From the Sector

Reset
3 results
DNFI: Microplastic pollution is a global challenge Photo: pixabay
10.12.2021

DNFI: Microplastic pollution is a global challenge

Microplastic pollution is a global challenge across many industries and sectors – one of critical importance being textiles.

A 2021 study by the California Ocean Science Trust and a group of interdisciplinary scientists acknowledges that microfibres from textiles are among the most common microplastic materials found in the marine environment. Every time synthetic clothes are manufactured, worn, washed, or disposed of, they release microplastics into terrestrial and marine environments, including human food chains. Synthetic fibres represent over two-thirds (69%) of all materials used in textiles, a proportion that is expected to rise to 73% by 2030. The production of synthetic fibres has fuelled a 40-year trend of increased per capita clothing consumption.

Global textile consumption has become:

Microplastic pollution is a global challenge across many industries and sectors – one of critical importance being textiles.

A 2021 study by the California Ocean Science Trust and a group of interdisciplinary scientists acknowledges that microfibres from textiles are among the most common microplastic materials found in the marine environment. Every time synthetic clothes are manufactured, worn, washed, or disposed of, they release microplastics into terrestrial and marine environments, including human food chains. Synthetic fibres represent over two-thirds (69%) of all materials used in textiles, a proportion that is expected to rise to 73% by 2030. The production of synthetic fibres has fuelled a 40-year trend of increased per capita clothing consumption.

Global textile consumption has become:

  • more reliant on non-renewable resources,
  • less biodegradable, and
  • increasingly prone to releasing microplastics.

The increased consumption is also discretionary, driven by consumer desire and remains unchecked. Thus, the long-term trend in the textile industry parallels the intentional addition of microplastics to products such as cosmetics. The contrast is that the European Chemicals Agency (ECHA) has recommended such intentional additions be restricted, whereas the over-consumption of synthetic fibres continues unchecked. One way for the EU to account for and mitigate microplastic pollution is through an EU-backed methodology measuring and reporting microplastic emissions, so that consumers and procurement officers have the information needed to minimise microplastic pollution resulting from their purchasing decisions.

There is a critical opportunity to address microplastic pollution in the fashion textile industry through the EU Product Environmental Footprint (PEF) methodology. To meet the environmental objectives of the Circular Economy Action Plan, the EU is proposing that companies substantiate their products’ environmental credentials using this harmonised methodology. However, microplastic pollution is not accounted for in the PEF methodology. This omission has the effect of assigning a zero score to microplastic pollution and would undermine the efforts of the European Green Deal, which aim “to address the unintentional release of microplastics in the environment.”

The incorporation of microplastic pollution as an indicator would increase the legitimacy of the PEF method as well as better inform consumer purchasing decisions, especially as the European Green Deal seeks to “further develop and harmonise methods for measuring unintentionally released microplastics, especially from tyres and textiles, and delivering harmonised data on microplastics concentrations in seawater.”

Whilst we continue to learn about the damage of microplastics and there is new knowledge emerging on the toxic impacts along the food chain, there is sufficient information on the rate of microplastic leakage into the environment to implement a basic, inventory level indicator in the PEF now. This is consistent with the recommendations of a review of microplastic pollution originating from the life cycle of apparel and home textiles. There are precedents in PEF for basic level (e.g., ‘resource use, fossils’) and largely untested (e.g. land occupation and toxicity indicators) indicators, and therefore an opportunity for the EU to promote research and development in the measurement and modelling of microplastic pollution by including such emissions in the PEF methodology. For such an indicator, the long and complex supply chains of the apparel and footwear industry would be a test case with high-impact and a global reach.

Source:

DNFI / IWTO – 2021

11.05.2021

Devan launches bio-based softener and quick-dry finish

Devan Chemicals recently added two more products to its range of bio-based textile finishes. One being a softener, the other one a quick-dry finish. Both are derived from vegetable oils and are in line with the company’s latest innovations on bio-based chemistry.

Due to the Covid-pandemic, serving as an accelerator for a worldwide green economy, the textile industry is increasingly seeking more sustainable and products fit-for-circular programs. According to McKinsey & Company, the textile industry will experience innovation surrounding sustainably sourced raw materials and bio-based chemical additives to accommodate increasing consumer demand.

Devan Chemicals recently added two more products to its range of bio-based textile finishes. One being a softener, the other one a quick-dry finish. Both are derived from vegetable oils and are in line with the company’s latest innovations on bio-based chemistry.

Due to the Covid-pandemic, serving as an accelerator for a worldwide green economy, the textile industry is increasingly seeking more sustainable and products fit-for-circular programs. According to McKinsey & Company, the textile industry will experience innovation surrounding sustainably sourced raw materials and bio-based chemical additives to accommodate increasing consumer demand.

Devan launched its first bio-based technology in 2019 and is fully committed to making bio-based versions of their existing textile finishes. ‘We have put ourselves on a mission to be able to extend our Bio-Based range further”, says Sven Ghyselinck, CEO of Devan. “We wanted to make an even bigger impact on circularity than before, therefore we looked into what fabric producers use a lot: softeners and moisture management systems. Only by focusing more on the large volume products, can we support the industry to have a bigger impact on sustainability. After the growing success of our natural antimicrobial BI-OME NTL, we are proud to now introduce our new natural Passerelle line”.

Passerelle Soft NTL is a durable softness technology based on vegetable ingredients. The technology is wash durable and can be used with natural fibres like hemp, cotton, but is also fit for synthetic fibres like rPES, PA. The bio content of the technology is above 85% (ASTM D6866-20).

Passerelle Quick-Dry NTL is a moisture management technology also based on vegetable ingredients. This bio-based finish enables high wicking and evaporation capability which helps to evaporate water/sweat easier and faster. The technology is also > 60% (28 days) biodegradable according to OECD 301B.

HeiQ/Nylstar: Launch of HeiQ Viroblock Permanent on Meryl® Skinlife Force (c) Nylstar
28.01.2021

HeiQ/Nylstar: Launch of HeiQ Viroblock Permanent on Meryl® Skinlife Force

A decade long collaboration between Swiss textile innovator HeiQ and Spanish premium synthetic fiber manufacturer Nylstar, has resulted in the innovation of a revolutionary new premium antiviral and antimicrobial textile with zero pollution sustainable benefits, Meryl® Skinlife Force powered by HeiQ Viroblock Permanent, winner of ISPO Textrends Award for the Best Product.

A decade long collaboration between Swiss textile innovator HeiQ and Spanish premium synthetic fiber manufacturer Nylstar, has resulted in the innovation of a revolutionary new premium antiviral and antimicrobial textile with zero pollution sustainable benefits, Meryl® Skinlife Force powered by HeiQ Viroblock Permanent, winner of ISPO Textrends Award for the Best Product.

The new technology is used exclusively on Meryl® Skinlife Force, an hi-tech fabric that combines the silver-ion active principle antimicrobial properties developed by HeiQ and Nylstar’s hydrogen-based technology which allows the creation of yarns with a very strong molecular cohesion structure. The Hydrogen molecular structure makes Meryl® Skinlife Force a high-performance fabric in terms of moisture management and breathability, offering a natural stretch without elastane as well as excellent durability thanks to its continuous and high tenacity filaments. The robust durability of HeiQ Viroblock Permanent is achieved thanks to the silver particles being added directly into the raw polymer of the yarn thereby keeping these properties active for the lifetime of garments. Fabric samples successfully demonstrated a very strong antimicrobial efficacy with over 99.99% reduction of both gram-positive and gram-negative bacteria after 100 washes. Antiviral test is underway.

Both HeiQ and Nylstar will be “exhibiting” at ISPO Munich Online from February 1st to 5th. Nylstar won the Textrends 2021 Award for the Best Product in the Base Layer Category.