From the Sector

Reset
234 results
12.10.2021

DSM to showcase armor solutions made with Dyneema® at Milipol Paris 2021

DSM, the inventor and manufacturer of Dyneema®, will be exhibiting at one of the leading events for homeland security and safety, Milipol Paris 2021, from October 19-22.

The performance characteristics of Dyneema® make it ideal for a variety of applications, including soft and hard armor ballistics to protect against today’s advanced and emerging threats. In addition, Dyneema® combines next-generation fiber technology and unidirectional engineering to deliver armor solutions with unmatched ballistic stopping power in a lightweight and flexible composite.

By implementing Dyneema®, body armor manufacturers are able to use less material in the development of their ballistic vests, plates and helmets. This leads to weight savings upwards of 30 percent when compared to competitive materials, without impacting ballistic performance. The lightweight construction of armor made with Dyneema® also mitigates injuries associated with the cumulative effects of daily armor use – while improving situational awareness, as well as cognitive and tactical performance.

DSM, the inventor and manufacturer of Dyneema®, will be exhibiting at one of the leading events for homeland security and safety, Milipol Paris 2021, from October 19-22.

The performance characteristics of Dyneema® make it ideal for a variety of applications, including soft and hard armor ballistics to protect against today’s advanced and emerging threats. In addition, Dyneema® combines next-generation fiber technology and unidirectional engineering to deliver armor solutions with unmatched ballistic stopping power in a lightweight and flexible composite.

By implementing Dyneema®, body armor manufacturers are able to use less material in the development of their ballistic vests, plates and helmets. This leads to weight savings upwards of 30 percent when compared to competitive materials, without impacting ballistic performance. The lightweight construction of armor made with Dyneema® also mitigates injuries associated with the cumulative effects of daily armor use – while improving situational awareness, as well as cognitive and tactical performance.

While decreasing the load on the wearer, Dyneema® is simultaneously able to reduce the impact of material manufacturing on our planet. In line with DSM’s commitment to protect people and the environment they live in, we have developed the first-ever bio-based ultra-high molecular weight polyethylene fiber and unidirectional (UD) material. Bio-based Dyneema® boasts the same exact performance as conventional Dyneema® with a carbon footprint that is 90 percent lower than generic HMPE.

Source:

DSM Protective Materials / EMG

Recycling secures raw materials for a climate-neutral Europe © ALBA Group
Newly published: the studie “resources SAVED by recycling”.
06.10.2021

Recycling secures raw materials for a climate-neutral Europe

Recycling is the key factor in achieving the EU climate targets. This is shown by the results of the "resources SAVED by recycling" study published today, which Fraunhofer UMSICHT prepared on behalf of the ALBA Group, one of the ten leading recycling companies worldwide. According to the study, 3.5 million tons of greenhouse gas emissions and 28.8 million tons of primary resources could be saved in 2020 alone. Further potential could be raised, for example, through minimum quotas for the use of recycled raw materials.

Recycling is the key factor in achieving the EU climate targets. This is shown by the results of the "resources SAVED by recycling" study published today, which Fraunhofer UMSICHT prepared on behalf of the ALBA Group, one of the ten leading recycling companies worldwide. According to the study, 3.5 million tons of greenhouse gas emissions and 28.8 million tons of primary resources could be saved in 2020 alone. Further potential could be raised, for example, through minimum quotas for the use of recycled raw materials.

“Fit for 55” thanks to the circular economy: the recycling of raw materials leads to a systematic reduction in the greenhouse gas emissions of our civilisation – and can therefore make a key contribution to achieving the EU climate goals. This is the outcome of the “resources SAVED by recycling” study presented today, which the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT prepared on behalf of the ALBA Group. Thanks to the closed-loop circulation of 4.8 million tonnes of recyclable materials, the ALBA Group succeeded in preventing some 3.5 million tonnes of climate-damaging greenhouse gas emissions in the year 2020 alone. This amount is equivalent to the emissions from some five million return flights between Frankfurt am Main and Mallorca. At the same time, recycling also secures valuable raw materials for the industry: in 2020, in comparison with primary production, recycling saved 28.8 million tonnes of resources, such as crude oil and iron ore.

“The circular economy is one of the strongest pace-setters on the journey to achieving climate neutrality,” highlights Dr. Axel Schweitzer, CEO of the ALBA Group. “We will only achieve the goal of reducing greenhouse gas emissions by at least 55 per cent throughout Europe by 2030 if we make consistent use of recycled raw materials.” This includes the area of plastics, for example: compared with primary plastics made from crude oil, the use of high-quality recycled plastics achieves a reduction of greenhouse gas emissions of more than 50 per cent. “It is now necessary to lever this potential,” explains Schweitzer. “We are expecting the new Federal Government in Germany to act decisively and push ahead directly with the transition to a circular economy. The environmental benefits of recycling due to its clearly superior CO2 balance should also find reflection in prices. As immediate climate protection measures, clear industry standards for recyclates combined with minimum quotas on the use of recycled raw materials in products and packaging are also urgently necessary. Last but not least, the state sector is also called upon to prioritise resource protection in the area of procurement. Sustainable procurement can ultimately provide a significant boost to the circular economy”.

Plastics, metals, waste electrical (and electronic) equipment, wood, paper, cardboard, cartons or glass: the Fraunhofer UMSICHT has now been researching the specific benefits of recycling for 14 years. Detailed comparisons have also been made of the primary processes and recycling processes for the various material flows. “This means we can precisely quantify the extent to which the recycling activities of the ALBA Group can contribute to reducing the burden on the environment,” explains Dr.-Ing. Markus Hiebel, Director of the Department for Sustainability and Participation at Fraunhofer UMSICHT. Hiebel believes that the greatest savings can be achieved if the entire value chain is aligned consistently with the circular principle: “The transformation towards a genuine circular economy requires completely new thinking. Products should be designed and managed to ensure that they contain recycled raw materials right from the start – which enables them to be recycled appropriately.”

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

 

(c) FET by AWOL Media
27.09.2021

FET at INDEX 2020 with new lab-scale spunbond system

The UK’s Fibre Extrusion Technology (FET) will introduce its new lab-scale spunbond system at the forthcoming INDEX 2020 nonwovens exhibition taking place in Geneva, Switzerland, from October 19-22.

The new spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

FET has already supplied one of these new spunbond lines to University of Leeds in the UK, and a second, in combination with a metlblown line, to the University of Erlangen-Nuremberg in Germany.

“Our new spunbond technology is unique in providing the ability to process a wide range of polymers, including those normally not considered appropriate for the spunbond process, at the scale required to fully explore material combinations and bring new products to market,” says FET Managing Director Richard Slack. “FET has built on its melt spinning expertise to develop a true laboratory scale spunbond system.”

The UK’s Fibre Extrusion Technology (FET) will introduce its new lab-scale spunbond system at the forthcoming INDEX 2020 nonwovens exhibition taking place in Geneva, Switzerland, from October 19-22.

The new spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

FET has already supplied one of these new spunbond lines to University of Leeds in the UK, and a second, in combination with a metlblown line, to the University of Erlangen-Nuremberg in Germany.

“Our new spunbond technology is unique in providing the ability to process a wide range of polymers, including those normally not considered appropriate for the spunbond process, at the scale required to fully explore material combinations and bring new products to market,” says FET Managing Director Richard Slack. “FET has built on its melt spinning expertise to develop a true laboratory scale spunbond system.”

Source:

FET / AWOL Media

23.09.2021

NCTO: U.S. Trade Representative Katherine Tai highlights U.S. Textile Industry

Milliken & Company and American & Efird (A&E) hosted United States Trade Representative (USTR) Ambassador Katherine Tai in two separate visits to the companies’ state-of-the-art textile manufacturing facilities, marking an unprecedented visit to the heart of the U.S. textile industry in the Carolinas by the nation’s top trade chief.

Ambassador Tai’s visit comes at a pivotal time for the U.S. textile supply chain, which produced $64 billion in output in 2020 and employed nearly 530,000 workers. The industry has been at the forefront of a domestic production chain manufacturing over a billion personal protective equipment (PPE) items during the COVID-19 pandemic.

Milliken & Company and American & Efird (A&E) hosted United States Trade Representative (USTR) Ambassador Katherine Tai in two separate visits to the companies’ state-of-the-art textile manufacturing facilities, marking an unprecedented visit to the heart of the U.S. textile industry in the Carolinas by the nation’s top trade chief.

Ambassador Tai’s visit comes at a pivotal time for the U.S. textile supply chain, which produced $64 billion in output in 2020 and employed nearly 530,000 workers. The industry has been at the forefront of a domestic production chain manufacturing over a billion personal protective equipment (PPE) items during the COVID-19 pandemic.

The Ambassador’s visit to Milliken included a tour of the company’s Magnolia plant in Blacksburg, S.C., and a roundtable discussion highlighting the important role women contribute to textiles, the critical need for policies supporting a domestic supply chain, and the significant impact of the sector to the U.S. economy. Milliken is one of the largest textile companies in the U.S., employing more than 6,000 associates domestically and an additional 1,350 associates globally. Milliken’s Textile Business alone employs 2,500 people across eight counties in South Carolina and is the fourth largest manufacturing employer in the Upstate.

On the second leg of her trip, Ambassador Tai visited American & Efird’s manufacturing facility in Mount Holly, N.C. American & Efird operates as part of Elevate Textiles and its global portfolio of advanced products and distinguished textile brands, including A&E, Burlington, Cone Denim, Gütermann and Safety Components, and representing more than 500 years of textile manufacturing knowledge.

During the visit, U.S. textile executives spanning the fiber, yarn, fabric, and finished product textile and apparel industry participated in a roundtable with the Ambassador at which they discussed the competitiveness of the domestic industry, outlined priority issues in Washington, such as the importance of the Western Hemisphere co-production chain and ways to jointly support domestic supply chains through Buy American and Berry Amendment policies that help onshore production, spur investment, maintain the safety and security of our armed forces and generate new jobs.

(c) FET
FET meltspinning system for biomedical applications
15.09.2021

FET: Further Gains in the Biomedical sector

Fibre Extrusion Technology of Leeds, UK has delivered nine meltspinning systems to clients in the biomedical sector since the onset of the Covid-19 pandemic, with a similar number currently on order for 2021/22. This way FET could confirm the position as an acknowledged world leader in meltspinning equipment for the production of precursor materials used in medical devices and as a default supplier for absorbable suture production systems, with orders virtually doubling year on year.

Recent installations include a multi-functional system that can produce both multifilament and monofilament pre-cursor fibres, but nonwoven systems have been particularly prominent, driven by the burgeoning demand for FFP3 masks, gowns and other medical products required during the pandemic. These have been sold to medical device manufacturing companies across the globe, including the Far East, USA and Europe. Research organisations have also invested in FET systems for biomedical applications, the most recent being the University of Leeds in a laboratory scale Spunbond system.

Fibre Extrusion Technology of Leeds, UK has delivered nine meltspinning systems to clients in the biomedical sector since the onset of the Covid-19 pandemic, with a similar number currently on order for 2021/22. This way FET could confirm the position as an acknowledged world leader in meltspinning equipment for the production of precursor materials used in medical devices and as a default supplier for absorbable suture production systems, with orders virtually doubling year on year.

Recent installations include a multi-functional system that can produce both multifilament and monofilament pre-cursor fibres, but nonwoven systems have been particularly prominent, driven by the burgeoning demand for FFP3 masks, gowns and other medical products required during the pandemic. These have been sold to medical device manufacturing companies across the globe, including the Far East, USA and Europe. Research organisations have also invested in FET systems for biomedical applications, the most recent being the University of Leeds in a laboratory scale Spunbond system.

The FET in-house Process Development Laboratory and ongoing collaboration with biomaterial polymer suppliers has helped to optimise the biomedical melt spinning technology. The Laboratory is at the disposal of customers for all aspects of confidential testing and evaluation. To further increase this competitive edge, FET will be opening a new Process Development Laboratory and Visitor Centre in early 2022.

More information:
meltspinning FET
Source:

Projectmarketing for FET

B.I.G. YARNS awarded HPR status for second European plant © Beaulieu International Group
B.I.G. YARNS awarded HPR status for second European plant.
07.09.2021

B.I.G. YARNS awarded HPR status for second European plant

  • FM Global ‘Highly Protected Risk’ Achievement Award for Komen site, Belgium
  • Completes HPR Award status for B.I.G. YARNS’ European production facilities
  • Fifth plant in Beaulieu International Group to attain HPR Award

B.I.G. YARNS is proud to announce the attainment of a FM Global ‘Highly Protected Risk’ Achievement Award (HPR Award) for its yarn production facility in Komen, Belgium.

The HPR Award is assigned by insurer FM Global, Beaulieu International Group’s insurance partner of the past five years in its on-going dedication to property loss prevention. A worldwide team of engineers focuses on providing assistance and protection of B.I.G.’s assets, helping the Group to achieve a higher level of risk protection. The FM Global assessment considers implementation of measures to protect against fire, natural hazard, mechanical breakdown of machinery and also cyber risks. The local team worked diligently over the last five years to implement all the FM Global recommendations.

  • FM Global ‘Highly Protected Risk’ Achievement Award for Komen site, Belgium
  • Completes HPR Award status for B.I.G. YARNS’ European production facilities
  • Fifth plant in Beaulieu International Group to attain HPR Award

B.I.G. YARNS is proud to announce the attainment of a FM Global ‘Highly Protected Risk’ Achievement Award (HPR Award) for its yarn production facility in Komen, Belgium.

The HPR Award is assigned by insurer FM Global, Beaulieu International Group’s insurance partner of the past five years in its on-going dedication to property loss prevention. A worldwide team of engineers focuses on providing assistance and protection of B.I.G.’s assets, helping the Group to achieve a higher level of risk protection. The FM Global assessment considers implementation of measures to protect against fire, natural hazard, mechanical breakdown of machinery and also cyber risks. The local team worked diligently over the last five years to implement all the FM Global recommendations.

Emmanuel Colchen, General Manager B.I.G. YARNS, comments: “Achieving the prestigious HPR Award recognizes the commitment of the teams at B.I.G. YARNS and the wider Beaulieu International Group to proactive risk management and contingency planning to ensure the safety and protection of our workplaces. Safeguarding property is a key element in enabling us to provide business continuity for our customers in demanding sectors like automotive, commercial contract and residential flooring.”

B.I.G. YARNS’ Komen production facility is the fifth plant at B.I.G. to receive HPR status - the highest level a plant can achieve for fire risk prevention and protection.

The Yarns division of Beaulieu International Group achieved HPR status for its other European site in Comines, France, in 2017.

powerribs with inset bonnet (c) Composites Evolution
04.08.2021

Composites Evolution: New range of flax-epoxy prepreg materials

Composites Evolution Ltd has teamed up with leading natural fibre reinforcement specialists Bcomp to launch a new range of flax-epoxy prepreg materials, designed to offer enhanced sustainability without compromising on performance.

Evopreg ampliTex™ prepregs combine Composites Evolution’s high-performance Evopreg epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

To reach the full performance of natural fibres, Evopreg ampliTex™ prepregs have been tailored to be compatible with Bcomp’s powerRibs™ reinforcement grid, enabling the same stiffness and weight as thin-walled monolithic carbon fibre parts while decreasing the CO2 footprint by 85% and improving safety thanks to a blunt braking behaviour without dangerous debris or sharp edges.

Composites Evolution Ltd has teamed up with leading natural fibre reinforcement specialists Bcomp to launch a new range of flax-epoxy prepreg materials, designed to offer enhanced sustainability without compromising on performance.

Evopreg ampliTex™ prepregs combine Composites Evolution’s high-performance Evopreg epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

To reach the full performance of natural fibres, Evopreg ampliTex™ prepregs have been tailored to be compatible with Bcomp’s powerRibs™ reinforcement grid, enabling the same stiffness and weight as thin-walled monolithic carbon fibre parts while decreasing the CO2 footprint by 85% and improving safety thanks to a blunt braking behaviour without dangerous debris or sharp edges.

Composites Evolution’s Sales & Marketing Director, Ben Hargreaves, explains further.
“Sustainability is an increasingly important factor for many of our customers - particularly those involved in motorsports and high-performance automotive applications. As you’d expect in these sectors though, sustainability can’t come at the expense of performance the two must go hand-in-hand. This is something that other prepreggers can struggle with, as natural fibres behave very differently to carbon or glass, for example.”

Customers would be able to understand the strengths and weaknesses of natural fibre composites, and to show where and how they can be adopted without the need for significant changes to existing composite component production processes.

One such customer is Retrac Group, whose composites division is one of the UK’s most experienced composites engineering companies across motorsports, automotive and aerospace. It recently used Evopreg ampliTex™ + powerRibs™ to produce a demonstrator bonnet panel for a race-bred supercar. Project Manager Alan Purves explains.


“We’re seeing a growing interest in flax fibre composites, particularly in the motorsports and niche vehicle sectors. It is therefore essential that we have developed an in-depth understanding of the processing requirements and performance capabilities of these materials, and are ready to respond to our customers' requirements. Being able to tap into the combined expertise and experience of both Composites Evolution and Bcomp is proving invaluable.”

Source:

Composites Evolution

(c) Fibre Extrusion Technology
04.08.2021

New FET meltspinning system upgrade for NIRI

Fibre Extrusion Technology Ltd of Leeds, UK has installed a new meltspinning system to upgrade research facilities at NIRI, the Nonwovens Innovation & Research Institute Ltd UK, a global leader in nonwoven engineering and product development.

Established in 1998, FET is a leading supplier of laboratory and pilot meltspinning systems with installations in over 35 countries and has now successfully processed almost 30 different polymer types in multifilament, monofilament and nonwoven formats.
 
The installation comprises a FET-102 Series Laboratory Meltblown Spinning System and FET-103 Monofilament Meltspinning System. This advanced equipment enhances NIRI’s extensive pilot facilities and state-of-the-art analytical laboratory for fast tracking innovation. In particular, the FET meltblown system will be utilised for R&D, pilot projects, sampling and prototyping, proof of concept testing and for designing cost-effective, sustainable and innovative products.

Fibre Extrusion Technology Ltd of Leeds, UK has installed a new meltspinning system to upgrade research facilities at NIRI, the Nonwovens Innovation & Research Institute Ltd UK, a global leader in nonwoven engineering and product development.

Established in 1998, FET is a leading supplier of laboratory and pilot meltspinning systems with installations in over 35 countries and has now successfully processed almost 30 different polymer types in multifilament, monofilament and nonwoven formats.
 
The installation comprises a FET-102 Series Laboratory Meltblown Spinning System and FET-103 Monofilament Meltspinning System. This advanced equipment enhances NIRI’s extensive pilot facilities and state-of-the-art analytical laboratory for fast tracking innovation. In particular, the FET meltblown system will be utilised for R&D, pilot projects, sampling and prototyping, proof of concept testing and for designing cost-effective, sustainable and innovative products.

NIRI supports global manufacturing companies to identify new opportunities for meltblown nonwovens, develop their next generation of products and accelerate their commercialisation activities. NIRI’s new upgraded laboratory and pilot system from FET can process a wide range of polymer types, including chemically recycled polymers, bio-polymers and many difficult-to-process materials.

Source:

Project Marketing for Fibre Extrusion Technology

(c) EconCore
03.08.2021

Basaltex & EconCore: New composite of basalt fibres for rail carriage interiors

  • Testing and development achieve rigidity and safety milestone

Basaltex, pioneers in innovative uses of basalt fibres, has achieved a significant milestone in developing and testing a new composite material solution comprising fibres of basalt combined with EconCore’s patented honeycomb technology.

This new material development has greatly improved fire resistance and is highly rigid, as well as the usual honeycomb properties of light-weighting.

The company has tested the composite of basalt fibres, a bio resin and rPET honeycomb.

Filaments of only stone fibres are extruded at a temperature of 1450°C, similar to glass but with a number of advantages, not least the absence of boric acid in the process.

Combining this ecological fibre with EconCore’s sustainable technology using rPET, and the bioresin polyfurfuryl alcohol - 100% derived from a waste stream of sugar cane - make this a very sustainable and environmentally friendly product, unlike the majority of thermoset solutions in this type of application.

  • Testing and development achieve rigidity and safety milestone

Basaltex, pioneers in innovative uses of basalt fibres, has achieved a significant milestone in developing and testing a new composite material solution comprising fibres of basalt combined with EconCore’s patented honeycomb technology.

This new material development has greatly improved fire resistance and is highly rigid, as well as the usual honeycomb properties of light-weighting.

The company has tested the composite of basalt fibres, a bio resin and rPET honeycomb.

Filaments of only stone fibres are extruded at a temperature of 1450°C, similar to glass but with a number of advantages, not least the absence of boric acid in the process.

Combining this ecological fibre with EconCore’s sustainable technology using rPET, and the bioresin polyfurfuryl alcohol - 100% derived from a waste stream of sugar cane - make this a very sustainable and environmentally friendly product, unlike the majority of thermoset solutions in this type of application.

Railway applications require materials with enhanced fire resistance and the testing has shown that the EconCore-Basaltex solution fits these needs well, at the same time offering the perspective of drastic weight reduction against traditional monolithic GRPs used rather widely in train interiors.

Such sandwich panel could be deployed in applications such as cladding panels, partitions, tables and flooring. The thermoset skin layers give a fast cure at elevated temperature, meaning short cycle time and enabling automated production’.

As well as the railway interior application, this new material combination could be used in any application that requires fire performance combined with a low weight.

More information:
Basaltex basalt fibers EconCore
Source:

EconCore

Freudenberg: Protection and Flexibility for Workwear (c) Freudenberg Performance Materials Holding SE & Co. KG
03.08.2021

Freudenberg: Protection and Flexibility for Workwear

Freudenberg Performance Materials (Freudenberg) offers a range of efficient interlinings, tapes and thermal insulation materials for workwear and protective clothing. The materials not only withstand diverse kinds of strain they are exposed to in everyday work and washing procedures but also offer great comfort.

Innovative materials and manufacturing technology
The nonwoven and woven interlinings and tapes stand out due to a number of features, such as increased stability, elasticity, abrasion resistance and wind-blocking properties. Thanks to the sophisticated adhesive technology used by the manufacturer of technical textiles, some products are especially resistant and durable.

Highly flexible and resilient interlinings as well as Freudenberg comfortemp® thermal insulation materials are used for protective clothing, and they do not only protect the wearer from danger but also ensure the wearer’s comfort in any kind of weather. Furthermore, hem and edge stabilisation tapes ensure optimal fit and reflective tapes provide additional safety.  

Freudenberg Performance Materials (Freudenberg) offers a range of efficient interlinings, tapes and thermal insulation materials for workwear and protective clothing. The materials not only withstand diverse kinds of strain they are exposed to in everyday work and washing procedures but also offer great comfort.

Innovative materials and manufacturing technology
The nonwoven and woven interlinings and tapes stand out due to a number of features, such as increased stability, elasticity, abrasion resistance and wind-blocking properties. Thanks to the sophisticated adhesive technology used by the manufacturer of technical textiles, some products are especially resistant and durable.

Highly flexible and resilient interlinings as well as Freudenberg comfortemp® thermal insulation materials are used for protective clothing, and they do not only protect the wearer from danger but also ensure the wearer’s comfort in any kind of weather. Furthermore, hem and edge stabilisation tapes ensure optimal fit and reflective tapes provide additional safety.  

Active contribution to sustainability
Many products of the Freudenberg Workwear Range consist of a high percentage of recycled polyester coming from post-consumer PET bottles.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

27.07.2021

Nastrificio di Cassano: Responsible and certified labels and tags

100% sustainability lives in the smallest detail, starting with the label, the element that can tell the story of responsibility. This is why Nastrificio di Cassano has created NDC Green, Made in Italy and fully traceable range that guarantees high quality standards while respecting the planet.
 
NDC Green comprises 4 categories:

100% sustainability lives in the smallest detail, starting with the label, the element that can tell the story of responsibility. This is why Nastrificio di Cassano has created NDC Green, Made in Italy and fully traceable range that guarantees high quality standards while respecting the planet.
 
NDC Green comprises 4 categories:

  • LABìO ECO-SOFT®: made using TENCEL™ lyocell  yarn which is compostable and biodegradable (as attested by TUV Austria), this product boasts performances and is resistant up to 10 domestic washings at 30°. The reference is produced with fifteen times less water consumption than cotton production and the resins used are GOTS certified.
  • LABìO HANGreen is the smart solution for the creation of hard tags, hangtags, shopping bags and garment covers and, as LABIO ECO-SOFT® range, it’s made with  compostable and biodegradable TENCEL™ lyocell yarn and the resin is compostable, too. These peculiarities make this product unique.
  • ACETATE NAIA™, the 'smart satin' that respects forests and oceans, is the NAIA™ single-ingredient solution produced by Eastman: the 100% traceable, compostable and biodegradable cellulose yarn in both soil and sea respects the natural growth rate of forests.
  • RECYCLED POLYESTER: is made from post-consumer yarn recycled from GRS-certified PET bottles. Available in both satin and resinated taffeta versions, it guarantees excellent printability for an elegant and sophisticated look
23.07.2021

FET installs new Spunbond system at University of Leeds

Fibre Extrusion Technology Ltd, UK has completed the installation and commissioning of a new FET Laboratory Spunbond system for the University of Leeds.

Fibre Extrusion Technology Ltd, UK has completed the installation and commissioning of a new FET Laboratory Spunbond system for the University of Leeds.

This FET spunbond system is now an integral part of the research facilities of the CCTMIH (Clothworkers’ Centre for Textile Materials Innovation for Healthcare), led by Prof. Stephen Russell based in the School of Design, University of Leeds, who commented “The new spunbond system is perfectly suited to our academic research work, and is already proving itself to be extremely versatile and intuitive to use”.
 
This spunbond system complements existing research lab facilities at the university, which covers all areas of fibre and fabric processing, physical testing and characterisation. It forms part of a wider investment in facilities to support fundamental, academic research on ‘future manufacturing’ for medical devices, where the focus is on studying small-scale processing of unconventional polymers and additive mixes to form spunbond fabrics with multifunctional properties.
 
Key to this research is developing the underlying process-structure-performance relationships, based on the measured data, to provide detailed understanding of how final fabric performance can be controlled during processing.

As a rule, many exciting materials developed in academic research struggle to progress beyond the bench, because of compatibility issues with key manufacturing processes such as spunbond. By leveraging mono, core-sheath and island-in-the-sea bicomponent technology, the Leeds University team is working with polymer and biomaterial research scientists, engineers and clinicians to explore the incorporation of unusual materials in spunbond fabrics, potentially widening applications.
 
FET has built on its melt spinning expertise to develop a true laboratory scale spunbond system and is currently working on a number of other such projects globally with research institutions and manufacturers.

Source:

Fibre Extrusion Technology Ltd / Project Marketing Ltd

(c) Baldwin Technology Company Inc. / Barry-Wehmiller
20.07.2021

Baldwin to unveil FlexoCleanerBrush™ at SuperCorrExpo

Baldwin Technology Company Inc. will showcase a new generation of innovative technologies for optimized corrugated high-graphics package printing at SuperCorrExpo, taking place in Orlando, Florida, from Aug. 8 to 12.

The FlexoCleanerBrush™ enhances the print quality and improves worker safety in corrugated printing. The system automatically removes dust and contamination from the plate in seconds during production, without stopping the press. It also performs full end-of-job plate cleaning and drying in fewer than four minutes, enabling increased uptime and sustainability. A carbon fiber core keeps even the ultra-wide FlexoCleanerBrush to a minimal weight, and ensures cleaning is stable, uniform and consistent throughout the plate’s width. Because the system is fully automatic and spans the entire width of the plate cylinder, the FlexoCleanerBrush improves safety by eliminating routine operator contact with the machine, while also reducing the risk of cylinder nip injuries and contact with wash agents.

Baldwin Technology Company Inc. will showcase a new generation of innovative technologies for optimized corrugated high-graphics package printing at SuperCorrExpo, taking place in Orlando, Florida, from Aug. 8 to 12.

The FlexoCleanerBrush™ enhances the print quality and improves worker safety in corrugated printing. The system automatically removes dust and contamination from the plate in seconds during production, without stopping the press. It also performs full end-of-job plate cleaning and drying in fewer than four minutes, enabling increased uptime and sustainability. A carbon fiber core keeps even the ultra-wide FlexoCleanerBrush to a minimal weight, and ensures cleaning is stable, uniform and consistent throughout the plate’s width. Because the system is fully automatic and spans the entire width of the plate cylinder, the FlexoCleanerBrush improves safety by eliminating routine operator contact with the machine, while also reducing the risk of cylinder nip injuries and contact with wash agents.

Also on view in Baldwin’s SuperCorrExpo booth, the FlexoDry™ is a fully integrated IR drying system, specifically developed for corrugated flexo printing presses. It reduces energy consumption by up to 30 percent over standard IR dryers through patented Diamond IR™ lamps. The system delivers improved drying results because of a unique optical design that produces higher intensity for enhanced color definition, and reduces or eliminates marking altogether, allowing for high-speed and full-confidence printing.

Additionally, Baldwin will showcase LED-UV technology, designed by its AMS Spectral UV division for wide-format flexo corrugated box printing.

Source:

Baldwin Technology Company Inc. / Barry-Wehmiller

08.07.2021

NDC Green by Nastrificio di Cassano: Responsible and certified labels and tags

100% sustainability lives in the smallest detail, starting with the label, the only element that can tell the story of responsibility. This is exactly why, to be a truly credible 'ambassador', the label or tag must itself be responsible. This is why Nastrificio di Cassano has created NDC Green, the premium, Made in Italy and fully traceable range that guarantees the highest quality standards while respecting the planet.

NDC Green comprises 4 categories, all with influential international certifications that attest to Nastrificio di Cassano's responsible imprinting. Many new sustainability values are woven into the collection. Particular attention is given to end-of-life, but also to the choice of natural and high-tech materials with a low environmental impact.

100% sustainability lives in the smallest detail, starting with the label, the only element that can tell the story of responsibility. This is exactly why, to be a truly credible 'ambassador', the label or tag must itself be responsible. This is why Nastrificio di Cassano has created NDC Green, the premium, Made in Italy and fully traceable range that guarantees the highest quality standards while respecting the planet.

NDC Green comprises 4 categories, all with influential international certifications that attest to Nastrificio di Cassano's responsible imprinting. Many new sustainability values are woven into the collection. Particular attention is given to end-of-life, but also to the choice of natural and high-tech materials with a low environmental impact.

A wide choice that speaks of responsible innovation, beauty and functionality: characteristics that have led C.L.A.S.S. (www.classecohub.org) to integrate NDC Green into its Material Hub which "contains a selection of fibres, materials and fabrics that share a DNA linked to research that since 2007 has been raising the bar of standards in order to offer innovations in step with the demands of the contemporary consumer" says Giusy Bettoni CEO of C.L.A.S.S.
NDC Green includes:

  • LABìO ECO-SOFT®: made using compostable and biodegradable ingredients (as attested by TUV Austria), this product boasts performances and is resistant up to 10 domestic washings at 30°. The reference is produced with fifteen times less water consumption than cotton production and the resins used are GOTS certified.
  • LABìO HANGreen is the smart solution for the creation of hard tags, hangtags, shopping bags and garment covers and, as LABIO ECO-SOFT® range, it made with  compostable and biodegradable ingredients as certified by TUV Austria and the resin is compostable, too. These peculiarities make this product unique.
  • ACETATE NAIA™, the 'smart satin' that respects forests and oceans, is the NAIA™ single-ingredient solution produced by Eastman: the 100% traceable, compostable and biodegradable cellulose yarn in both soil and sea respects the natural growth rate of forests.
  • RECYCLED POLYESTER: is made from post-consumer yarn recycled from GRS-certified PET bottles. Available in both satin and resinated taffeta versions, it guarantees excellent printability for an elegant and sophisticated look.
Source:

GB Network Marketing & Communication for C.L.A.S.S.

Borealis: Innovative Recycling Solutions with Renasci N.V. (c) Renasci
01.07.2021

Borealis: Innovative Recycling Solutions with Renasci N.V.

  • Borealis deepens partnership with innovative recycling solutions provider Renasci N.V., acquiring a 10% minority stake in the Belgium-based creator of the Smart Chain Processing (SCP) concept
  • Deal supports Borealis integrated approach to achieve a true circular economy of plastics in the most eco-efficient way, as defined by its circular cascade model
  • EverMinds™ in action: Game-changing collaboration to accelerate plastics circularity

Borealis announces that it has entered into a multi-dimensional partnership with Renasci N.V., a provider of innovative recycling solutions and creator of the novel Smart Chain Processing (SCP) concept. The partnership is another key enabler for Borealis to realise its ambitions to bring circular base chemicals and polyolefins to market, and to deliver on its promise to bring 350 kilotons of recycled polyolefins into circulation by 2025.

  • Borealis deepens partnership with innovative recycling solutions provider Renasci N.V., acquiring a 10% minority stake in the Belgium-based creator of the Smart Chain Processing (SCP) concept
  • Deal supports Borealis integrated approach to achieve a true circular economy of plastics in the most eco-efficient way, as defined by its circular cascade model
  • EverMinds™ in action: Game-changing collaboration to accelerate plastics circularity

Borealis announces that it has entered into a multi-dimensional partnership with Renasci N.V., a provider of innovative recycling solutions and creator of the novel Smart Chain Processing (SCP) concept. The partnership is another key enabler for Borealis to realise its ambitions to bring circular base chemicals and polyolefins to market, and to deliver on its promise to bring 350 kilotons of recycled polyolefins into circulation by 2025.

SCP concept leaves no waste behind
The SCP concept developed by Renasci is a proprietary method of maximising material recovery in order to achieve zero waste. It is unique because it enables the processing of multiple waste streams using different recycling technologies – all under one roof. At the newly-built Renasci SCP facility in Oostende, Belgium, mixed waste – plastics, metals, and biomass – is automatically selected and sorted multiple times.

After sorting, plastic waste is first mechanically recycled, and then in a second step any remaining material is chemically recycled into circular pyrolysis oil and lighter product fractions, which are used to fuel the process.

Other types of sorted waste such as metals and organic refuse are further processed using other technologies. In the end, only 5% of the original waste remains, and even this residual material is not landfilled, but used as filler in construction materials. Because of this extremely efficient way of processing, the overall CO2 footprint of these waste streams is greatly reduced – yet another advantage of the circular SCP concept.

The cascade model is Borealis’ integrated circular approach
Borealis circular cascade model sits at the heart of its ambition to achieve a truly circular economy, by combining carefully chosen technologies in a complementary and cascading way to achieve full circularity. In this way, Borealis aims to give plastic products multiple lifetimes in the most sustainable way possible. Starting with optimising product design, first for eco-efficiency, then for re-use and finally for recycling. Once a product has reached its end of life, we must close the plastics loop: first with mechanical recycling to make products with the highest possible value, quality and lowest carbon footprint; then utilising chemical recycling, as a complement to mechanical recycling, to further valorise residual streams which would otherwise go to incineration, or even worse to landfills. The valorised material from mechanical and chemical recycling is then processed with Borealis Borcycle™ recycling technology consisting of Borcycle M for mechanical recycling and Borcycle C for chemical recycling, providing high quality solutions for more sophisticated applications, such as food packaging and healthcare.

The SCP concept is aligned to Borealis’ ambition to close the loop on plastic waste as encapsulated in its circular cascade model.

Source:

Borealis

16.06.2021

Closed-loop recycling pilot project for single-use facemasks

  • Fraunhofer, SABIC, and Procter & Gamble join forces
  • The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics.
  • The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

  • Fraunhofer, SABIC, and Procter & Gamble join forces
  • The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics.
  • The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

“Recognizing the challenge, we set out to explore how used facemasks could potentially be returned into the value chain of new facemask production”, says Dr. Peter Dziezok, Director R&D Open Innovation at P&G. “But creating a true circular solution from both a sustainable and an economically feasible perspective takes partners. Therefore, we teamed up with Fraunhofer CCPE and Fraunhofer UMSICHT’s expert scientists and SABIC’s Technology & Innovation specialists to investigate potential solutions.”

As part of the pilot, P&G collected used facemasks worn by employees or given to visitors at its manufacturing and research sites in Germany. Although those masks are always disposed of responsibly, there was no ideal route in place to recycle them efficiently. To help demonstrate a potential step change in this scenario, special collection bins were set up, and the collected used masks were sent to Fraunhofer for further processing in a dedicated research pyrolysis plant.

“A single-use medical product such as a face mask has high hygiene requirements, both in terms of disposal and production. Mechanical recycling, would have not done the job”, explains Dr. Alexander Hofmann, Head of Department Recycling Management at Fraunhofer UMSICHT. “In our solution, therefore, the masks were first automatically shredded and then thermochemically converted to pyrolysis oil. Pyrolysis breaks the plastic down into molecular fragments under pressure and heat, which will also destroy any residual pollutants or pathogens, such as the Coronavirus. In this way it is possible to produce feedstock for new plastics in virgin quality that can also meet the requirements for medical products”, adds Hofmann, who is also Head of Research Department “Advanced Recycling” at Fraunhofer CCPE.

The pyrolysis oil was then sent to SABIC to be used as feedstock for the production of new PP resin. The resins were produced using the widely recognized principle of mass balance to combine the alternative feedstock with fossil-based feedstock in the production process. Mass balance is considered a crucial bridge between today’s large scale linear economy and the more sustainable circular economy of the future, which today is operated on a smaller scale but is expected to grow quickly.

“The high-quality circular PP polymer obtained in this pilot clearly demonstrates that closed-loop recycling is achievable through active collaboration of players from across the value chain”, emphasizes Mark Vester, Global Circular Economy Leader at SABIC. “The circular material is part of our TRUCIRCLE™ portfolio, aimed at preventing valuable used plastic from becoming waste and at mitigating the depletion of fossil resources.”

Finally, to close the loop, the PP polymer was supplied to P&G, where it was processed into non-woven fibers material. “This pilot project has helped us to assess if the close loop approach could work for hygienic and medical grade plastics”, says Hansjörg Reick, P&G Senior Director Open Innovation. “Of course, further work is needed but the results so far have been very encouraging.”

The entire closed loop pilot project from facemask collection to production was developed and implemented within seven months. The transferability of advanced recycling to other feedstocks and chemical products is being further researched at Fraunhofer CCPE.

Source:

Fraunhofer

Techtextil and Texprocess 2022: registration now open (c) Messe Frankfurt
08.06.2021

Techtextil and Texprocess 2022: registration now open

  • The Techtextil and Texprocess trade fairs have a positive view of the future and invite the sector to take part at Frankfurt Fair and Exhibition Centre from 21 to 24 June 2022.
  • Exhibitors who register well in advance benefit from an early-booking discount.

The dates for the next editions of Techtextil and Texprocess have been set and the leading international trade fairs for technical textiles and nonwovens and for the processing of textile and flexible materials are set to attract exhibitors and trade visitors from all over the world to Frankfurt am Main from 21 to 24 June 2022. Thus, the fairs are shifting the biennial cycle of events from odd to even years, which fits in perfectly with the sector’s international event calendar. Companies that book exhibition space at one of the two trade fairs no later than 31 August 2021 benefit from an early booking discount. “We see the future in a positive light and are confident that we will finally be able to give the sector the opportunity to meet and exchange ideas and information in June 2022.

  • The Techtextil and Texprocess trade fairs have a positive view of the future and invite the sector to take part at Frankfurt Fair and Exhibition Centre from 21 to 24 June 2022.
  • Exhibitors who register well in advance benefit from an early-booking discount.

The dates for the next editions of Techtextil and Texprocess have been set and the leading international trade fairs for technical textiles and nonwovens and for the processing of textile and flexible materials are set to attract exhibitors and trade visitors from all over the world to Frankfurt am Main from 21 to 24 June 2022. Thus, the fairs are shifting the biennial cycle of events from odd to even years, which fits in perfectly with the sector’s international event calendar. Companies that book exhibition space at one of the two trade fairs no later than 31 August 2021 benefit from an early booking discount. “We see the future in a positive light and are confident that we will finally be able to give the sector the opportunity to meet and exchange ideas and information in June 2022. The desire for personal encounters, direct communication and new impressions is growing from day to day”, says Olaf Schmidt, Vice President Textiles and Textile Technologies.

Elgar Straub, Managing Director, VDMA Textile Care, Fabric and Leather Technologies, emphasises that, “Texprocess and Techtextil are the world’s foremost trade fairs for our innovative sector by a large margin. Both events offer customers an unrivalled overview of state-of-the-art innovations and technological developments – and beyond. Particularly when it comes to the latest trends for sustainability and digitalisation, Texprocess and Techtextil in Frankfurt represent the most important, future-oriented market. This makes it all the more important for both the exhibitor and visitor sides of the sector that we have the opportunity to obtain an overview of the latest market developments, to exchange ideas and information and to initiate new business. We are very relieved about this and hope that, next year, we will once again have the chance to generate new momentum for our sector in the international market.”

For the first time, Techtextil and Texprocess will occupy the western sector of Frankfurt Fair and Exhibition Centre with a total of four exhibition halls and, with a hybrid format, offer the best of both the physical and immaterial worlds: personal communication, virtual networking opportunities and maximum digital coverage. With a comprehensive hygiene and safety concept, Messe Frankfurt will ensure that all visitors and exhibitors can take part safely and with a good feeling.

Source:

Messe Frankfurt

28.05.2021

European TCLF sectors: Social Partners demand safety for the industries and their workers

Following the European Commission’s update of the 2020 New Industrial Strategy: ‘’Building a stronger Single Market for Europe’s Recovery’’, the European Social Partners for the Textile, Clothing, Leather, and Footwear (TCLF) sectors came together to call for support via a dedicated strategy.  The Strategy aims to help guide the TCLF industries through the current green and digital transition, while facing tough global competition, stressing the need to safeguard the industries and protect jobs in Europe.

On 25 May, employers’ and workers’ representatives for the European TCLF sectors met with the European Commission to discuss the current challenges facing the TCLF industries and potential EU action to help support the sectors and their workers.  Following discussions on the terrible impact of COVID-19 on the sectors and the need for a strong EU action, the Joint Statement: ‘’The future industrial strategy of the EU Textiles Ecosystem (TCLF sectors)’’ was adopted.

Following the European Commission’s update of the 2020 New Industrial Strategy: ‘’Building a stronger Single Market for Europe’s Recovery’’, the European Social Partners for the Textile, Clothing, Leather, and Footwear (TCLF) sectors came together to call for support via a dedicated strategy.  The Strategy aims to help guide the TCLF industries through the current green and digital transition, while facing tough global competition, stressing the need to safeguard the industries and protect jobs in Europe.

On 25 May, employers’ and workers’ representatives for the European TCLF sectors met with the European Commission to discuss the current challenges facing the TCLF industries and potential EU action to help support the sectors and their workers.  Following discussions on the terrible impact of COVID-19 on the sectors and the need for a strong EU action, the Joint Statement: ‘’The future industrial strategy of the EU Textiles Ecosystem (TCLF sectors)’’ was adopted.

The Joint Statement highlights the need for a dedicated strategy with support at national and EU level to help the TCLF sectors survive following the COVID-19 pandemic, while they continue to face tough, and, sometimes unfair, global competition. The Social Partners of the TCLF industries fully support the EU’s ambitions for a green and digital transition of the sectors, but insist on concrete European measures to help the industries transform while the continues to suffer from an unlevel global playing field.

Specific joint demands include: full engagement with Social Partners in both the recovery and the transition of the industries, support for the EU Pact for Skills for the relevant ecosystem, a revision of the GSP which doesn’t negatively impact the sectors and its workers, support to decarbonise the sectors, careful consideration of the Due Diligence Legislation and quality dialogue with Social Partners ahead of the EU Sustainable Products Initiative and the Consumer Agenda to ensure that all policy gaps are addressed. Special attention must also be given to the forthcoming EU Textiles Strategy which should fully represent the needs of the EU’s entire textiles ecosystem.

FET new premises to enable expansion drive (c) FET
25.05.2021

FET new premises to enable expansion drive

Fibre Extrusion Technology Ltd of Leeds, UK has now commenced construction of a new purpose-built Research & Development Centre to enable continued growth through innovation. This modern two-storey development will be situated on the adjacent site, providing state-of-the-art facilities, including a Visitor Centre and enhanced Process Development Laboratory (PDL) for client testing and product development. Central to FET’s success has been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques. The new expanded premises will further improve this service.

Clients frequently spend several days on site participating in development trials and technical sales meetings, so the Visitor Centre is designed to make their stay more efficient and comfortable. Sales, administration and design departments will also be housed in the new building.

Fibre Extrusion Technology Ltd of Leeds, UK has now commenced construction of a new purpose-built Research & Development Centre to enable continued growth through innovation. This modern two-storey development will be situated on the adjacent site, providing state-of-the-art facilities, including a Visitor Centre and enhanced Process Development Laboratory (PDL) for client testing and product development. Central to FET’s success has been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques. The new expanded premises will further improve this service.

Clients frequently spend several days on site participating in development trials and technical sales meetings, so the Visitor Centre is designed to make their stay more efficient and comfortable. Sales, administration and design departments will also be housed in the new building.

The addition of the Visitor Centre will free up a considerable amount of space for production and other facilities in the existing premises. This major refurbishment phase for the existing premises is scheduled for completion at the end of 2021. As a result, FET’s manufacturing capacity will increase by more than 50% to cope with customer demand.  

Substantial year-on-year growth has driven this initiative and FET’s current order book in excess of £10million has provided the opportunity for equipping the company infrastructure for the future. Sustainability has been at the forefront of FET’s growth, supporting customers in their development of sustainable textiles and this principle is reflected in the choice of building materials and products for the Visitor Centre wherever possible.

It is expected that the new Visitor Centre will be opened in the first quarter of 2022.

Source:

Project Marketing Ltd

Baldwin showcases innovations for corrugated flexo printers at ConneXion (c) Baldwin, Barry-Wehmiller
20.05.2021

Baldwin showcases innovations for corrugated flexo printers at ConneXion

Baldwin Technology Company Inc. will showcase its key innovative technologies for optimized corrugated high-graphics package printing at the ConneXion virtual expo, taking place from June 1 to 8. In Baldwin’s virtual exhibit, visitors will experience fully automated flexo plate-cleaning systems, an energy-efficient IR (infrared) drying solution and LED-UV curing systems, all of which increase print quality and productivity, with operator safety and sustainability in mind.

Key innovative technologies:

Baldwin Technology Company Inc. will showcase its key innovative technologies for optimized corrugated high-graphics package printing at the ConneXion virtual expo, taking place from June 1 to 8. In Baldwin’s virtual exhibit, visitors will experience fully automated flexo plate-cleaning systems, an energy-efficient IR (infrared) drying solution and LED-UV curing systems, all of which increase print quality and productivity, with operator safety and sustainability in mind.

Key innovative technologies:

  • The FlexoCleanerBrush™, a solution to enhance print quality and improve worker safety in corrugated printing.
  • The FlexoCleanPick™, a system designed to automatically remove hickeys—typically caused by paper fibers, dust and ink contamination, and other causes of printing defects—from the plate during the print run without stopping the press or requiring operator skin contact with wash agents.
  • The FlexoDry2™, a fully integrated IR drying system, specifically developed for corrugated flexo printing presses, that reduces energy consumption by up to 30 percent over standard IR dryers via the use of patented Diamond IR™ lamps.
  • A new generation of LED-UV technology—designed by AMS Spectral UV, a Baldwin Technology company, for wide-format flexo corrugated box printing—represents the latest in solid-state LED curing innovations and offers more than a 50 percent reduction in power consumption, compared to traditional UV systems, in an ultra-compact lamphead that fits at the end of the press or between printing units.

You can register here.

Source:

Barry-Wehmiller