziplinäres Kompetenznetzwerk aus Industrie- und Forschungspartnern ist futureTEX 2014 gestartet, um den Wandel der traditionsreichen Textilbranche im Zeitalter der Digitalisierung zu einem zukunftsfähigen Industrieplayer zu gestalten. Dazu wurden Technische Textilien (TechTex) mit innovativen Produkten, Technologien, Organisationsformen und Geschäftsmodellen erforscht. Bis Ende 2022 werden die letzten Projekte abgeschlossen sein. Für futureTex Anlass genug, um jetzt nochmals Bilanz zu ziehen und in einem Video insbesondere der jungen Generation das Anliegen des Projektes näher zu bringen. Mit der Zielsetzung, die Anwendungen von Technischen Textilien, Beispiele für futureTEX-Ergebnisse, den Nutzen und die Nachhaltigkeit des Projektes zu verdeutlichen, entstand ein Kurzvideo, das die Textilbranche, Nachwuchs, Partner und Multiplikatoren ansprechen soll.

Als interdisziplinäres Kompetenznetzwerk aus Industrie- und Forschungspartnern ist futureTEX 2014 gestartet, um den Wandel der traditionsreichen Textilbranche im Zeitalter der Digitalisierung zu einem zukunftsfähigen Industrieplayer zu gestalten. Dazu wurden Technische Textilien (TechTex) mit innovativen Produkten, Technologien, Organisationsformen und Geschäftsmodellen erforscht. Bis Ende 2022 werden die letzten Projekte abgeschlossen sein. Für futureTex Anlass genug, um jetzt nochmals Bilanz zu ziehen und in einem Video insbesondere der jungen Generation das Anliegen des Projektes näher zu bringen. Mit der Zielsetzung, die Anwendungen von Technischen Textilien, Beispiele für futureTEX-Ergebnisse, den Nutzen und die Nachhaltigkeit des Projektes zu verdeutlichen, entstand ein Kurzvideo, das die Textilbranche, Nachwuchs, Partner und Multiplikatoren ansprechen soll.

Dazu wird die Geschichte einer Auszubildenden erzählt, die eine Facharbeit zur Zukunft der Technischen Textilien schreibt und bei der Recherche im Internet die Webseite von futureTEX findet. Über die Kontaktanfrage kommt sie mit einem Mitarbeiter des Sächsischen Textilforschungsinstitutes e.V. (STFI) ins Gespräch und dieser schickt ihr verschiedene Videos zur Entwicklung und Produktion Technischer Textilien zu. Schließlich lädt er sie in ein Entwicklungslabor zur Textilfabrik der Zukunft ein, um die Zukunft der Branche der Technischen Textilien live zu erleben.

Die Story spielt bei drei ausgewählten Akteuren des futureTEX-Projektes und beginnt im Textile Prototyping Lab in Berlin am Pop-Up Lab im Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration, IZM. Hier werden auch zukünftig Forscher, Designer und Industrie-Akteure frühzeitig zusammengebracht, um gemeinsam an neuen Produkten und Ideen zu arbeiten. Im Unternehmen Norafin Industries (Germany) GmbH in Mildenau im Erzgebirge wird die Produktion von hochwertigen wasserstrahlverfestigten und vernadelten Vliesstoffen erlebt und in der Textilfabrik der Zukunft am STFI wird dargestellt, wie Industrie 4.0 in der Textilindustrie aussehen kann. Am Demonstrator einer Spielmatte wird anschaulich gezeigt, wie eine vernetzte Produktion mit Robotern, fahrerlosen Transportsystemen und Ortungssystemen funktioniert.

Source:

Sächsisches Textilforschungsinstitut e.V. (STFI) / P3N MARKETING GMBH

Bild: Fraunhofer IAO
29.09.2022

Projekt CYCLOMETRIC: Rezyklierfähige Bauteile für das Automobil der Zukunft

Bauteile im Automobil müssen nicht mehr nur technologisch höchsten Ansprüchen genügen, sondern auch nachhaltig und rezyklierbar sein. Zukünftig müssen Ingenieurinnen und Ingenieure bei der Entwicklung nicht nur das fertige Produkt, sondern auch das Ende dessen Lebenszyklus im Blick haben. Künstliche Intelligenz soll helfen, in solchen Zyklen zu denken. dabei helfen. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) sind einer der Projektpartner im Forschungsprojekt CYCLOMETRIC, das durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert und vom Projektträger Karlsruhe (PTKA) betreut wird. Entwickelt wird ein Tool, das schon während der Produktplanung Verbesserungsvorschläge macht.

Bauteile im Automobil müssen nicht mehr nur technologisch höchsten Ansprüchen genügen, sondern auch nachhaltig und rezyklierbar sein. Zukünftig müssen Ingenieurinnen und Ingenieure bei der Entwicklung nicht nur das fertige Produkt, sondern auch das Ende dessen Lebenszyklus im Blick haben. Künstliche Intelligenz soll helfen, in solchen Zyklen zu denken. dabei helfen. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) sind einer der Projektpartner im Forschungsprojekt CYCLOMETRIC, das durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert und vom Projektträger Karlsruhe (PTKA) betreut wird. Entwickelt wird ein Tool, das schon während der Produktplanung Verbesserungsvorschläge macht.

Recycling von Hochleistungsmaterialien scheitert häufig daran, dass sich die Werkstoffe nicht in ihre ursprünglichen Bestandteile trennen lassen. CYCLOMETRIC soll dafür sorgen, dass dieses Problem nicht erst am Ende des Lebenszyklus eines Produkts gelöst werden muss. Mit den derzeitigen Methoden und Werkzeugen werden Auswirkungen auf die Umwelt oft erst gegen Ende der Entwicklung oder sogar erst nach Produktionsbeginn untersucht – obwohl die relevantesten Entscheidungen über Produkteigenschaften deutlich früher getroffen werden. Das neue System hilft, während der Entwicklung die richtigen Entscheidungen zu treffen. Dazu werden Daten, Informationen, Wissen über alle Entwicklungsphasen und Schnittstellen hinweg analysiert und bewertet. Dabei kommen Forschungsansätze des Advanced Systems Engineerings und Model-based Systems Engineerings in Verbindung mit Methoden der Ökobilanzierung sowie die Geschäftsmodellanalyse zum Einsatz.

Produktentwicklung muss täglich komplexe Parameter wie Produzierbarkeit, Rezyklierfähigkeit, Wiederverwendbarkeit, CO2-Emissionen und Kosten im Blick behalten. Nicht zuletzt müssen die Erwartungen und Gewohnheiten der Kundinnen und Kunden mitgedacht werden. Das Tool berechnet die Auswirkungen bei der Auswahl des Materials ebenso wie bei der Planung von Produktionsschritten und macht Verbesserungsvorschläge.

Als Anwendungsbeispiel für das digitale Werkzeug dient im Projekt CYCOMETRIC eine Mittelkonsolenverkleidung. Sie besteht aus nachhaltigen Textilmaterialien und verfügt über in das Textil integrierte smarte Funktionen. Das fertige Tool ist dennoch nicht auf die Automobilbranche beschränkt. Es kann in allen Industriefeldern eingesetzt werden.

Aufgabe der DITF ist die Auswahl und Prüfung geeigneter Materialien. Das Team erarbeitet die passenden Fertigungs- und Verarbeitungsprozesse und erstellt einen Prototyp. An den Prüflaboren werden Testläufe zu Funktions-, Alltags-, Langzeit- und Extremtauglichkeit der textilen Strukturen und Faserverbundwerkstoffen durchgeführt, die bei der späteren Anwendung reproduzierbar sind. Für die smarten Funktionen der Konsole werden Konzepte für Sensoren und Aktoren entwickelt.

Die DITF bringen als Partner im Forschungscampus ARENA2036 umfangreiche Erfahrungen im Leichtbau durch Funktionsintegration bei Automobilen mit. Nach Abschluss des Projekts werden die Denkendorfer Forscherinnen und Forscher Unternehmen beraten, wie Textilien verstärkt im Fahrzeuginterieur eingesetzt werden können.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

Susan Gabler und Johannes Leis vom STFI bei Untersuchungen zum Recycling smarter Textilien. Foto: Sächsisches Textilforschungsinstitut e.V. (STFI)
Susan Gabler und Johannes Leis vom STFI bei Untersuchungen zum Recycling smarter Textilien.
20.09.2022

SmartERZ-Projekt zum Recycling von Smart Composites

Im Automobilbau, dem Schiffsbau und der Luftfahrtindustrie sowie bei Windenergieanlagen steigen die Materialanforderungen zusehends. Die verwendeten Werkstoffe sollen leicht, ressourcenschonend und gleichzeitig hochbelastbar sein. Faserverstärkte Kunststoffe (Composites) rücken immer mehr in den Vordergrund, da deren Eigenschaften in Kombination mit Glas- oder Carbonfasern metallischen Materialien oftmals überlegen sind. Mit Fokus auf die klimaneutrale Herstellung und Nutzung von Produkten wächst auch der Bedarf an Recyclinglösungen. Im SmartERZ-Projekt TRICYCLE arbeiten Unternehmen gemeinsam an geeigneten skalierbaren und wirtschaftlich tragfähigen Prozessen zum Recycling von Smart Composites. Momentan gibt es dafür keine Anbieter oder Konzepte am Markt.

Im Automobilbau, dem Schiffsbau und der Luftfahrtindustrie sowie bei Windenergieanlagen steigen die Materialanforderungen zusehends. Die verwendeten Werkstoffe sollen leicht, ressourcenschonend und gleichzeitig hochbelastbar sein. Faserverstärkte Kunststoffe (Composites) rücken immer mehr in den Vordergrund, da deren Eigenschaften in Kombination mit Glas- oder Carbonfasern metallischen Materialien oftmals überlegen sind. Mit Fokus auf die klimaneutrale Herstellung und Nutzung von Produkten wächst auch der Bedarf an Recyclinglösungen. Im SmartERZ-Projekt TRICYCLE arbeiten Unternehmen gemeinsam an geeigneten skalierbaren und wirtschaftlich tragfähigen Prozessen zum Recycling von Smart Composites. Momentan gibt es dafür keine Anbieter oder Konzepte am Markt.

Smart Composites bestehen aus Werkstoffen, deren Funktionalisierung durch die Integration oder Applikation elektrisch leitfähiger Komponenten, z. B. Sensoren oder Mikroprozessoren, erreicht wird. Dazu zählen zum Beispiel smarte Textilien, die elektronisch wärmen, Lichtsignale geben oder zur Datenübertragung genutzt werden können. Das breite Anwendungsspektrum und die vielseitigen Einsatzgebiete dieser intelligenten Verbundwerkstoffe und Multimaterialverbunde werden perspektivisch zu einem wachsenden Bedarf und einer stärkeren Nachfrage führen.

Die funktionale und vielschichtige Verbindung verschiedener Materialien wie Kunststoff, Metall und Textil wirft beim Thema Recycling Nachhaltigkeitsfragen auf. Im Erzgebirge werden dafür bereits heute Lösungen entwickelt. Im Rahmen des WIR!-Projektes SmartERZ ist das Verbundprojekt TRICYCLE entstanden. Mit dem Fokus auf den Strukturwandel im Erzgebirge haben sich acht ortsansässige Partner aus Wissenschaft und Wirtschaft zusammengetan, um ein Recyclingkonzept aufzustellen und die Grobplanung für ein erzgebirgisches Recycling Center zu entwickeln. Das Ende des Produktlebenszyklus und die Nachnutzung bzw. Wiederaufbereitung stehen dabei im Mittelpunkt des Entwicklungsprozesses. Im Ergebnis sollen effektive und maßgeschneiderte Maßnahmen für eine möglichst hochwertige Wiederverwendung entstehen. Diese sollen dem steigenden Aufkommen an Abfällen aus diesem wachsenden Bereich der deutschen Industrie begegnen und anwendungsbereit sein.

Klassische Herausforderungen für die Projektbeteiligten sind die irreversiblen Verbindungstechniken (z. B. Kleben, Faser-Matrix-Haftung), die Integration vieler verschiedener Materialien in geringen Mengen sowie Form und Größe der Bauteile. Eigene Untersuchungen sowie Feedback von Partnerunternehmen bestätigen die Notwendigkeit sowie den Nutzen eines passgenauen Recyclingprozesses für Smart Composites und intelligente Multimaterialverbünde. Das Projekt soll dazu beitragen, den Wirtschaftsstandort Erzgebirge attraktiver und zukunftsfähiger zu gestalten.

Am 1. September 2021 gestartet, kann TRICYCLE erste Ergebnisse vorweisen. Zunächst wurden die Bedarfe bei mittelständischen Unternehmen in der Region Erzgebirge abgefragt, um die aktuellen Gegebenheiten und den Status quo in Bezug auf technologische Recyclingkonzepte bestmöglich abzubilden. Für ein fundiertes Recyclingkonzept hat das TRICYCLE-Team drei Referenzbauteile für den vorgesehenen Prozess ermittelt, die in der erzgebirgischen Wirtschaft Verwendung finden, und folgenden Bereichen zugeordnet: Automotive, Technische Textilien mit applizierter Zusatzfunktion und Technische Textilien mit integrierter Zusatzfunktion.

Basierend auf dieser Auswahl, analysiert das Projektteam momentan die Herstellungs- und bisherigen Recyclingprozesse der Referenzbauteile. Das beinhaltet auch die Planung praktischer Versuche zum Recycling. Dabei fokussieren sich die Projektpartner auf ihr Know-how in verschiedenen chemischen, thermischen und mechanischen Prozessen zur Separierung, Rückführung und Wiederverwendung der eingesetzten Materialien. Um die Produkte den Recyclingtechnologien zugänglich zu machen, wurde die Herangehensweise innerhalb des Projekts angepasst, da insbesondere Textil aufgrund von Form und Struktur (z. B. endlose Struktur) herausfordernd sein kann.

Obwohl die Materialien selbst recycelbar sind, müssen diese dennoch für den Prozess optimal vorbereitet bzw. fachgerecht aufbereitet werden. Die Expertise und die Technologiekompetenz, die hierfür benötigt werden, ist bei den beteiligten Projektpartnern durch jahrzehntelange Erfahrung und zahlreiche Innovationen vorhanden. Das Zusammenspiel aller Beteiligten im Projekt TRICYCLE stellt bereits jetzt die Weichen für das geplante Recycling Center, um dieses später zum Drehkreuz zwischen regionalen Produktionsunternehmen und dem Recycling weiterzuentwickeln. Dieses soll als „Open Factory“ aufgebaut werden, um den Unternehmen des SmartERZ-Bündnisses bzw. perspektivisch der Region Erzgebirge eine gemeinsame Nutzung zu ermöglichen.

„Die Wiederverwendung der eingesetzten Ressourcen ist sowohl aus ökonomischer als auch aus ökologischer Sicht zwingend geboten. Momentan gibt es weder Anlagenbauer noch Dienstleistungsanbieter mit den entsprechenden Kompetenzen zum Recycling von Smart Composites oder Multimaterialverbünden am Markt,“ stellt Johannes Leis, der Verbundkoordinator vom Sächsischen Textilforschungsinstitut e.V. (STFI) in Chemnitz fest.Unter Leitung des STFI als Verbundkoordinator mit seiner über 30-jährigen Erfahrung in der Textilbranche und speziellem Know-how im Recycling von Carbonabfällen haben sich weitere Unternehmen und Forschungseinrichtungen zusammengefunden. Dazu zählen das Textilunternehmen Curt Bauer GmbH, die Professur Fabrikplanung und Fabrikbetrieb der TU Chemnitz, das Ingenieurbüro Matthias Weißflog, der Hersteller für Faserverbundbauteile Cotesa GmbH, der Spezialvlieshersteller Norafin Industries (Germany) GmbH, das Recyclingunternehmen Becker Umweltdienste GmbH und die Hörmann Rawema Engineering & Consulting GmbH. Am Ende der Projektlaufzeit sollen ein einsatzfähiges, technologisches Recyclingkonzept für die zukünftigen entstehenden smarten Produkte sowie die in der Produktion entstehenden Abfälle (bspw. durch fehlerhafte Bauteile und Randbeschnitte) und ein Konzept für den Aufbau eines Recycling Centers vorliegen, das im Erzgebirge entstehen soll.

09.09.2022

Neues EU-Projekt für Carbonfaser- und Glasfaserverbundwerkstoffe

Das EU-Projekt „MC4 – Multi-level Circular Process Chain for Carbon and Glass Fibre Composites“ untersucht zirkuläre Ansätze für die Wiederverwendung von Verbundwerkstoffen aus Carbon- und Glasfasern. Es entwickelt Prozesstechnologien und Qualitätssicherungsmethoden, die ein wirtschaftliches Recycling von Carbon- und Glasfaserbauteilen ermöglichen. Die im Fokus stehenden Materialien sind für zahlreiche technische Anwendungen unverzichtbar, bei denen ein geringes Materialgewicht und hohe Performance besonders geschätzt werden. Die europäischen Wertschöpfungsketten für Carbon- und Glasfasern müssen jedoch in zweierlei Hinsicht optimiert werden: in Bezug auf die ökologische und die wirtschaftliche Effizienz.

Das EU-Projekt „MC4 – Multi-level Circular Process Chain for Carbon and Glass Fibre Composites“ untersucht zirkuläre Ansätze für die Wiederverwendung von Verbundwerkstoffen aus Carbon- und Glasfasern. Es entwickelt Prozesstechnologien und Qualitätssicherungsmethoden, die ein wirtschaftliches Recycling von Carbon- und Glasfaserbauteilen ermöglichen. Die im Fokus stehenden Materialien sind für zahlreiche technische Anwendungen unverzichtbar, bei denen ein geringes Materialgewicht und hohe Performance besonders geschätzt werden. Die europäischen Wertschöpfungsketten für Carbon- und Glasfasern müssen jedoch in zweierlei Hinsicht optimiert werden: in Bezug auf die ökologische und die wirtschaftliche Effizienz.

Derzeit gehen bis zu 40 % des Materials im Produktionsprozess als Abfall (z.B. Prepreg-Abfälle im Zuschnitt) verloren und nach einer Lebensdauer von 15 bis 30 Jahren werden 98 % des Materials der Entsorgung zugeführt, ohne Aussicht auf Wiederverwertung. Bei einem jährlichen Verbrauch von etwa 138.000 Tonnen Carbonfasern und 4,5 Millionen Tonnen Glasfaserverbundwerkstoffen sind entsprechende Umweltauswirkungen von hoher Relevanz.
Zusätzlich zu diesen Umweltproblemen muss die derzeitige Wettbewerbsposition Europas in diesen Wertschöpfungsketten verbessert werden, um weniger von ausländischen Quellen abhängig zu sein. 80 % der Herstellung von Carbon- und Glasfasern findet außerhalb Europas statt, und wenn die Herstellung in Europa erfolgt, sind die Technologien häufig von anderen Ländern

MC4 wird sich auf verschiedene Wiederverwendungs- und Recyclingprozesse entlang des Lebenszyklus von Verbundwerkstoffen konzentrieren. Dazu gehören:

  • Chemische Recyclingtechnologien für eine wirtschaftlich effiziente Trennung von Matrix und Carbonfasern
  • Verarbeitungstechnologien für die Wiederverwendung von Prepreg-Abfällen aus dem Produktionsablauf (z.B. beim Zuschnitt)
  • Mechanische Recyclingverfahren für Bauteile aus Glasfaserverbundwerkstoffen zur direkten Wiederverwendung der Materialien in neuen Bauteilen
  • Neue Harze für eine bessere Recycelbarkeit von Glasfaserbauteilen
  • Technologien für die Verarbeitung von recycelten Carbonfasern zur Herstellung von Garnen, Geweben und Vliesstoffen für Verbundbauteile
  • Qualitätssicherungsmethoden zur Charakterisierung von recycelten Glas- und Carbonfasern und der daraus hergestellten neuen Verbundwerkstoffe

Das Konsortium umfasst 15 Partner aus sieben europäischen Ländern. Prozessentwickler, Materialhersteller, Hersteller von Verbundbauteilen sowie Endverbraucher decken die gesamte Wertschöpfungskette ab.

Das STFI bringt in verschiedenen Arbeitspaketen des Projektes seine Kompetenzen im Bereich der Verarbeitung und des Recyclings von Carbonfasern und Carbonfaserverbundbauteilen ein. Neben der Herstellung von Vliesstoffen und deren Prüfung stehen die Anfertigung von Demonstratoren, aber auch entsprechende LCA und Wirtschaftlichkeitsbetrachtungen im Vordergrund.

MC4 wird von der Europäischen Union unter dem Aufruf HORIZON-CL4-2021-RESILIENCE-01-01 im Forschungsrahmenprogramm Horizon Europe finanziert. Die Laufzeit des Projektes ist von April 2022 bis März 2025.

Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

Lavendelpflanzen kurz vor der Blüte auf dem Versuchsfeld bei Hülben. Foto: Carolin Weiler
26.07.2022

Lavendelanbau auf der Schwäbischen Alb: Ätherisches Öl aus Blüten und Textilien von Pflanzenresten

In der Provence stehen Lavendelfelder in voller Blüte. Diese Farbenpracht kann bald auch in Baden-Württemberg zu sehen sein. In einem gemeinsamen Forschungsprojekt prüfen die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF), die Universität Hohenheim und die Firma naturamus geeignete Lavendelsorten und entwickeln energieeffiziente Methoden, daraus ätherisches Öl herzustellen. Auch für die Verwertung der großen Mengen an Reststoffen, die bei der Produktion anfallen, gibt es Ideen: Die DITF erforschen, wie daraus Fasern für klassische Textilien und Faserverbundwerkstoffe hergestellt werden können.

Bei Firma naturamus am Fuße der der Schwäbischen Alb besteht eine hohe Nachfrage an hochwertigen ätherischen Ölen für Arzneimittel und Naturkosmetik. Viel spricht dafür, Lavendel vor Ort anzubauen. Die ökologische Bewirtschaftung der Lavendelfelder würde dazu beitragen, den Anteil an ökologischem Landbau im Land zu erhöhen und Transportkosten einzusparen.

In der Provence stehen Lavendelfelder in voller Blüte. Diese Farbenpracht kann bald auch in Baden-Württemberg zu sehen sein. In einem gemeinsamen Forschungsprojekt prüfen die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF), die Universität Hohenheim und die Firma naturamus geeignete Lavendelsorten und entwickeln energieeffiziente Methoden, daraus ätherisches Öl herzustellen. Auch für die Verwertung der großen Mengen an Reststoffen, die bei der Produktion anfallen, gibt es Ideen: Die DITF erforschen, wie daraus Fasern für klassische Textilien und Faserverbundwerkstoffe hergestellt werden können.

Bei Firma naturamus am Fuße der der Schwäbischen Alb besteht eine hohe Nachfrage an hochwertigen ätherischen Ölen für Arzneimittel und Naturkosmetik. Viel spricht dafür, Lavendel vor Ort anzubauen. Die ökologische Bewirtschaftung der Lavendelfelder würde dazu beitragen, den Anteil an ökologischem Landbau im Land zu erhöhen und Transportkosten einzusparen.

Der Anbau von Lavendel auf der Alb bedeutet Neuland. Die Universität Hohenheim testet deswegen an vier Standorten fünf verschiedene Sorten, zum Beispiel auf dem Sonnenhof bei Bad Boll. Ende des Jahres werden die ersten Ergebnisse erwartet.

Bei der Gewinnung der ätherischen Öle fällt eine große Menge an Reststoffen an, die bisher noch nicht verwertet wird. Aus dem Lavendelstängel können Fasern für Textilien gewonnen werden. An den DITF laufen bereits Entwicklungen und Analysen mit diesem nachwachsenden Rohstoff. Um Lavendel-Destillationsreste zu verwerten, müssen die pflanzlichen Stängel mit ihren Faserbündeln aufgeschlossen, das heißt, in ihre Bestandteile zerlegt werden. Innerhalb eines Faserbündels sind die verholzten (lignifizierten) Einzelfasern fest durch pflanzlichen Zucker, dem Pektin, verbunden. Diese Verbindung soll beispielsweise mit Bakterien oder mit Enzymen aufgelöst werden.

DITF-Wissenschaftler Jamal Sarsour untersucht verschiedene Vorbereitungstechniken und Methoden, um aus dem Material Lang- und Kurzfasern herzustellen. „Wir sind gespannt, wie hoch die Ausbeute an Fasern sein wird und welche Eigenschaften diese Fasern haben“. Projektleiter Thomas Stegmaier ergänzt: „Die Länge, die Feinheit als auch die Festigkeit der Faserbündel entscheiden über die Verwendungsmöglichkeiten. Feine Fasern sind für Bekleidung geeignet, gröbere Faserbündel für technische Anwendungen“.

Die Chancen auf dem Markt sind gut. Regionale Wertschöpfung und ökologisch und fair erzeugte Textilien sind im Trend. Dabei geht es nicht in erster Linie um Bekleidung, sondern um technische Textilien. Die für den Leichtbau so wichtigen Faserbundwerkstoffe können auch mit nachwachsenden Naturfasern hergestellt werden, wie zum Beispiel bereits mit Hanf oder Flachs. Selbst aus Hopfen-Gärresten wurde an den DITF bereits Faserverbundmaterial hergestellt. Fasern aus den Reststoffen von Lavendel könnten ein weiterer natürlicher Baustein für Hightech-Anwendungen sein.

More information:
Lavendel DITF
Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf

STFI lädt ein zum Bautextilien-Symposium mit den Schwerpunkten Ressourcenscho-nung und Nachhaltigkeit (online) (c) STFI
bautex

STFI lädt zum Bautextilien-Symposium ein

  • Textiler Dauerlauf oder wie Geokunststoffe durch eine hohe Nutzungsdauer nachhaltig werden
  • STFI lädt ein zum Bautextilien-Symposium mit den Schwerpunkten Ressourcenschonung und Nachhaltigkeit (online)

Ressourcenschonung und Nachhaltigkeit – Verzicht oder Wachstumschance? Diese Frage begegnet uns immer häufiger, auch beim Thema Bauen mit Textil. Auswirkungen und Konsequenzen einer Entscheidung für mehr Nachhaltigkeit müssen wir dabei jedoch immer hinterfragen. Denken wir beispielsweise an die zweifelsfrei notwendige Infrastruktur, auf die eine moderne, industriell geprägte Gesellschaft angewiesen ist, müssen hier andere Lösungen als bloßer Verzicht gefunden werden.

Ressourcenschonung und Nachhaltigkeit durch Geokunststoffe - Unter diesem Leitthema lädt das Sächsische Textilforschungsinstitut e.V. zusammen mit seinen Mitveranstaltern ein zum 15. Symposium „BAUTEX – Bauen mit Textilien“ am 26. und 27. Januar 2022.

  • Textiler Dauerlauf oder wie Geokunststoffe durch eine hohe Nutzungsdauer nachhaltig werden
  • STFI lädt ein zum Bautextilien-Symposium mit den Schwerpunkten Ressourcenschonung und Nachhaltigkeit (online)

Ressourcenschonung und Nachhaltigkeit – Verzicht oder Wachstumschance? Diese Frage begegnet uns immer häufiger, auch beim Thema Bauen mit Textil. Auswirkungen und Konsequenzen einer Entscheidung für mehr Nachhaltigkeit müssen wir dabei jedoch immer hinterfragen. Denken wir beispielsweise an die zweifelsfrei notwendige Infrastruktur, auf die eine moderne, industriell geprägte Gesellschaft angewiesen ist, müssen hier andere Lösungen als bloßer Verzicht gefunden werden.

Ressourcenschonung und Nachhaltigkeit durch Geokunststoffe - Unter diesem Leitthema lädt das Sächsische Textilforschungsinstitut e.V. zusammen mit seinen Mitveranstaltern ein zum 15. Symposium „BAUTEX – Bauen mit Textilien“ am 26. und 27. Januar 2022.

Marian Hierhammer, Leiter der Prüfstelle am STFI, sagt dazu: „Geokunststoffe, die unsichtbaren Arbeiter im Untergrund, haben sich über die letzten Jahrzehnte zu einem bedeutenden Element bei innovativen Bauweisen im Erd- und Grundbau entwickelt. Dies ist nicht nur in den vielen Funktionen wie z. B. Filtern, Bewehren, Trennen, Dichten begründet, die sie bei den unterschiedlichsten Anwendungen übernehmen. Positive Praxiserfahrungen beim Einsatz von Geokunststoffen, ihre stetige Weiterentwicklung und ‚Ausstattung‘ mit neuen Funktionen tragen ebenso dazu bei. Mit dem Nachweis einer hohen Dauerhaftigkeit und damit verbundenen längeren Nutzungsdauer bieten die Geokunststoffe im Grunde ein perfektes Beispiel für Ressourcenschonung und Nachhaltigkeit.“

Das Symposium richtet sich an Akteure aus Industrie, Forschung und Bildung, aber auch an Vertreter aus Verwaltung und regelsetzenden Bereichen. Die BAUTEX wird – anders als zunächst geplant – als Onlineveranstaltung durchgeführt.

30.07.2021

Hanf als Rohstoff textiler Innovationen

Das Thema Nachhaltigkeit ist immer wieder Bestandteil der Forschungs- und Entwicklungsarbeiten am Sächsischen Textilforschungsinstitut. In der aktuellen Ausgabe der STFI-Webtalks wird der Schwerpunkt auf nachhaltige und innovative Neuentwicklungen, im Speziellen mit dem Rohstoff Hanf gelegt.

Hanf ist abseits von Cannabis- und Seilherstellung vielseitig einsetzbar. Wie aus den Naturfasern neuartige Produkte entstehen können, wird Inhalt der Vorträge der Wissenschaftlerinnen Elke Thiele und Ina Sigmund sein. Beide präsentieren Ergebnisse von Projekten, deren Grundlage der Rohstoff Hanf bildete:

Der erste Teil der webTalks beschäftigt sich mit Biogenen Heavy Tows. Mit dem Ziel, Hochleistungsfaserverbunde aus Hanfbast zu entwickeln, wurde das Projekt gemeinsam mit den Forschungspartnern Invent GmbH Braunschweig, Technitex Sachsen GmbH, Hohenstein-Ernstthal und Hanffaser Uckermark eG, Prenzlau bearbeitet. In der Präsentation werden Möglichkeiten der Bastfaseraufbereitung zu endlosen Fasersträngen dargestellt und Varianten der Halbzeugherstellung präsentiert. Die Kennwerte der neuartigen Naturfaserverbunde bewegen sich im Bereich von Glasfaserverbunden.

Das Thema Nachhaltigkeit ist immer wieder Bestandteil der Forschungs- und Entwicklungsarbeiten am Sächsischen Textilforschungsinstitut. In der aktuellen Ausgabe der STFI-Webtalks wird der Schwerpunkt auf nachhaltige und innovative Neuentwicklungen, im Speziellen mit dem Rohstoff Hanf gelegt.

Hanf ist abseits von Cannabis- und Seilherstellung vielseitig einsetzbar. Wie aus den Naturfasern neuartige Produkte entstehen können, wird Inhalt der Vorträge der Wissenschaftlerinnen Elke Thiele und Ina Sigmund sein. Beide präsentieren Ergebnisse von Projekten, deren Grundlage der Rohstoff Hanf bildete:

Der erste Teil der webTalks beschäftigt sich mit Biogenen Heavy Tows. Mit dem Ziel, Hochleistungsfaserverbunde aus Hanfbast zu entwickeln, wurde das Projekt gemeinsam mit den Forschungspartnern Invent GmbH Braunschweig, Technitex Sachsen GmbH, Hohenstein-Ernstthal und Hanffaser Uckermark eG, Prenzlau bearbeitet. In der Präsentation werden Möglichkeiten der Bastfaseraufbereitung zu endlosen Fasersträngen dargestellt und Varianten der Halbzeugherstellung präsentiert. Die Kennwerte der neuartigen Naturfaserverbunde bewegen sich im Bereich von Glasfaserverbunden.

Anschließend werden im zweiten Teil innovative Maschenwaren aus biologisch angebautem Hanf vorgestellt, die sogenannten Lyohemp-Strickwaren. Hanf aus regionalem Anbau ist aufgrund seines Eigenschaftsprofils nur bedingt für die Textilproduktion geeignet. Stand der Technik sind Vliesstoffe als textile Halbzeuge für die Produktion von Naturfaserverstärkten Kunststoffen (NFK) für die Automobilindustrie oder Dämmstoffe. Hanfreststoffe bzw. ungenügende Faserqualitäten wurden daher als Ausgangsmaterial für die Zellstoffgewinnung herangezogen. Aus Hanfzellstoff wurde nach dem Lyocell-Verfahren eine Celluloseregeneratfaser entwickelt (Lyohemp), die sich zu feinen Garnen ausspinnen lässt.

Nächste Ausgabe der STFI webTalks am 12. August 2021 von 10:00 bis 10:45Uhr.
Die Teilnahme ist kostenlos und ohne Anmeldung über den Link möglich.

More information:
STFI Webtalks Webtalk Hanffasern
Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)