From the Sector

Reset
163 results
AZL Open Day © DF Fotografie – Dominik Fröls
23.04.2025

AZL Open Day: Insights into the Future of Lightweight Design

Technically and economically viable lightweight production based on fiber-reinforced plastics and multi-material systems requires an integrated approach. Due to the almost unlimited combination possibilities of different materials and the very complex interactions between materials, component design, manufacturing processes and the machine and system components, an optimal production process requires a direct link between materials science, process engineering and production technology.

Technically and economically viable lightweight production based on fiber-reinforced plastics and multi-material systems requires an integrated approach. Due to the almost unlimited combination possibilities of different materials and the very complex interactions between materials, component design, manufacturing processes and the machine and system components, an optimal production process requires a direct link between materials science, process engineering and production technology.

As the official center for “Composite-based Lightweight Production” of the RWTH Aachen Campus, AZL Aachen GmbH uses its strong network to provide these capacities and possibilities on an interdisciplinary basis. Within walking distance, researchers and students are working on the latest technologies for the cost-efficient development and production of lightweight components on one of the largest research landscapes in Europe - the RWTH Aachen Campus: Aachen Center for Integrative Lightweight Production of RWTH Aachen University, Fraunhofer Institute for Production Technology IPT, Fraunhofer Institute for Laser Technology ILT, Institute for Automotive Engineering (ika) of RWTH Aachen University, Institute for Plastic Processing in Industry and Craft at RWTH Aachen University, Institute of Structural Mechanics and Lightweight Design (SLA) of RWTH Aachen University, Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Production Engineering of E-Mobility Components (PEM) of RWTH Aachen University, Welding and Joining Institute (isf) of RWTH Aachen University.

Exklusive insights into the latest lightweight technologies

Once a year, the AZL Open Day offers an exclusive and unique insight into the R&D capacities of the institutes in the field of lightweight construction and sustainable mobility. This year, nine AZL partner institutes opened their machine halls and research laboratories on April 9, 2025 to provide interested industrial players with comprehensive insights into their current focus areas along the value chain. Among other things, the institutes presented high-precision laser processes for plastics processing, new joining processes for thermoplastic composites, 5-axis CNC machining with real-time quality management, large-format 3D printing and their own tape lines & tape integration. Design, prototyping and testing of products & solutions such as crash-optimized vehicle structures, thermoplastic pressure vessels, digital twins for structural-mechanical monitoring as well as prototyping and recycling approaches for battery systems were also demonstrated. The range of topics, key activities & infrastructure, seen at the Open Day, enables new technologies to be tested under real production conditions and efficiently brought to market maturity.

“The AZL Open Day is a great opportunity to discover the numerous technology centers, labs, prototyping and testing facilities that are available on the Aachen campus, that makes it unique in its kind. The AZL organization and teams located there are a true catalyst for new projects and development for the Composites industry: they are creating the link between Market analysis & technology scouting, academic research resources and business opportunities with their industrial partners. They are currently working on several topics that are at the forefront of Composites” reports Éric Pierrejean, CEO of the JEC Group. Apart from being there as an interested participant, he also gave the audience an insight into the key topics and trends in the composites industry as seen at this year's JEC World Show.

Efficient use of established infrastructures & know-how

As a one-stop shop for lightweight solutions, AZL offers an interface for successful cooperation between research and industry. In close coordination between scientific developments and specific customer requirements, solutions are developed in a targeted and tailor-made manner: as part of the AZL partnership, consortial projects or individual projects. In addition to the know-how of the institutes, cooperation with the AZL's industrial partner network also enables direct access to the necessary infrastructure of components, materials, tools and machine and system parts, which can be tested, developed or newly constructed in integrated process chains on a large scale.

Thanks to the close networking between science, industry and the AZL team of experts, companies can access an established infrastructure and utilize synergies for their projects.
The date for the next AZL Open Day will be announced in the second half of the year.

 

Source:

AZL Aachen GmbH

Reifenhäuser EVO Ultra Stretch blown film lines (c) Reifenhäuser
Reifenhäuser EVO Ultra Stretch blown film lines
11.04.2025

Reifenhäuser at Chinaplas 2025: Recyclable packaging at competitive costs

At Chinaplas 2025, the Reifenhäuser Group will present its latest technological innovations for the efficient and sustainable production of plastic films. The extrusion specialists will showcase at Shenzhen World Exhibition & Convention Center from April 15 – 18 solutions that address the key challenges of today’s plastic industry: reducing resource consumption, increasing recyclability, and making production more autonomous and efficient. Meeting these demands requires advanced production technologies that Reifenhäuser already offers today.

A central focus at the show will be the use of Machine Direction Orientation (MDO) technologies for producing fully recyclable mono-material films with performance and cost-effectiveness equivalent to conventional multi-material structures.

At Chinaplas 2025, the Reifenhäuser Group will present its latest technological innovations for the efficient and sustainable production of plastic films. The extrusion specialists will showcase at Shenzhen World Exhibition & Convention Center from April 15 – 18 solutions that address the key challenges of today’s plastic industry: reducing resource consumption, increasing recyclability, and making production more autonomous and efficient. Meeting these demands requires advanced production technologies that Reifenhäuser already offers today.

A central focus at the show will be the use of Machine Direction Orientation (MDO) technologies for producing fully recyclable mono-material films with performance and cost-effectiveness equivalent to conventional multi-material structures.

Marcel Perrevort, CSO of the Reifenhäuser Group, explains: “In the flexible packaging sector, we are currently seeing a huge trend away from conventional and non-recyclable mixed material laminates towards fully recyclable mono-material composites, both for blown and cast films. Our state-of-the-art MDO stretching units enable enhanced mechanical properties for all-PE or all-PP films. Thus, PET films commonly used in material composites can be replaced. By downgauging, we also reduce production costs to a competitive level, making recyclable films a profitable choice.”

MDO for blown film lines
With the EVO Ultra Stretch MDO unit for Reifenhäuser’s blown film lines manufacturers produce all-PE mono films for applications such as high-barrier food pouches. Due to the stretch process film thicknesses of 18μm (with properties of a 25μm product) and less can be achieved, keeping production costs within the range of conventional films. With the patented integration of the MDO unit directly into the haul-off, the film is stretched in the ideal phase of the process – using the first heat – for maximum efficiency and film stability. Furthermore, the all-PE film achieves the required barrier effect with an EVOH content of less than five percent, fully meeting the criteria for recyclability. At the same time, Ultra Stretch enhances the performance of the EVOH barrier layer while reducing material usage, delivering cost and sustainability benefits.

Source:

Reifenhäuser

Roaches Photo Roaches/AWOL
08.04.2025

F1 – the crucible of innovation for BTMA members

Fibre and fabric production technologies – especially in the area of composite reinforcements – have played an as-yet largely unheralded role in the development of the UK’s Formula One industry, but the British Textile Machinery Association (BTMA) aims to change that.

Motorsport Valley
“If there’s one thing the UK does well, it’s Formula One, with seven of the ten F1 teams located within just an hour of each other in the midlands region known as Motorsport Valley,” explains BTMA CEO Jason Kent. “They are all linked to a national network of around 4,500 companies involved in a motorsport and high-performance engineering industry worth around £9 billion annually and employing 40,000 people. This network draws on the services of a significant number of our member companies.”

“With the exception of the engine, virtually every part of a Formula One racing car now starts from a textile, including the bodywork, the tyres and many of the latest fuel systems,” says Richard Kirkbright, project manager at Leeds-based Roaches International. “This has influenced developments in the broader automotive sector, in addition to the aerospace industry.”

Fibre and fabric production technologies – especially in the area of composite reinforcements – have played an as-yet largely unheralded role in the development of the UK’s Formula One industry, but the British Textile Machinery Association (BTMA) aims to change that.

Motorsport Valley
“If there’s one thing the UK does well, it’s Formula One, with seven of the ten F1 teams located within just an hour of each other in the midlands region known as Motorsport Valley,” explains BTMA CEO Jason Kent. “They are all linked to a national network of around 4,500 companies involved in a motorsport and high-performance engineering industry worth around £9 billion annually and employing 40,000 people. This network draws on the services of a significant number of our member companies.”

“With the exception of the engine, virtually every part of a Formula One racing car now starts from a textile, including the bodywork, the tyres and many of the latest fuel systems,” says Richard Kirkbright, project manager at Leeds-based Roaches International. “This has influenced developments in the broader automotive sector, in addition to the aerospace industry.”

Show cars and memorabilia
While best known as the developer of textile testing systems, Roaches has over the years also supplied advanced autoclaves to the UK’s composites industry, including a recent delivery to Northampton-based Memento Exclusives, a specialist in the production of show cars working directly with F1 and its leading teams.

Each major F1 team sponsor is supplied with one or two show cars for use at exhibitions and a wide range of other promotional activities arranged around the racing event calendar. These cars have no engine and their bodies may be made of fewer carbon fibre plies, but they are otherwise identical to the latest cars being raced by the F1 teams.

Memento Exclusives has its own in-house carbon fibre parts manufacturing facility and the integration of the Roaches autoclave has significantly expanded its capabilities in show car production.

Master bakers
“Composite materials undergo a metamorphosis in the autoclave which subjects them to both mechanical and chemical processes,” explains Richard Kirkbright. “Trapped air and volatiles are expelled and plies are consolidated under precise pressure. Heat cycles are then introduced, curing the resin systems and yielding flawlessly crafted components. Autoclave specialists are a little like master bakers, knowing exactly how to treat their ingredients at every stage of the process, to achieve the desired final product.”

“The Roaches autoclave now enables us to cure large components with full control and achieve a swift turnover of parts while ensuring the highest quality finish,” adds Terry Wasyliw, Head of Build for Memento Exclusives.

McLaren’s influence
Woking, UK-headquartered McLaren was the very first F1 team to introduce a car chassis manufactured entirely from carbon fibre composites back in 1981, setting the ball rolling for the creation of a completely new and global supply chain.

McLaren has this year unveiled a world-first in supercar engineering – aerospace-derived Automated Rapid Tape (ART) carbon fibre, developed at the dedicated McLaren Composites Technology Centre (MCTC) facility in Sheffield. This is being employed to create the active front wings of the W1 hypercar which has a starting price of $2.1 million.

A rear floor component was also developed for McLaren as part of the recently-completed £39.6 million ASCEND programme involving a range of UK partners, including BTMA member Cygnet Texkimp.

Handling, converting and decarbonisation
A wide range of handling and converting machines are supplied to the composites industry by Cygnet Texkimp, including bespoke creels, prepreg, coating, slitting and filament winding machines.

Its technologies are employed in the construction of composite components for aerospace and automotive, as well as in the production of tyre cord and more recently in the advanced construction of hydrogen storage vessels which are largely viewed as the future of F1 propulsion, along with advanced batteries for electric vehicles.

Cygnet Texkimp has been involved in the F1 supply chain for over 20 years and most carbon fibre used in the industry has been processed on one of its VHD creels. The company is also the largest independent manufacturer of prepreg machines in the world and is currently leading the design and build of the UK’s first carbon fibre research lines for a project led by NCC (National Composites Centre) to accelerate the development of more sustainable carbon fibres.

In addition, Cygnet is licensed to design and build the DEECOM® composite recycling system developed by new BTMA member Longworth Sustainable Recycling Technologies, the first of which was recently commissioned by the Henry Royce Institute in Manchester. DEECOM® is a zero emission, low carbon pressolysis solution using pressure and steam to reclaim pristine condition fibres and resin polymers frocm production waste and end of life composites.

“Decarbonisation is a major priority for manufacturers globally,” says Cygnet CEO Luke Vardy. “At Cygnet Texkimp, we’re developing the capability to process technical fibres in ways that enable lightweighting, hydrogen power and electrification, reduce waste and revolutionise the end-of-life management of composite materials and parts. In collaboration with our industry partners, we’re bringing to market some of the most innovative new fibre processing technologies ever developed to deliver real-world benefits that support the sustainability agenda.”

Prepregging
Another new BTMA member, Emerson & Renwick (E+R), a specialist in print, forming, vacuum and coating technologies, also supplies technology for the production of carbon fibre prepregs, which are integrated rolls of fabrics and resins.

Its most recent 1.7-metre-wide line supplied to a customer in Italy operates at speeds of 40+ metres per minute for web coatings or prepreg fibre and resin consolidation, or a combination of both processes. It is distinguished by an ultra precise three-roll reverse roll coater for the processing of high viscosity thermo-activated resins and enables the automatic changeover of sensitive woven fabric materials at zero tension, with three high precision calendaring nips with hot/cool plates. Multiple unwind and rewind systems for intermediate lamination steps include side loading and reliable lap splicing and zero speed splicing with a web accumulator for the main product rewind.
 
 E+R has also been part of a consortium working on the development of lithium-sulphur (Li-S) batteries within the £540 million UK Faraday Battery Challenge. Once commercially viable, Li-S batteries promise to provide relatively high energy density at low cost for sustainable electric vehicles of the future – inevitably starting with F1.

Strong links
“In addition to our powerful base of textile testing and control companies, many other BTMA members are working on further F1 and advanced composite projects,” says Jason Kent in conclusion. “We are also forging strong links with the UK’s key research hubs such as Sheffield University’s Advanced Manufacturing Research Centre, the Northwest Composites Centre in Manchester, the National Centre for Motorsport Engineering in Bolton and the National Composites Centre in Bristol.

“The BTMA recently became an associate member of Composites UK too, because this sector is the crucible of innovation for tomorrow’s textiles.”

Source:

British Textile Machinery Association

Graphic: Lenzing AG
20.03.2025

Lenzing presents Young Scientist Award to young talents

The Lenzing Group is presenting the Lenzing Young Scientist Award at the Dornbirn Global Fiber Congress (GFC) from September 10 to 12, 2025 for bachelor, master and doctoral students who develop innovative solutions to ecological challenges in the fiber and textile industry. The deadline for applications is June 30, 2025. The best thesis by Bachelor's and Master's students will receive a prize of EUR 3,000, while the best doctoral thesis will receive EUR 5,000.

The Lenzing Group is presenting the Lenzing Young Scientist Award at the Dornbirn Global Fiber Congress (GFC) from September 10 to 12, 2025 for bachelor, master and doctoral students who develop innovative solutions to ecological challenges in the fiber and textile industry. The deadline for applications is June 30, 2025. The best thesis by Bachelor's and Master's students will receive a prize of EUR 3,000, while the best doctoral thesis will receive EUR 5,000.

For the fourth time, the Lenzing Group honors young researchers with the Lenzing Young Scientist Award for excellent research work in the fiber and textile sector. The Dornbirn-GFC, as a platform for international exchange of experience in the field of fibers, offers an ideal stage for this research competition. Bachelor's and Master's students can submit their scientific work under the guiding theme “Unlimited inspiration from nature: Together we research sustainable innovations based on cellulose, including regenerated cellulose fibers and films, as well as cellulose composites” and face a jury of renowned experts from the industry. The aim is to support students who inspire the industry with their research results and create a platform for networking with the textile and fiber industry.

Austrian Fibers Institute as organizer of the Dornbirn GFC
For the 64th time, the Austrian Fiber Institute is organizing the Dornbirn Fiber Congress on a non-profit basis and will provide the framework for presenting the Lenzing Young Scientist Award from September 10 to 12, 2025. The Austrian Fiber Institute, based in Vienna, was founded in 1960 by fiber producers and the Austrian textile industry to promote the market launch of fibers and their products. The Fiber Institute also offers the opportunity to exchange information and experience about fibers and supports contact with educational institutions. The GFC focuses on an international exchange of experience in close coordination with the umbrella organization CIRFS in Brussels and deals with topics relevant to the future, such as fiber innovations, sustainability and the circular economy.

Applicants for the Lenzing Young Scientist Award have the opportunity to submit their work (theses, papers, etc.) in English until June 30, 2025 to the following e-mail address: YSA2025@lenzing.com. Further information can be found online at https://www.lenzing.com/young-scientist-award.

Source:

Lenzing AG

needle-punched fabrics Photo (c) Beaulieu International Group
12.03.2025

Beaulieu Fibres International at IDEA25: High in performance and sustainability

Beaulieu Fibres International is exhibiting its next-generation sustainable fibre solutions for high performance nonwovens in various industries at IDEA25 in Miami Beach end of April.

“IDEA25 is at the intersection of nonwoven materials and sustainability, with a focus on innovation and research to address environmental challenges and new opportunities. With our Sustainable Fibres Program, we offer low carbon, recyclable and circular solutions where performance and sustainability go hand in hand, bringing value in co-design and TCO performance,” said Maria Teresa Tomaselli, General Manager, Beaulieu Fibres International.

Self-reinforced PP fibres for fully recyclable automotive composites
The company will be presenting its comprehensive range of polypropylene (PP) bonding fibres designed for thermoplastic lightweight composites and automotive interior fabrics. These fibres assist car manufacturers and OEMs in meeting stringent performance, cost-efficiency, and sustainability standards. Beaulieu’s PP fibres are engineered to enhance the mechanical, thermal, and functional properties of composites while reducing vehicle weight.

Beaulieu Fibres International is exhibiting its next-generation sustainable fibre solutions for high performance nonwovens in various industries at IDEA25 in Miami Beach end of April.

“IDEA25 is at the intersection of nonwoven materials and sustainability, with a focus on innovation and research to address environmental challenges and new opportunities. With our Sustainable Fibres Program, we offer low carbon, recyclable and circular solutions where performance and sustainability go hand in hand, bringing value in co-design and TCO performance,” said Maria Teresa Tomaselli, General Manager, Beaulieu Fibres International.

Self-reinforced PP fibres for fully recyclable automotive composites
The company will be presenting its comprehensive range of polypropylene (PP) bonding fibres designed for thermoplastic lightweight composites and automotive interior fabrics. These fibres assist car manufacturers and OEMs in meeting stringent performance, cost-efficiency, and sustainability standards. Beaulieu’s PP fibres are engineered to enhance the mechanical, thermal, and functional properties of composites while reducing vehicle weight.

Fibres for high performance liquid and air filtration
Beaulieu has set new performance standards for the fast-growing air and liquid filtration industry rolling out its full range of MONO and BICO fine-medium count fibres, as an outcome of its investment into R&D efforts to promote staple fibres in the field of high efficiency filtration.

In addition to its existing portfolio of PP fibres for liquid filtration, compliant with FDA and European food contact regulations, Beaulieu is launching a new bicomponent fibre range in PET/PE, PP/PE for high loft filtration media and fine count mono PP fibres for tribo-electric charged air filter media.

The fine count mono fibres are customized according to the line specifics of the nonwoven producer and guarantee up to 20% higher filtration efficiencies for nonwovens in combination with state-of-the-art acrylic counter fibre compared to standard PP fibres used in this application. Typical applications are air handling units in larger buildings and residential furnaces.

Premium outdoor PP fibres for resilient, weather-resistant crop protection solutions
Engineered for superior mechanical strength and resistance to environmental stress factors, these fibres enhance durability in needle-punched fabrics, ensuring long-lasting protection in the field. Their advanced UV stabilization prevents degradation from prolonged sun exposure, extending the lifespan of crop covers, while their hydrophobic properties repel water, reducing moisture-related damage and maintaining breathability.

Ultrabond, design for recycling
Discover UltraBond innovative bonding staple fibres that replace the need for chemical binders. They open a path to create 100% polypropylene (PP) needlepunched fabrics which meet the same performance requirements as traditional constructions, while reducing end-of-life environmental impact.

The 100% polyolefin-based needlepunched fabrics are fully recyclable, reducing waste generation and creating high value PP recycled products as new materials. Furthermore, the sustainable fabrics are produced with an improved Total Cost of Ownership and with a significant ecological footprint reduction.

Beaulieu strengthening its position in the hygiene market
With a full portfolio already serving the hygiene sector, Beaulieu is focusing on next-generation speciality bicomponent solutions designed to enhance softness, processability, and sustainability in absorbent hygiene products.

Hypersoft fibres are specifically engineered for topsheet applications in direct contact with the skin: 25% improvement in softness compared to standard reference fibres while maintaining optimal processability has been achieved.

Meralux is a bicomponent trilobal fibre that improves nonwoven materials by providing better opacity, comfort, and absorption. It also promotes sustainability by saving raw materials and reducing carbon emissions by up to 60%.

Source:

Beaulieu International Group

Japanese and German scientists cooperating in the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center © Innovative Composite Center
Japanese and German scientists cooperating in the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center
26.02.2025

FIP-MIRAI@ICC: International cooperation sets course for the circular composite economy

With the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center FIP-MIRAI@ICC, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV and the Innovative Composite Center (ICC), Kanazawa Institute of Technology (KIT) in Kanazawa area are setting new standards in the circular economy. With a total budget of 2 million euros - half funded by the Fraunhofer-Society and half by the ICC - the platform aims to develop solutions to global challenges in the field of composite recycling. A Fraunhofer Innovation Platform (FIP) is a temporary research unit hosted and operated by a research institution abroad, which is set up in close cooperation with one or more Fraunhofer Institutes in Germany. With “Mirai”, the Japanese word for “future”, the FIP-MIRAI@ICC sends out a clear signal: Waste is seen as a valuable resource and reused through new technologies. The aim is to create a forward-looking circular economy that guarantees sustainability for future generations.

With the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center FIP-MIRAI@ICC, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV and the Innovative Composite Center (ICC), Kanazawa Institute of Technology (KIT) in Kanazawa area are setting new standards in the circular economy. With a total budget of 2 million euros - half funded by the Fraunhofer-Society and half by the ICC - the platform aims to develop solutions to global challenges in the field of composite recycling. A Fraunhofer Innovation Platform (FIP) is a temporary research unit hosted and operated by a research institution abroad, which is set up in close cooperation with one or more Fraunhofer Institutes in Germany. With “Mirai”, the Japanese word for “future”, the FIP-MIRAI@ICC sends out a clear signal: Waste is seen as a valuable resource and reused through new technologies. The aim is to create a forward-looking circular economy that guarantees sustainability for future generations. At the heart of the five-year cooperation (2025-2029) is a central location in Kanazawa area, which brings together researchers from the Fraunhofer IGCV and the ICC with companies, universities and customers.

Global challenges as an opportunity for innovation
The increasing use of composite materials in industries such as aerospace, wind energy and sports is leading to rising volumes of hard-to-recycle waste. As early as 2023, 75 kilotons of carbon fiber waste were produced worldwide, and 350 kilotons are expected by 2028 in aviation alone. The growing use of hydrogen technologies in mobility and transportation will further exacerbate this problem.

Technological innovations for sustainability
The German-Japanese collaboration pools technological expertise: the Fraunhofer IGCV contributes its expertise in fiber-matrix separation, quality assurance of recyclates and the wet-laid process, while the ICC contributes its pressing processes and continuous double-belt press technology. Together, this creates a unique “one-stop-shop” offering for companies looking for solutions for the recycling of composite materials.

Appearance at the JEC World 2025
A first insight into the work of FIP-MIRAI@ICC will be provided at JEC World 2025 in Paris, where the platform will be represented at the Japan Pavilion. Companies, researchers and industry experts are invited to visit the stand and discuss the latest developments.

A boost for the circular economy
FIP-MIRAI@ICC aims to act as a catalyst for sustainable technologies and transform waste streams into valuable resources. The close partnership between German and Japanese players paves the way for a sustainable and future-proof industry. With this initiative, science and industry are joining forces to turn global challenges into opportunities. With the vision of promoting ecological and economic sustainability, FIP-MIRAI@ICC is setting new standards in international cooperation.

Source:

Fraunhofer IGCV

Glass fiber surfacing veil © Freudenberg Performance Materials
Glass fiber surfacing veil
30.01.2025

Freudenberg at JEC World 2025 in Paris

Freudenberg Performance Materials (Freudenberg) will be showcasing its high-performance textile and nonwoven solutions for the composites industry at JEC World, the leading international composites show, in Paris, France. These include Enka®Solutions flow media and spacers for composites manufacturing and surfacing veils.

Composite manufacturers will have the opportunity to discuss solutions for optimizing resin infusion and foam injection molding processes with the experts, focusing on Enka®’s unique 3D polymeric filament structures used in Enka®Solutions flow media and spacers. With this technology, manufacturers benefit from a marked improvement in both quality and efficiency, ensuring their products meet the highest standards.

Freudenberg Performance Materials (Freudenberg) will be showcasing its high-performance textile and nonwoven solutions for the composites industry at JEC World, the leading international composites show, in Paris, France. These include Enka®Solutions flow media and spacers for composites manufacturing and surfacing veils.

Composite manufacturers will have the opportunity to discuss solutions for optimizing resin infusion and foam injection molding processes with the experts, focusing on Enka®’s unique 3D polymeric filament structures used in Enka®Solutions flow media and spacers. With this technology, manufacturers benefit from a marked improvement in both quality and efficiency, ensuring their products meet the highest standards.

In vacuum-assisted resin transfer molding (VARTM) and resin transfer molding (RTM) processes, composites manufactured using Enka®Solutions flow media have a superior bond and enhanced mechanical properties, which significantly decreases the risk of wrinkling and defects in the final products. Enka®Solutions flow media ensure rapid and reliable resin distribution. This guarantees full wet-out of the internal structure whilst keeping glass fiber reinforcement nettings and component surfaces precisely in place.

Freudenberg will also be presenting Enka®Solutions spacers, which contribute to faster production cycles and reproducible high-quality finished products.

Nonwoven surfacing veils for anti-corrosive coatings in piping and tank construction, UV-resistant facade panels, and other FRP end products.

Freudenberg’s surfacing veils are an essential part of FRP components and provide abrasion resistance, corrosion protection, smooth surfaces, and enhanced mechanical strength. As one of the world’s leading nonwoven manufacturers, Freudenberg’ portfolio of technologies is well suited to meeting the different needs of FRP part manufacturers. At JEC, the company’s experts will highlight the wide variety of technical capabilities for combining glass, PAN, and PET, in the shape of fibers or filaments, using their unique nonwoven expertise in wetlaid, drylaid, and spunbond processes.

Source:

Freudenberg Performance Materials

Photo: Cobra International / JEC
27.01.2025

JEC Award: Design, Furniture & Home for Cobra International

Stylish and recyclable carbon fibre furniture
Cobra and its partners have coordinated the design, engineering, material selection and manufacturing of a range of innovative carbon fibre-based furniture. The furniture uses the recyclable epoxy resins, along with other production waste, and recycled raw materials.

Cobra, Aditya Birla Group, Burapa University, Hankuk Carbon, and Luxara Design Studio present a recyclable composite meeting table and barstool. The Liana table uses Recyclamine resins, high-modulus prepreg and Cobra’s production-waste BMC material for its structure. Neolith, a 100% sustainable artificial marble with 52% recycled content, and Hankuk woven carbon fabric provide the exceptional surface finish. The Loop barstool uses a looping design style, and again, it uses Recyclamine resins and Hankuk carbon over a recyclable PET core for a high-end yet sustainable seating solution.

Cobra International (Thailand)
Partners:
• Aditya Birla Chemicals Ltd. – Advanced Materials (Thailand)
• Burapha University (Thailand)
• HANKUK CARBON CO., LTD. (South Korea)
• LUXARA DESIGN CO.,LTD. (Thailand)

Stylish and recyclable carbon fibre furniture
Cobra and its partners have coordinated the design, engineering, material selection and manufacturing of a range of innovative carbon fibre-based furniture. The furniture uses the recyclable epoxy resins, along with other production waste, and recycled raw materials.

Cobra, Aditya Birla Group, Burapa University, Hankuk Carbon, and Luxara Design Studio present a recyclable composite meeting table and barstool. The Liana table uses Recyclamine resins, high-modulus prepreg and Cobra’s production-waste BMC material for its structure. Neolith, a 100% sustainable artificial marble with 52% recycled content, and Hankuk woven carbon fabric provide the exceptional surface finish. The Loop barstool uses a looping design style, and again, it uses Recyclamine resins and Hankuk carbon over a recyclable PET core for a high-end yet sustainable seating solution.

Cobra International (Thailand)
Partners:
• Aditya Birla Chemicals Ltd. – Advanced Materials (Thailand)
• Burapha University (Thailand)
• HANKUK CARBON CO., LTD. (South Korea)
• LUXARA DESIGN CO.,LTD. (Thailand)

Key benefits:
• Thin yet strong, only achievable with carbon fibre
• Lightweight yet durable for lasting performance
• First recyclable carbon fibre furniture
• Upcycling composites waste
• A step towards circularity

BMW Group and Bcomp win Altair Enlighten Award for Seat (c) BMW Group
06.09.2024

BMW Group and Bcomp win Altair Enlighten Award for Seat

Bcomp, a company in high-performance, natural fibre composites for the mobility-, recreational-, and mass transportation sectors, has been awarded the 2024 Altair Enlighten Award with BMW M GmbH, a renowned performance car subsidiary of BMW Group, for the BMW M Visionary Materials Seat, alongside other BMW M GmbH partners in the project. Manufactured with Bcomp’s ampliTex™ bio-based materials, the seat won in the Sustainable Process category.

The award-winning seat design re-envisions the manufacture and component materials to introduce a lighter, circular product that meets the demands of large-scale vehicle production. The seatback features a fully bio-based, high-performance natural fibre layup with ampliTex™-PP composite. By combining the structural and aesthetically pleasing visual properties of the material in one manufacturing step, production is both more efficient and dematerialised.

Bcomp, a company in high-performance, natural fibre composites for the mobility-, recreational-, and mass transportation sectors, has been awarded the 2024 Altair Enlighten Award with BMW M GmbH, a renowned performance car subsidiary of BMW Group, for the BMW M Visionary Materials Seat, alongside other BMW M GmbH partners in the project. Manufactured with Bcomp’s ampliTex™ bio-based materials, the seat won in the Sustainable Process category.

The award-winning seat design re-envisions the manufacture and component materials to introduce a lighter, circular product that meets the demands of large-scale vehicle production. The seatback features a fully bio-based, high-performance natural fibre layup with ampliTex™-PP composite. By combining the structural and aesthetically pleasing visual properties of the material in one manufacturing step, production is both more efficient and dematerialised.

The accent has been on Design for Circularity, meaning that in addition to using natural and recycled materials, the BMW M Visionary Materials Seat’s recyclability has been taken into account right from the start of development. Less complex assemblies and monomaterials that can be separated by type enable the recyclability of the seat at the end of its life. Flax fibre composites are CO2e-neutral from cradle to gate, and can reduce manufacturing-related emissions of high-performance composite parts by up to 85% compared to carbon fibre, depending on the application. Compared to current large-scale automotive plastic parts, Bcomp’s material solutions can reduce component weights by up to 50%, thanks to their low density and high stiffness.

The seat is a development project designed and engineered by long-time collaborators, BMW M GmbH and Bcomp, along with BMW Designworks, Automotive Management Consulting GmbH, Gradel Lightweight Sàrl and Lasso Ingenieurgesellschaft mbH. BMW M GmbH and Bcomp have already delivered innovations in previous development projects for high-end road cars and series application for race cars, such as interior and bodywork components for the BMW M4 GT4, bodywork for the BMW M4 DTM, and cooling shafts for the BMW iFE.20 in Formula E.

The annual Enlighten Awards are sponsored by Altair, a global leader in computational science and intelligence. They celebrate lightweighting innovations that reduce emissions, materials and energy consumption, while advancing material reuse and recyclability. The winning technologies are of significant interest to automotive engineers, manufacturers, policymakers and consumers.

Source:

Bcomp Ltd

03.09.2024

Teijin Companies at CAMX 2024

The Teijin Group companies Teijin Carbon America, Renegade Materials and Teijin Aramid will participate in CAMX. the largest, most comprehensive composites and advanced materials event in North America, in San Diego, USA. At the TEIJIN booth, visitors can explore innovative composite solutions and learn about the comprehensive technical support and provided services.

Teijin's diverse network of materials companies excels across various fields, ranging from high-performance carbon and aramid fibers to cutting-edge industrial textiles and revolutionary, cost-effective prepreg composite solutions. The shared commitment to quality, innovation, and environmental responsibility unites Teijin in their mission to deliver eco-friendly solutions across multiple industries and applications, including pressure vessels, aerospace, and both defense and commercial aircraft construction.

The Teijin Group companies Teijin Carbon America, Renegade Materials and Teijin Aramid will participate in CAMX. the largest, most comprehensive composites and advanced materials event in North America, in San Diego, USA. At the TEIJIN booth, visitors can explore innovative composite solutions and learn about the comprehensive technical support and provided services.

Teijin's diverse network of materials companies excels across various fields, ranging from high-performance carbon and aramid fibers to cutting-edge industrial textiles and revolutionary, cost-effective prepreg composite solutions. The shared commitment to quality, innovation, and environmental responsibility unites Teijin in their mission to deliver eco-friendly solutions across multiple industries and applications, including pressure vessels, aerospace, and both defense and commercial aircraft construction.

Teijin’s dedication to acquiring appropriate certifications for sustainable production and product development underscores the high level of commitment to lead in this field. In the past years, Teijin has continuously striven to minimize their carbon footprint and global impact, while also supporting customers on their own sustainability journeys. This year, Teijin Aramid achieved the EcoVadis Gold Medal recognition, placing the company in the top 5% of all companies across all industries globally and in the top 3% of all man-made fiber manufacturers worldwide.

Teijin Carbon has been awarded the ISCC Plus certification for its production in Germany and Japan and is on track to receive the same certification in the U.S. in the coming months. This accreditation allows the Teijin Carbon Group to prove to its customers sustainable products that contribute to a circular economy. Teijin Carbon is diligently working toward establishing new sustainability standards, promoting ecological innovations, and fostering partnerships for a more sustainable world.

Teijin is looking forward to engaging with customers and partners at CAMX 2024 in San Diego to discuss innovative ideas for the circular economy and recycling processes.

Teijin Carbon is one of the world's leading manufacturers of Tenax™ carbon fibers and carbon fiber-based materials, with production sites in the US, Germany, Japan and Vietnam. Teijin Carbon develops solutions for the aerospace, automotive, energy, electronics and sporting goods industries using high-performance technologies in an international environment. They work closely with their partners to create a fully circular value chain. The goal to make Teijin’s products net CO₂-free by 2050 aligns with the commitment to global society to find solutions and take action to combat it.

As a manufacturer of intermediate materials in the US, Renegade Materials is known for its product expertise and commitment to customer satisfaction. Renegade Materials distinguishes itself by merging cutting-edge materials science with advanced prepreg manufacturing and testing equipment, all meticulously controlled by rigorous quality management systems. Renegade is steadfast in their commitment to the development and largescale production of advanced, multi-functional materials that offer engineered solutions to the current composite design, usage and affordability initiatives in the aerospace industry.

Teijin Aramid is a global leader in high-performance aramid fiber, a subsidiary of the global Teijin Group. Specializing in high-performance aramid fibers, their materials are used in automotive and aerospace industries, ballistic protection and more.

Source:

Teijin

AZL Aachen GmbH: Project on Composite Propellers and Rotors (c) AZL Aachen GmbH
30.08.2024

AZL Aachen GmbH: Project on Composite Propellers and Rotors

AZL Aachen GmbH announces the launch of a new Joint Partner Project focusing on the further growth potential and technology developments for composite propellers in the field of air mobility and for composite rotors for small to medium-sized wind energy systems.

The nine-month consortial industry project will investigate current and future composite applications for propellers and rotors and their requirements, provide technological insights and develop new product concepts and evaluate them in terms of economic efficiency.

AZL Aachen GmbH announces the launch of a new Joint Partner Project focusing on the further growth potential and technology developments for composite propellers in the field of air mobility and for composite rotors for small to medium-sized wind energy systems.

The nine-month consortial industry project will investigate current and future composite applications for propellers and rotors and their requirements, provide technological insights and develop new product concepts and evaluate them in terms of economic efficiency.

The project aims to address the growing demand for efficient, powerful and compact composite propellers and rotors for the growing markets of air mobility and decentralised power generation. Although the application, manufacturing and material technologies for propellers and rotors made of composite materials have proven to be technically mature, they have so far mainly been used in the high-performance sector for large propeller aircrafts and large wind turbines. Due to the increasing interest in efficient electric propulsion system in the field of air mobility, e.g. air taxis or parcel delivery drones, as well as for decentralised energy generation with the help of small/medium-sized wind energy systems, a rising demand for these components and their production volumes are expected.

AZL will bring together experts along the entire value chain in the project to analyse current and future product concepts. During the project, the participating companies will gain a comprehensive understanding of composite propeller and rotor technology. The project team will carry out a detailed screening of current and future technologies, investigate different materials and processes for the production of propellers and rotors and elaborate design options as well as analyse and evaluate them in terms of technological and cost-effective criteria.

Interested companies can join the project consortium until the Kick-Off on September 18th, 2024.

Source:

AZL Aachen GmbH

07.08.2024

KARL MAYER at CAMX: Solutions for composite reinforcements

KARL MAYER North America will return to exhibit at CAMX, a composites trade show, taking place from September 9 to 12, 2024 in San Diego. Here it will present as an innovative partner to the composites industry with machines such as the COP MAX 4, a all-rounder to produce multilayer, multiaxial fabric structures; the COP MAX 5, specifically for processing carbon fibers; and the UD 700 fiber spreading system. Furthermore, a new machine was launched this spring, called MAX GLASS ECO.

Besides the machines, KARL MAYER supports customers with pioneering application developments. The focus of the medial presentation will be the processing of natural fibers into sustainable composite reinforcements. In cooperation with representatives of the winter sports industry, KARL MAYER has already processed hemp tapes and flax fibers into non-crimp fabrics for snowboards and skis with COP MAX 4. Examples were launched at the last editions of this year's Techtextil and JEC World which were very well received by visitors.

KARL MAYER North America will return to exhibit at CAMX, a composites trade show, taking place from September 9 to 12, 2024 in San Diego. Here it will present as an innovative partner to the composites industry with machines such as the COP MAX 4, a all-rounder to produce multilayer, multiaxial fabric structures; the COP MAX 5, specifically for processing carbon fibers; and the UD 700 fiber spreading system. Furthermore, a new machine was launched this spring, called MAX GLASS ECO.

Besides the machines, KARL MAYER supports customers with pioneering application developments. The focus of the medial presentation will be the processing of natural fibers into sustainable composite reinforcements. In cooperation with representatives of the winter sports industry, KARL MAYER has already processed hemp tapes and flax fibers into non-crimp fabrics for snowboards and skis with COP MAX 4. Examples were launched at the last editions of this year's Techtextil and JEC World which were very well received by visitors.

More information:
Karl Mayer USA CAMX Composites
Source:

KARL MAYER Verwaltungsgesellschaft AG

KARL MAYER: Erfolgreicher Verkauf der Composite-Maschine MAX GLASS ECO (c) KARL MAYER GROUP
22.07.2024

KARL MAYER: Successful sale of MAX GLASS ECO composite machine

With the MAX GLASS ECO, the KARL MAYER Technical Textiles Business Unit offers a production machine for the economical manufacture of standard reinforcement textiles made from glass fibers, in particular non-crimp fabrics for the wind power industry. The newcomer can be adapted to the requirements of different application areas thanks to various optional functions and combines short amortization times. At a maximum speed of 1,800 min-1, it produces up to 410 m/h at a working width of 101". This performance is very well received on the composite market. Since the launch of the MAX GLASS ECO at JEC World in March this year, several purchase agreements have already been signed.

Some machines are going to India, and a larger number has been ordered by Chinese customers. Even the demonstration models in the KARL MAYER GROUP customer centers in Changzhou and Chemnitz have already been sold. However, the MAX GLASS ECO at KARL MAYER Technische Textilien in Saxony can still be used for processing trials and performance tests until September.

With the MAX GLASS ECO, the KARL MAYER Technical Textiles Business Unit offers a production machine for the economical manufacture of standard reinforcement textiles made from glass fibers, in particular non-crimp fabrics for the wind power industry. The newcomer can be adapted to the requirements of different application areas thanks to various optional functions and combines short amortization times. At a maximum speed of 1,800 min-1, it produces up to 410 m/h at a working width of 101". This performance is very well received on the composite market. Since the launch of the MAX GLASS ECO at JEC World in March this year, several purchase agreements have already been signed.

Some machines are going to India, and a larger number has been ordered by Chinese customers. Even the demonstration models in the KARL MAYER GROUP customer centers in Changzhou and Chemnitz have already been sold. However, the MAX GLASS ECO at KARL MAYER Technische Textilien in Saxony can still be used for processing trials and performance tests until September.

There is also great interest in Eastern Europe. At Techtextil 2024 in Frankfurt, for example, the new composite machine was a topic of numerous meetings with Ralf Schramm, Sales Manager at KARL MAYER Technische Textilien for this region. "I held many orientation discussions about the machine's performance. But there were also customers with specific purchase requests, including the Polish manufacturer of high-quality, professional solutions for the composites industry, Rymatex," says the sales professional.

Source:

KARL MAYER Verwaltungsgesellschaft AG

KARL MAYER: New composite machine MAX GLASS ECO (c) KARL MAYER
24.06.2024

KARL MAYER: New composite machine MAX GLASS ECO

KARL MAYER Technische Textilien launches the new MAX GLASS ECO, a composite machine with a focus on standard non-crimp fabrics made of glass fibers.

The MAX GLASS ECO incorporates proven solutions from the KARL MAYER GROUP's range of multiaxial machines, including features from its predecessor, the MAXTRONIC®, and combines these with sophisticated new technical developments. The result is a production machine for the economical manufacture of standard glass fiber articles, especially non-crimp fabrics for the wind power industry.

The multiaxial warp knitting machine is extremely efficient, affordable and, unlike the previous MAXTRONIC®, sufficiently flexible thanks to various optional functions. At a rotational speed of up to 1,800 min-1, a maximum output of 410 m/h is achieved.

KARL MAYER Technische Textilien launches the new MAX GLASS ECO, a composite machine with a focus on standard non-crimp fabrics made of glass fibers.

The MAX GLASS ECO incorporates proven solutions from the KARL MAYER GROUP's range of multiaxial machines, including features from its predecessor, the MAXTRONIC®, and combines these with sophisticated new technical developments. The result is a production machine for the economical manufacture of standard glass fiber articles, especially non-crimp fabrics for the wind power industry.

The multiaxial warp knitting machine is extremely efficient, affordable and, unlike the previous MAXTRONIC®, sufficiently flexible thanks to various optional functions. At a rotational speed of up to 1,800 min-1, a maximum output of 410 m/h is achieved.

The MAX GLASS ECO is available with a working width of 101″ and is suitable for laying angles of +/-45°. A complementary layering system ensures a uniform take-up speed and therefore gentle processing of the fiber material. This sophisticated weft tension compensation device is one of a whole series of tried and tested features of KARL MAYER multiaxial technology that have been integrated into the new machine. Other adopted solutions include the Fiber Chopping Unit, which allows glass fiber chips to be introduced into the laying process and thus cover more fields of application, and a single pin transport chain for a processing method with less waste.

Newly developed innovations also ensure even better performance, including the fixed layer system, which ensures high placement precision at all laying angles. Other equipment details with added value for the customer include a conveyor belt across the full working width, the walking needle system, which prevents the formation of lanes even with long stitch lengths, and the fitting of single compound needles, which can be changed efficiently.

Source:

KARL MAYER Verwaltungsgesellschaft AG

11.04.2024

Carbitex: Global team with strategic new hires

Carbitex – a leader in flexible carbon fiber composites focused on footwear, travel, and accessories – announces the appointment of Filippo Sartor to Vice President of Global Sales and Sam Gardner to the role of Vice President of Engineering and Operations. After a restructuring of manufacturing operations and the return of Carbitex founder, Junus Khan, as company president in 2023, the brand welcomes two strategic hires to catalyze the next phase of the leading materials brand.

With over 20 years in the footwear industry, including nearly 11 years as the Global Senior Sales Manager at JV International, official worldwide licensee for Michelin Soles, Sartor brings high level sales expertise within performance footwear and material innovation. With extensive focus on building new business in the US and Far East, and based in Milan, Italy, Sartor is uniquely positioned to help propel Carbitex globally into the next chapter.

Carbitex – a leader in flexible carbon fiber composites focused on footwear, travel, and accessories – announces the appointment of Filippo Sartor to Vice President of Global Sales and Sam Gardner to the role of Vice President of Engineering and Operations. After a restructuring of manufacturing operations and the return of Carbitex founder, Junus Khan, as company president in 2023, the brand welcomes two strategic hires to catalyze the next phase of the leading materials brand.

With over 20 years in the footwear industry, including nearly 11 years as the Global Senior Sales Manager at JV International, official worldwide licensee for Michelin Soles, Sartor brings high level sales expertise within performance footwear and material innovation. With extensive focus on building new business in the US and Far East, and based in Milan, Italy, Sartor is uniquely positioned to help propel Carbitex globally into the next chapter.

Gardner, based in Renton, Washington, will manage product development and manufacturing at Carbitex. With time at Square One Distribution - a long-time Carbitex brand partner in the wake and waterski segment - and most recently as VP for Union Aquaparks, Gardner has considerable experience designing new products and managing sourcing, logistics, and supply chain. His background will help Carbitex strengthen both factory and brand partner relations and push product innovation.

These recent hires position Carbitex to better serve strategic brand partners, achieve forecasted growth in the short and long term, and expand global market presence.

More information:
Carbitex
Source:

Carbitex

Freudenberg: Fully synthetic wetlaid nonwovens for filtration (c) Freudenberg Performance Materials Holding GmbH
Freudenberg’s fully synthetic wetlaid material for reverse osmosis membranes
01.03.2024

Freudenberg: Fully synthetic wetlaid nonwovens for filtration

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Versatile and flexible manufacturing
Freudenberg’s fully synthetic wetlaid nonwovens can be made of polyester, polyolefin, polyamide and polyvinyl alcohol (PVA), using staple fibers of up to 12mm fiber length and microfibers as fine as 0.04dtex. In terms of weight, the product range spans weights of between 8g/m² and 250g/m². Freudenberg’s flexible wetlaid manufacturing line has the capability to combine various thermal and chemical bonding technologies. The materials have high precision in weight and thickness as well as a defined pore size and high porosity.

Wetlaid capabilities for various applications
In addition to its fully synthetic range, Freudenberg can also incorporate glass fibers, viscose and cellulose. General industry applications for Freudenberg wetlaid nonwovens are surfacing veils for glass-fiber reinforced plastics, compostable desiccant bags, battery separators, acoustics, heatshields, and apparel applications such as embroidery substrates.

Source:

Freudenberg Performance Materials Holding GmbH

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024 (c) FUSE GmbH
26.02.2024

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

The STOLL Business Unit will be focussing on thermoplastic materials. Several knit to shape parts with a textile outer surface and a hardened inner surface will be on display. The double-face products can be made from different types of yarn and do not need to be back-moulded for use as side door panels or housing shells, for example. In addition, the ready-to-use design saves on waste and yarn material.

Sorted and cut textile waste ready for tearing © SBO EVENT
Sorted and cut textile waste ready for tearing
01.12.2023

First automated textile waste sorting and recycling line in France

Partnership between Nouvelles Fibres Textiles, Pellenc ST and ANDRITZ promotes circular economy for textiles.

France’s first industrial plant for automated sorting and recycling of textile waste was officially inaugurated at Nouvelles Fibres Textiles, Amplepuis, on November 30, 2023. The plant is the result of an ambitious partnership between textile recycling company Nouvelles Fibres Textiles, waste sorting specialist Pellenc ST and international technology group ANDRITZ, a specialist in textile recycling machinery and processes.

Capable of automatically sorting garments by composition and color, the new line meets the needs of both post-consumer and post-industrial waste markets. The line also removes hard parts such as buttons and zippers to prepare the material for further processing in an ANDRITZ tearing machine.

The automated textile sorting line at Nouvelles Fibres Textiles is dedicated to industrial-scale production, customer trials and projects, and the R&D activities of the partners. It will process textile waste to produce recycled fibers for the spinning, nonwovens, and composites industries.

Partnership between Nouvelles Fibres Textiles, Pellenc ST and ANDRITZ promotes circular economy for textiles.

France’s first industrial plant for automated sorting and recycling of textile waste was officially inaugurated at Nouvelles Fibres Textiles, Amplepuis, on November 30, 2023. The plant is the result of an ambitious partnership between textile recycling company Nouvelles Fibres Textiles, waste sorting specialist Pellenc ST and international technology group ANDRITZ, a specialist in textile recycling machinery and processes.

Capable of automatically sorting garments by composition and color, the new line meets the needs of both post-consumer and post-industrial waste markets. The line also removes hard parts such as buttons and zippers to prepare the material for further processing in an ANDRITZ tearing machine.

The automated textile sorting line at Nouvelles Fibres Textiles is dedicated to industrial-scale production, customer trials and projects, and the R&D activities of the partners. It will process textile waste to produce recycled fibers for the spinning, nonwovens, and composites industries.

Automated sorting was the last missing link needed to develop a complete ecosystem in France, where the fashion industry, social and solidarity economy actors, waste management companies, and textile producers from different sectors are working together towards a textile circular economy.

The EU's strategy for sustainable and circular textiles aims to ensure that by 2030 textile products are made to a great extent of recycled fibers and incineration and landfilling of textiles are minimized.

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

Photo: Optima 3D
09.08.2023

Optima 3D delivers weaving technology to ASCC

UK’s Optima 3D is delivering its weaving technology to the USA, for installation at the University of Maine’s Advanced Structures and Composites Center (ASCC).

The 3D weaving system consists of an Optima 3D Series 600 shuttle weaving machine with an integrated 2,688-hook Stäubli SX jacquard and harness. It is also complemented by Optima’s compact warp delivery creel and an associated pirn winder for shuttle bobbins and a spool winder for creel spools.

Optima’s looms offer many advanced features over conventional weaving machines, particularly in terms of versatility, as a result of the comprehensive use of digital control systems allowing rapid parameter and sequence changes, coupled with an innovative shuttle system.

UK’s Optima 3D is delivering its weaving technology to the USA, for installation at the University of Maine’s Advanced Structures and Composites Center (ASCC).

The 3D weaving system consists of an Optima 3D Series 600 shuttle weaving machine with an integrated 2,688-hook Stäubli SX jacquard and harness. It is also complemented by Optima’s compact warp delivery creel and an associated pirn winder for shuttle bobbins and a spool winder for creel spools.

Optima’s looms offer many advanced features over conventional weaving machines, particularly in terms of versatility, as a result of the comprehensive use of digital control systems allowing rapid parameter and sequence changes, coupled with an innovative shuttle system.

The ASCC is certainly no stranger to advanced technology, or indeed ambitious composite projects – in 2019 it received no less than three Guinness World Records, for the world’s largest prototype polymer 3D printer, the largest solid 3D-printed object, and the largest 3D-printed boat. In its latest project it has further introduced BioHome3D – the first 3D-printed house made entirely with bio-based materials developed in a partnership with Oak Ridge National Laboratory. The 182-square-metre prototype features 3D-printed floors, walls and roof which are fully recyclable and highly insulated with 100% wood insulation and customisable R-values. Construction waste was nearly eliminated due to the precision of the printing process.

Source:

British Textile Machinery Association (BTMA)