From the Sector

Reset
21 results
Adient Front Seat Cushion prototype Credits: Adient
Adient Front Seat Cushion prototype
27.11.2024

Adient, Jaguar Land Rover and Dow develop closed-loop PU foam seats

Adient, Jaguar Land Rover, and Dow have worked together to produce seat foam for the luxury car manufacturer’s vehicles using closed-loop recycled components. This represents an industry-first in the automotive sector, heading towards a circular economy and a lower CO2 footprint for cars as the end product.

In order to address the environmental impact of polyurethane (PU) foams used in car seats, the industry partners decided to team up. This means so-called ‘post-consumer’ PU molded foams have previously been collected from end-of-life vehicles, sorted, and shredded. On this basis, Dow produces a new, circular polyol, which is subsequently processed and integrated into Adient’s seating formulas. As a result, the Adient Front Seat Cushion prototypes are currently composed of 20% re-polyol from PU end-of-life vehicles.

Adient, Jaguar Land Rover, and Dow have worked together to produce seat foam for the luxury car manufacturer’s vehicles using closed-loop recycled components. This represents an industry-first in the automotive sector, heading towards a circular economy and a lower CO2 footprint for cars as the end product.

In order to address the environmental impact of polyurethane (PU) foams used in car seats, the industry partners decided to team up. This means so-called ‘post-consumer’ PU molded foams have previously been collected from end-of-life vehicles, sorted, and shredded. On this basis, Dow produces a new, circular polyol, which is subsequently processed and integrated into Adient’s seating formulas. As a result, the Adient Front Seat Cushion prototypes are currently composed of 20% re-polyol from PU end-of-life vehicles.

This is the first time, to the awareness of all parties involved, that a PU molded foam for seating applications has been produced under these conditions. This milestone represents a significant leap forward for the automotive industry, positioning PU at the heart of a circular economy system. By integrating recycled components into luxury vehicle seat foams, the partners are not only reducing the environmental impact but also paving the way for a more sustainable future in automotive manufacturing.

“Developing components with closed-loop recycled foams represents a major milestone for the team and simultaneously spurs us on to continuously increase the proportion of recycled materials in our seating systems in the future,” said Frank Toenniges, Director Sustainable Product Design & Business Process Improvements at Adient. “Additionally, it positions the actors along the value chain favorably to comply with the proposed European End-of-Life Directive.”

Andrea Debbane, Chief Sustainability Officer at JLR stated: “This breakthrough is a great example of how the automotive value chain can work as a collective to demonstrate that full circularity is feasible and unlock meaningful change at scale. This way of working holds significant potential for increasing sustainability and is critical to JLR's transition to more circular vehicles.”

As a next step, further research will be conducted to increase the percentage of re-polyol content. At the same time, the closed-loop seat foam will be tested with JLR on a production scale from early 2025.

31.05.2024

Oerlikon Barmag: Pumps with magnetic coupling

Polyurethane has become an integral part of our daily lives, whether in the construction industry, in leisure activities, in the manufacture of furniture or in numerous other applications. The precision gear pumps from Oerlikon Barmag, which will be presented at this year's UTECH Asia / PU China 2024 in Shanghai, impress with customised solutions for demanding tasks in the chemical industry. They increase the productivity of the often complex manufacturing processes for this wide range of applications.

Oerlikon Barmag pumps handle demanding processes in PUR applications, in the chemical, plastics or paint and lacquers industries. One of the greatest challenges lies in the accurate and reliable metering of toxic or low-viscosity media. With the GM and GA series and the associated components, Oerlikon Barmag presents the optimum equipment for these applications.

Polyurethane has become an integral part of our daily lives, whether in the construction industry, in leisure activities, in the manufacture of furniture or in numerous other applications. The precision gear pumps from Oerlikon Barmag, which will be presented at this year's UTECH Asia / PU China 2024 in Shanghai, impress with customised solutions for demanding tasks in the chemical industry. They increase the productivity of the often complex manufacturing processes for this wide range of applications.

Oerlikon Barmag pumps handle demanding processes in PUR applications, in the chemical, plastics or paint and lacquers industries. One of the greatest challenges lies in the accurate and reliable metering of toxic or low-viscosity media. With the GM and GA series and the associated components, Oerlikon Barmag presents the optimum equipment for these applications.

GM pump
Pumps in the GM series achieve precise dosing by feeding the flow with low pulsation. The multi-stage GM pump conveys low-viscosity media even under high pressure and the most difficult operating conditions (e.g. 250 bar, 100 mPas). The standard pump for many dosing tasks is the GM series in a square design. With the development of the multi-stage pump, the range of applications for the GM series has been significantly expanded. The round 2-stage GM pump has been specially developed for use in high-pressure technology. It fulfils the special challenge of pumping small flow rates with low viscosities. The pump serves flow rates from 0.05 to 20 ccm/rev and is therefore particularly suitable for the production of PUR moulded parts, block foam, refrigeration unit insulation or sandwich panels.  

GA series
Making products and processes more efficient is a constant challenge for manufacturing companies. This is why Oerlikon Barmag has added the GA series to the GM series especially for the demanding conveying of high-viscosity media. The GA series is available in delivery volumes of 1.25 - 30 cm³/rev (0.6-144 l/h). It is designed for pressures up to 200 bar, for viscosities up to 1,500 Pas and for temperatures up to a maximum of 225°C. With this pump series, Oerlikon Barmag offers customised solutions for process engineering processes where highly accurate and uniform metering is required.

The drum pump
The drum pump from Oerlikon Barmag is specially designed for conveying and dosing highly viscous materials such as adhesives, silicones and other highly viscous materials from drums and other large containers and for pressures of up to 250 bar. One of its special features is not only that it discharges highly viscous materials from the drum, but also that the medium can be dosed directly without an intermediate stop.

The gear pump and drum follower plate are synchronised so that the plate effortlessly reaches the bottom of the container, leaving behind only a very small residual quantity of < 1%. This reduces material costs and has a positive effect on the production process.

Source:

Oerlikon Textile GmbH & Co. KG,

Cavitec: Technology for breathable laminates at Techtextil 2024 (c) Cavitec, Santex Rimar Group
03.04.2024

Cavitec: Technology for breathable laminates at Techtextil 2024

Cavitec, part of Santex Rimar Group, presents the redesigned Caviscreen at Techtextil Frankfurt. Caviscreen features latest technology for breathable laminates.

Caviscreen was developed as a hotmelt coating and laminating unit for breathable sportswear, rainwear and protective clothing – with and without applying a membrane. The redesigned machine shows a brand-new method to supply adhesive more evenly and precisely. Using PUR adhesive (polyurethane reactive adhesive) goes with additional benefits like strong bonding capabilities and versatility.

Caviscreen’s hotmelt screen printing is a special system for high-end application garments. With this Caviscreen system, a PUR adhesive is transferred onto the substrate through a rotary screen, similar to the well-established textile printing method. The adhesives are fed from the drum melter through a heated hose to the traversing adhesive distribution system inside the rotary screen, just behind the doctor blade.

Cavitec, part of Santex Rimar Group, presents the redesigned Caviscreen at Techtextil Frankfurt. Caviscreen features latest technology for breathable laminates.

Caviscreen was developed as a hotmelt coating and laminating unit for breathable sportswear, rainwear and protective clothing – with and without applying a membrane. The redesigned machine shows a brand-new method to supply adhesive more evenly and precisely. Using PUR adhesive (polyurethane reactive adhesive) goes with additional benefits like strong bonding capabilities and versatility.

Caviscreen’s hotmelt screen printing is a special system for high-end application garments. With this Caviscreen system, a PUR adhesive is transferred onto the substrate through a rotary screen, similar to the well-established textile printing method. The adhesives are fed from the drum melter through a heated hose to the traversing adhesive distribution system inside the rotary screen, just behind the doctor blade.

The adhesive is pressed by the doctor blade through the screen holes and transferred to the substrate. Different dot pattern (mesh or irregularly) and different screen thicknesses allow different coating weight and adhesive coverages.

The traversing adhesive dispenser is used to distribute the adhesive automatically over the set working width that – an additional technical benefit – can be set without any mechanical changes.

Cavitec’s screen coating system achieves high bonding strength while using less adhesive than other coating processes, because of applying the coating on the surface of the substrate and like this, the adhesive has less tendency to penetrate the substrate.

Bonding strength, softness of the fabric and the breathability are defined by the coating weight and the coverage. The rotary screen allows users to regulate and adapt the coverage respectively the coating weight. Cavitec offers a large selection of screens that are essential to fulfil the fabric requirements. A further advantage is the ease and efficiency of switching from one screen to another by simply unlocking the bayonet fitting. The IR-heater cover opens pneumatically and the lightweight screen can be easily removed by hand. Unlike with other methods, there's no need to deal with hot oil or any other heated liquid that requires cooling down.

The Caviscreen technology supports manufacturers by reducing costs with screens priced at a mere fraction, just 10%, of common gravure roller prices.

 

Source:

Aepli Communication GmbH

Photo Formidable Media / Green Theme Technologies
14.12.2023

YKK and GTT Win ISPO Award

The ISPO Textrends judges have selected YKK's DynaPel™ water-repellent zipper as the Best Product in the accessories category. The competition, held twice a year in conjunction with the ISPO trade show, recognizes the most innovative performance textiles, components, and apparel.

Designed to be compatible with garment recycling systems, the DynaPel™ zipper uses GTT’s EMPEL® technology instead of the standard PU film to achieve its water repellency. The lack of a PU film helps remove one of the barriers of textile-to-textile recycling of performance apparel by eliminating the urethane material, which presents challenges to garment recycling processes.

Conventional chemical and mechanical garment recycling systems cannot process the polyurethane film commonly used on water-repellent zippers, necessitating the removal of zippers from garments before recycling.  This additional processing step often deters recyclers from accepting garments with PU zippers, resulting in unnecessary waste.

The ISPO Textrends judges have selected YKK's DynaPel™ water-repellent zipper as the Best Product in the accessories category. The competition, held twice a year in conjunction with the ISPO trade show, recognizes the most innovative performance textiles, components, and apparel.

Designed to be compatible with garment recycling systems, the DynaPel™ zipper uses GTT’s EMPEL® technology instead of the standard PU film to achieve its water repellency. The lack of a PU film helps remove one of the barriers of textile-to-textile recycling of performance apparel by eliminating the urethane material, which presents challenges to garment recycling processes.

Conventional chemical and mechanical garment recycling systems cannot process the polyurethane film commonly used on water-repellent zippers, necessitating the removal of zippers from garments before recycling.  This additional processing step often deters recyclers from accepting garments with PU zippers, resulting in unnecessary waste.

EMPEL® technology uses advanced green chemistry devoid of PFAS and a specialized manufacturing process that allows the chemistry to penetrate the yarn and encapsulate it with a water-repellent layer through molecular cross-linking. The molecular cross-linking creates an extremely durable layer that is highly resistant to abrasion and invisible to the eye.

More information:
ISPO Textrends Award zipper PFAS
Source:

Formidable Media / Green Theme Technologies

17.05.2023

Adient: ISCC PLUS certification for sustainable foam production

Adient, a leading supplier of automotive seating systems, has achieved full ISCC PLUS (International Sustainability & Carbon Certification) of its foam plants in Lučenec (Slovakia) and Mandling (Austria) for increasing the sustainability of foams produced for its automotive seating systems. The stringent global sustainability certification system of ISCC allows for proven enhanced traceability of circular polyurethane (PU) foams throughout the supply chain.
 
The environmental impact of the newly developed PU formulations and processes of molded foams is improved by the re-integration of waste materials from industrial & natural origins replacing crude oil into the PU raw materials. This reduces the use of fossil-based materials in favor of recycled materials, to foster the development of a circular economy. As a result, the plants can offer foams with up to 20% less CO2 impact while fulfilling the same quality requirements as their conventional equivalents. To date, Adient is the first European ISCC PLUS certified PU foam manufacturer in this field.

Adient, a leading supplier of automotive seating systems, has achieved full ISCC PLUS (International Sustainability & Carbon Certification) of its foam plants in Lučenec (Slovakia) and Mandling (Austria) for increasing the sustainability of foams produced for its automotive seating systems. The stringent global sustainability certification system of ISCC allows for proven enhanced traceability of circular polyurethane (PU) foams throughout the supply chain.
 
The environmental impact of the newly developed PU formulations and processes of molded foams is improved by the re-integration of waste materials from industrial & natural origins replacing crude oil into the PU raw materials. This reduces the use of fossil-based materials in favor of recycled materials, to foster the development of a circular economy. As a result, the plants can offer foams with up to 20% less CO2 impact while fulfilling the same quality requirements as their conventional equivalents. To date, Adient is the first European ISCC PLUS certified PU foam manufacturer in this field.

Based on a mass balance approach, the certification highlights the need to envi-ronmentally balance every single stage of automotive value creation, including the entire supply chain.

(c) Baldwin Technology Company Inc.
08.02.2023

Majocchi uses Baldwin’s Corona Treatment Technology

Majocchi, an Italian textile manufacturer, reports that it has achieved functional and visual appeal with its key fabrics since installing Baldwin Technology Co. Inc.’s corona surface treatment technology.  

Based in Tavernerio (Como), Majocchi has a history of being a technological innovator in the textile industry. Within a decade of its conception in 1941, Majocchi became a global supplier of waterproof cotton for rainwear manufacturers. In the 1960s, the company began producing nylon and technical fabrics, which paved the way for it to become a leading provider of textiles for urban fashion, technical workwear and the military today.

Majocchi has partnered with U.S -based Baldwin Technology Co. to utilize its unrivaled corona surface-treatment technology to produce superior wettability and adhesion.  

Majocchi, an Italian textile manufacturer, reports that it has achieved functional and visual appeal with its key fabrics since installing Baldwin Technology Co. Inc.’s corona surface treatment technology.  

Based in Tavernerio (Como), Majocchi has a history of being a technological innovator in the textile industry. Within a decade of its conception in 1941, Majocchi became a global supplier of waterproof cotton for rainwear manufacturers. In the 1960s, the company began producing nylon and technical fabrics, which paved the way for it to become a leading provider of textiles for urban fashion, technical workwear and the military today.

Majocchi has partnered with U.S -based Baldwin Technology Co. to utilize its unrivaled corona surface-treatment technology to produce superior wettability and adhesion.  

Corona treatment is a technique that temporarily modifies a substrate’s surface tension  properties. The corona oxidation process improves the penetration and absorption of liquids on cellulosic and synthetic fabrics. Utilizing corona treatment before resin application on fabrics such as lycra and nylon facilitates superior adhesion and resin distribution. As a result, corona-treated fabrics provide exceptional color and tonal quality.  

Majocchi uses Baldwin’s Corona Pure Model to apply polyurethane and acrylic-based coatings to its fabrics. The system allows Majocchi to administer a controllable, uniform coating to achieve the desired functionality and aesthetics.

The system is 2,000 millimeters wide with a discharging station and four ceramic electrodes designed for textile applications with the flexibility of customizing plasma dosage for a given fabric structure, width and process speed. The Corona Pure model allows for fabric treatment up to 300 gr/m² in thickness. The system is customizable, with single-sided and dual-sided treatment capabilities. The “Easy Change” feature allows for a seamless replacing of electrodes and rapid cleaning and removal of fiber and dust residue, maintaining optimal exhaust air flow. The treatment system is built with a swiveling housing mechanism, which provides clearance for changes in textile thickness and protects the ceramic electrodes.

More information:
Baldwin Majocchi Coatings Covid-19
Source:

Baldwin Technology Company Inc.

(c) Indorama Ventures Public Company Limited
20.12.2022

Indorama Ventures and Faurecia: New range of cushioning solutions for automotives

  • Auraloop is a brand-new range of cushioning solutions made from an innovative structure of Polyester-based fibers, 100% recyclable, aimed at the mobility markets
  • One of the objectives of Auraloop is a twofold reduction in the carbon footprint of car seat pads, currently made from polyurethane foam
  • Auraloop offers an increased level of performance in terms of thermal comfort and durability

R&D teams within the Faurecia seating activity have recently penned an exclusive development agreement with Indorama Ventures. This partnership between Indorama Ventures and Faurecia, a company of FORVIA Group which is one of the largest automotive industry suppliers, has the aim of developing Auraloop, a new range of cushioning solutions for the mobility markets and intended to replace polyurethane foam currently used in car seats.

  • Auraloop is a brand-new range of cushioning solutions made from an innovative structure of Polyester-based fibers, 100% recyclable, aimed at the mobility markets
  • One of the objectives of Auraloop is a twofold reduction in the carbon footprint of car seat pads, currently made from polyurethane foam
  • Auraloop offers an increased level of performance in terms of thermal comfort and durability

R&D teams within the Faurecia seating activity have recently penned an exclusive development agreement with Indorama Ventures. This partnership between Indorama Ventures and Faurecia, a company of FORVIA Group which is one of the largest automotive industry suppliers, has the aim of developing Auraloop, a new range of cushioning solutions for the mobility markets and intended to replace polyurethane foam currently used in car seats.

“By setting out these initial milestones in our close-knit collaboration with Faurecia, this partnership is an integral part of Indorama Ventures’ commitment to expand its existing Polyester (PET)-based portfolio and related activities into wider areas. By bringing together two leading players in the automotive industry, we aim to open up further growth opportunities for both partners”, stated Arnaud Closson, Chief Executive Officer at Indorama Ventures’ Mobility Group / Fibers Segment.

“Auraloop will replace those materials currently used in car seating with innovative and sustainable materials, based on polyester fibers that offer a total recyclability of 100%. This new material will allow for a twofold reduction in the carbon footprint of car seat pad solutions compared to current materials”, explains Nicolas Michot, Director of Technology at Faurecia Seating. Development of this product, which paves the way towards wider commercial release in two or three years, falls within the FORVIA Group strategy of going carbon neutral by 2045. For this, the group is seeking to root its commercial offer fully in the circular economy, with the development and production of sustainable cutting-edge materials under the banner of MATERI’ACT.

Auraloop offers a range of new perspectives in terms of seating comfort thanks to a more open fiber structure and permeability for air than current seating pad solutions, the breathability of seating is improved, enabling a better passive thermal regulation of occupants. The durability of seating is also increased by limited subsidence of the seat over its lifetime. The market for comfort aboard vehicles is constantly growing. The development of Auraloop falls within this dynamic, with a product offering significantly improved performances in terms of static, dynamic and welcoming comfort.

Source:

Indorama Ventures Public Company Limited

(c) POLARYSE
18.11.2022

Grand Largue Composites and Sicomin enable flax-fibre-built Racing Yacht

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Crosscall's cockpit was designed to be effectively non-structural, with the mainsheet, which can generate huge shock loads, supported separately. This would allow the cockpit to be made from a hybrid biaxial fabric comprising 50% flax fibres. Other parts of the boat that incorporate flax fibre include the tunnel, the engine cover, the ballast tanks and the cap. The rest of the boat is reinforced with 100% glass-fibre fabrics.

To help it realise this ambitious design, GLC, an infusion specialist, turned to its long-time material supplier, Sicomin. The hull was moulded and infused in one piece and the deck – including the hybrid flax-fibre cockpit – was also infused as a single part. The internal structure was then laminated into the hull by hand before the hull and deck were finally bonded together.

The infusion resin selected was Sicomin’s SR 1710, a high-modulus structural epoxy. Designed specifically for use in infusion and injection processes, it has exceptionally low viscosity and its low-reactivity hardener makes it suitable for the production of large parts. Composites components made from SR 1710 possess high interlaminar shear-strength and the resin retains its mechanical properties in wet environments.

Sicomin’s low-toxicity SR 8200 was used to laminate the internal structures onto the skin of the hull. Ideal for hand laminating, this system includes a choice of hardeners with a wide range of reactivities, which makes it equally suitable for making large or small parts. The hull and deck were joined together with Sicomin’s Isobond SR 7100, which demonstrates high fatigue strength and is very resistant to microcracking.

An epoxy bonding primer – called Undercoat EP 215 HB+ and supplied by Sicomin’s sister company, Map Yachting – was applied to the moulds first to make demoulding easier. It also serves as an undercoat in the polyurethane exterior paint system that is used instead of gelcoat to protect the epoxy hull from UV damage.

Since the launch of Crosscall, GLC has started building a second Lift V2 Class40 and a third one is now planned, both for which Sicomin will supply the materials.

Source:

Sicomin / 100% Marketing

(c) Rieter
Autoconer X6
31.10.2022

Rieter at India ITME 2022

Rieter is presenting the latest innovations in its systems, components and services at the upcoming India ITME 2022 in Uttar Pradesh (India), taking place from December 8 – 13, 2022.

Autoconer X6
The automatic winding machine Autoconer X6 completes the Rieter ring and compact-spinning systems. The machine serves as the final quality assurance in the ring and compact-spinning process and is key to the performance of the subsequent process stages. The Multilink system with Multilot offers maximum flexibility to handle a different type of yarn.

The latest splicer generation OZ1 and OZ2 provides an optimum splice quality based on an open prism. With only two prisms spinning mills can splice the entire spectrum of cotton yarns as well as blends. They are also used for the splicing of cotton-based elastic core yarns in combination with the Elastosplicer. The splice zone exhibits an impressive elasticity in the fabric.

Rieter is presenting the latest innovations in its systems, components and services at the upcoming India ITME 2022 in Uttar Pradesh (India), taking place from December 8 – 13, 2022.

Autoconer X6
The automatic winding machine Autoconer X6 completes the Rieter ring and compact-spinning systems. The machine serves as the final quality assurance in the ring and compact-spinning process and is key to the performance of the subsequent process stages. The Multilink system with Multilot offers maximum flexibility to handle a different type of yarn.

The latest splicer generation OZ1 and OZ2 provides an optimum splice quality based on an open prism. With only two prisms spinning mills can splice the entire spectrum of cotton yarns as well as blends. They are also used for the splicing of cotton-based elastic core yarns in combination with the Elastosplicer. The splice zone exhibits an impressive elasticity in the fabric.

Compacting Solutions
The Rieter compacting devices include the COMPACTapron, COMPACTeasy and COMPACTdrum. Spinning mills can change quickly between ring and compact yarn and offer customers a broader product range.

Recycling Expertise from Rotor to Ring
Rieter offers solutions for the integration of recycled raw material into yarn production to help close the textile loop and make fashion more circular. Both rotor and ring yarns can be produced with a considerable amount of mechanically recycled fibers.

ESSENTIALorder
Based on existing customer information, the webshop ESSENTIALorder visualizes which Rieter machines andn systems are available inside each spinning mill. It therefore offers a personalized shopping experience and facilitates order management, enabling spinning mills to optimize their internal stock levels.

ROBOspin
The piecing robot ROBOspin reduces personnel requirements in the ring spinning section by 50%. The robot also attains productivity increases thanks to higher spindle speeds at equal or higher efficiency.

SSM NEO-FD
SSM is presenting NEO-FD, the assembly-winding machine for precision wound packages for twisting. It meets all requirements for efficient production. The machine features the auto-doffing option and the online back-pressure system for low and high package densities.

Temco CoolFlow Disc
Temco’s CoolFlow texturing discs offer longer lifetime thanks to a brand-new geometry and the latest polyurethane technology. The texturing discs now generate a disc surface that operates at a lower temperature, resulting in slower ageing and abrasion. Further benefits are more stable yarn quality, higher productivity, and an overall process cost reduction.

Photo: Monforts
The new seven chamber Montex TwinAir stenter range with Montex®Coat coating at the plant.
26.10.2022

Dolinschek: Compression stockings in a variety of colours

The identification of profitable new niche markets has been central to the success and continuous expansion of Germany’s Dolinschek, a leading knitting, dyeing and finishing specialist, located in Burladingen in Baden-Württemberg.

“There is so much more to textiles than just clothing,” says Theo Dolinschek, who runs the company with his brother Erwin. “We handle many different technical materials such as automotive components, geotextiles and wallcoverings, but also those for more unusual applications such as inlays for extractor hoods, cut protection fabrics and even wool felts which are employed as insulation on wind turbines.

“We have also recently started to produce compression stockings in a variety of colours, because not everyone wants them black, beige or skin coloured. The most important product areas for us now are in sportswear, corsetry and lingerie, as well as orthopedic and medical products, workwear and protective clothing, but in addition, many other technical applications.”

The identification of profitable new niche markets has been central to the success and continuous expansion of Germany’s Dolinschek, a leading knitting, dyeing and finishing specialist, located in Burladingen in Baden-Württemberg.

“There is so much more to textiles than just clothing,” says Theo Dolinschek, who runs the company with his brother Erwin. “We handle many different technical materials such as automotive components, geotextiles and wallcoverings, but also those for more unusual applications such as inlays for extractor hoods, cut protection fabrics and even wool felts which are employed as insulation on wind turbines.

“We have also recently started to produce compression stockings in a variety of colours, because not everyone wants them black, beige or skin coloured. The most important product areas for us now are in sportswear, corsetry and lingerie, as well as orthopedic and medical products, workwear and protective clothing, but in addition, many other technical applications.”

The Dolinschek brothers moved their business to the historic site of the former Ambrosius Heim textile company in Burladingen in 2001 in order to expand. At the time, the company – founded by their father in 1980 as a textile wholesaler before moving into dyeing – employed just 13 people. Within a year, the company had bought additional space at the site.

Now, with Theo in charge of technology and sales, and Erwin responsible for production, the company employs almost 100 people and operates on an integrated site of 35,000 square metres.

In 2005, a laminating department was established by the company and since 2012 investment in knitting machines has been ongoing.

“The further we went into vertical integration, the more of our own products we were able to position on the market and so we were also able to make ourselves more independent,” says Theo. “We have continued to develop and today we can produce high-quality fabrics for many fields, with 42 knitting machines, 36 dyeing machines, three stenter frames and many other production and processing machines.”

Dolinschek has also developed its own proprietary TMG dyeing machines which have subsequently been successfully sold to many other companies all over the world. There are currently 11 of these machines  in operation at the Burladingen site and around 45 installed at other companies.

For finishing technology, however, the company relies on Monforts, and has installed a new seven chamber Montex TwinAir stenter range with a Montex®Coat coating unit in knife execution, enabling the coating of dimensionally stable knitted fabrics with polyurethane or acrylate. Another unique feature is the Teflon-coated (non-stick) transportation belt through the system.

The Montex line is also equipped with integrated heat recovery and exhaust gas purification to ensure the most resource-efficient processing available on the market. The exhaust air goes from the Monforts heat recovery system into an existing air/water heat recovery system and then into an electrostatic precipitator.

Highly-intuitive Monforts Qualitex visualisation software allows all machine functions and process parameters to be assessed and controlled easily.

 

More information:
Dolinschek Monforts
Source:

AWOL Media

Photo: Andritz/Recypur
02.09.2022

New mattresses made of industrial & post-consumer foam waste

  • Recypur successfully starts up a complete airlay line delivered by ANDRITZ for its mill in L’Alcúdia, Spain

The airlay line is designed for recycling of post-industrial and post-consumer foam and was developed specifically for the bedding and furniture industry, with material heights reaching 20 cm and densities of up to 120 kg/m3. Experimental tests carried out together with experts from ANDRITZ Laroche led to the conclusion that the mechanical method for recycling polyurethane is the most versatile and reliable.

With a capacity of 1.2 t/h, this airlay line enables Recypur to supply new mattresses made of industrial & post-consumer foam waste from old mattresses. This well proven process allows to reduce the environmental impact, increase self-sufficiency and eventually reduce the use of polyurethane. Such a set-up also allows multiple functional materials to be incorporated into the blend, such as flame-retardant, conductive and insulating fibers, among others. Thanks to this tailored approach, Recypur is now able to expand its diversification, innovation and reputation on the Spanish market.

  • Recypur successfully starts up a complete airlay line delivered by ANDRITZ for its mill in L’Alcúdia, Spain

The airlay line is designed for recycling of post-industrial and post-consumer foam and was developed specifically for the bedding and furniture industry, with material heights reaching 20 cm and densities of up to 120 kg/m3. Experimental tests carried out together with experts from ANDRITZ Laroche led to the conclusion that the mechanical method for recycling polyurethane is the most versatile and reliable.

With a capacity of 1.2 t/h, this airlay line enables Recypur to supply new mattresses made of industrial & post-consumer foam waste from old mattresses. This well proven process allows to reduce the environmental impact, increase self-sufficiency and eventually reduce the use of polyurethane. Such a set-up also allows multiple functional materials to be incorporated into the blend, such as flame-retardant, conductive and insulating fibers, among others. Thanks to this tailored approach, Recypur is now able to expand its diversification, innovation and reputation on the Spanish market.

The scope of supply includes a blending line with five feeders, an Exel 1500 for fine opening, an Airlay Flexiloft+ with 2.20 m working width, a recycling machine and an oven.

Airlay lines strongly support the circular economy and are part of ANDRITZ’s comprehensive product portfolio of sustainable solutions that help customers achieve their own sustainability goals in terms of climate and environmental protection.

Recypur, based in the Spanish province of Valencia, is part of DELAX, a Spanish group specialized in manufacturing and commercialization of innovative beds and mattresses. This company is the first Spanish manufacturer of recycled flexible polyurethane foam cores from post-consumer foam waste.

Source:

Andritz AG

(c) AkzoNobel
12.07.2022

AkzoNobel announces €20 million investment and creates new jobs in France

A €20 million investment has been announced by AkzoNobel to increase and improve production at two of its sites in France. Around 30 new jobs will be created.

A total of €15 million will be spent on the company’s aerospace coatings facility in Pamiers, which was taken over following the Mapaero acquisition in 2019. Production capacity is being boosted by 50%, while the funds will also be used to reduce environmental impact and improve safety processes and working conditions.

The other €5 million will be spent on improving production flexibility at the decorative paints site in Montataire, which is one of the company’s most important manufacturing locations for wall paints in Europe.

The plans for Pamiers include the construction of two extensions, one for storage and one for cleaning and waste treatment. The project will also enable the company to relocate the production of exterior polyurethane paints for aircraft widely used in Europe from its Waukegan plant in the US.

Building work is expected to start by the end of 2023, with the new installations at both locations due to be operational in early 2025.

A €20 million investment has been announced by AkzoNobel to increase and improve production at two of its sites in France. Around 30 new jobs will be created.

A total of €15 million will be spent on the company’s aerospace coatings facility in Pamiers, which was taken over following the Mapaero acquisition in 2019. Production capacity is being boosted by 50%, while the funds will also be used to reduce environmental impact and improve safety processes and working conditions.

The other €5 million will be spent on improving production flexibility at the decorative paints site in Montataire, which is one of the company’s most important manufacturing locations for wall paints in Europe.

The plans for Pamiers include the construction of two extensions, one for storage and one for cleaning and waste treatment. The project will also enable the company to relocate the production of exterior polyurethane paints for aircraft widely used in Europe from its Waukegan plant in the US.

Building work is expected to start by the end of 2023, with the new installations at both locations due to be operational in early 2025.

AkzoNobel employs nearly 1,500 people in France and operates four production facilities, in Montataire (decorative paints), Dourdan (powder coatings), Limoges (adhesive markings) and Pamiers (aerospace coatings).

More information:
AkzoNobel Coatings aerospace
Source:

AkzoNobel

(c) Hexcel Corporation
02.12.2021

Hexcel Partners with METYX for High Performance Carbon Pultrusion Technology

Hexcel Corporation (NYSE: HXL) is collaborating with METYX to manufacture high-performance carbon pultruded profiles made from polyurethane (PU) resin and unidirectional carbon fiber for the wind energy market.

The two companies have joined forces to develop technology that builds on Hexcel expertise in polyurethanes for the ski industry combined with its strength in providing high-performance composites to wind energy customers and expanding to other markets for composite applications. METYX is a manufacturer of high-performance NCF and woven glass and carbon, consumables, core and fabric kitting, molds, prototypes, and components for industries including wind energy, marine, automotive, rail and construction.

Hexcel Corporation (NYSE: HXL) is collaborating with METYX to manufacture high-performance carbon pultruded profiles made from polyurethane (PU) resin and unidirectional carbon fiber for the wind energy market.

The two companies have joined forces to develop technology that builds on Hexcel expertise in polyurethanes for the ski industry combined with its strength in providing high-performance composites to wind energy customers and expanding to other markets for composite applications. METYX is a manufacturer of high-performance NCF and woven glass and carbon, consumables, core and fabric kitting, molds, prototypes, and components for industries including wind energy, marine, automotive, rail and construction.

More information:
Hexcel METYX pultrusion
Source:

Hexcel Corporation

03.08.2021

Asahi Kasei Spandex Europe GmbH will be discontinued by March 2022

  • "Optimizing the global strategy of its ROICA™ premium stretch fiber business"

Asahi Kasei Corporation markets premium stretch fiber (elastic polyurethane filament) under the brand of ROICA™ with superior performance features enabled by integrated production from raw material to finished yarn based on its advanced technology.

Asahi Kasei operates its global ROICA™ business having production sites in Japan, Thailand, Taiwan, China, and Germany with numerous sales offices around the world. Asahi Kasei has now decided to restructure and optimize its global strategy in order to further improve the business performance and level of sales services.

  • "Optimizing the global strategy of its ROICA™ premium stretch fiber business"

Asahi Kasei Corporation markets premium stretch fiber (elastic polyurethane filament) under the brand of ROICA™ with superior performance features enabled by integrated production from raw material to finished yarn based on its advanced technology.

Asahi Kasei operates its global ROICA™ business having production sites in Japan, Thailand, Taiwan, China, and Germany with numerous sales offices around the world. Asahi Kasei has now decided to restructure and optimize its global strategy in order to further improve the business performance and level of sales services.

As a part of this process, the production and sales of ROICA™ at its German subsidiary, Asahi Kasei Spandex Europe GmbH, will be discontinued by March 31, 2022.
Recognizing the importance of the European market as leading fashion market and in light of sustainable trends together with valued customers and supply chains, Asahi Kasei will continue sales, technical, and marketing services in Europe from Asahi Kasei Europe, the European regional headquarters of the Asahi Kasei Group, focusing on ROICA™ added value products manufactured at its global ROICA™ production sites.

More information:
Asahi Kasei stretch fibre ROICA™
Source:

Asahi KASEI

ANDRITZ receives order for needlepunch production lines from Chongqing Double Elephant, China (c) ANDRITZ
25.03.2021

ANDRITZ receives order for needlepunch production lines from Chongqing Double Elephant, China

International technology Group ANDRITZ has received an order to supply four new needlepunch lines for nonwoven production from Chongqing Double Elephant Microfiber Material Co., Ltd., China. These lines are scheduled for installation and start-up in the fourth quarter of 2021.

The needlepunch lines by ANDRITZ are designed to process islands-in-the-sea fibers dedicated mainly to the production of high-quality synthetic leather products. Once completed, the lines will produce 30 million meters a year of microfiber nonwoven materials.

International technology Group ANDRITZ has received an order to supply four new needlepunch lines for nonwoven production from Chongqing Double Elephant Microfiber Material Co., Ltd., China. These lines are scheduled for installation and start-up in the fourth quarter of 2021.

The needlepunch lines by ANDRITZ are designed to process islands-in-the-sea fibers dedicated mainly to the production of high-quality synthetic leather products. Once completed, the lines will produce 30 million meters a year of microfiber nonwoven materials.

The production lines are equipped with an ANDRITZ carding machine and the newly developed Profile® crosslapper as well as the advanced-technology ProWid closed-loop system from ANDRITZ. The system can monitor the weight uniformity (CV%) of the entire product online and predict the weight distribution changes caused by the bonding process. In addition, the web weight can be reduced by controlled stretching, which solves the issue of fiber accumulation at the edges caused by traditional crosslapping methods. Both the weight and the uniformity of the product can be automatically adjusted via the closed-loop function as set on the ANDRITZ gauge.

Chongqing Double Elephant Microfiber Material Co., Ltd., wholly owned by listed Wuxi Double Elephant Microfiber Materials Co., Ltd., is located in the Changshou National Economic and Technological Development Zone of Chongqing City. The company is active in the research, development and manufacture of microfiber materials, polyurethane synthetic leather and polyurethane resin.

Source:

ANDRITZ AG

Wilhelm-Lorch-Stiftung awards ITA graduate and a project at ITA with sponsorship prizes (c) Wilhelm-Lorch-Stiftung
Wilhelm-Lorch-Stiftung sponsorship award winner picture 2020 (Ricarda Wissel: row 1, first from right, Simon Kammler, row 4, first from right)
25.06.2020

Wilhelm-Lorch-Stiftung awards ITA graduate and a project at ITA with sponsorship prizes

Carbon dioxide-based fibre for climate protection and interdisciplinary training with novel Smart Textiles test rig

The Wilhelm-Lorch-Stiftung, based in Frankfurt am Main, Germany, honours a project of the Institut für Textiltechnik of RWTH Aachen University, short ITA, and awards a sponsorship prize to the ITA graduate Ricarda Wissel on 25 June 2020. She is awarded for her outstanding bachelor thesis " Implementation of elastic yarns made from carbon dioxide based thermoplastic polyurethane in socks " with funding for a subject-specific continuation of her education. The ITA receives the project sponsorship prize for the project "Smart Textiles - an interdisciplinary training course to promote young scientists in future technologies", which was submitted to the Wilhelm-Lorch-Stiftung by ITA´s PhD candidate Simon Kammler.

Carbon dioxide-based fibre from industrial waste contributes to climate protection

Carbon dioxide-based fibre for climate protection and interdisciplinary training with novel Smart Textiles test rig

The Wilhelm-Lorch-Stiftung, based in Frankfurt am Main, Germany, honours a project of the Institut für Textiltechnik of RWTH Aachen University, short ITA, and awards a sponsorship prize to the ITA graduate Ricarda Wissel on 25 June 2020. She is awarded for her outstanding bachelor thesis " Implementation of elastic yarns made from carbon dioxide based thermoplastic polyurethane in socks " with funding for a subject-specific continuation of her education. The ITA receives the project sponsorship prize for the project "Smart Textiles - an interdisciplinary training course to promote young scientists in future technologies", which was submitted to the Wilhelm-Lorch-Stiftung by ITA´s PhD candidate Simon Kammler.

Carbon dioxide-based fibre from industrial waste contributes to climate protection

ITA scientist Dr.-Ing. Pavan Manvi has developed a melt spinning process at ITA for the production of elastic yarn from thermoplastic polyurethane, in which carbon dioxide is used as one of the raw materials. In her bachelor thesis, Ricarda Wissel successfully developed a process chain for the CO2-based yarn in a textile end product for the first time. In cooperation with the company FALKE and Dr Manvi, who supervised Ms. Wissel's work, the yarn was used to produce a sock (see figure "FALKE sock with carbon dioxide filaments").

By reusing carbon dioxide from industrial waste as a raw material for textile and clothing products, the carbon dioxide balance can be improved and thus contributes directly to climate protection. The sponsorship prize of the Wilhelm-Lorch-Stiftung is endowed with 6,000 € for the specialist further training of Ms. Wissel.

Interdisciplinary training with development of a new type of measuring stand for the future-oriented research field "Smart Textiles

The development of textiles with additional digital functions, so-called "Smart Textiles", is considered a future-oriented field of research. In his project submission, ITA´s doctoral candidate Simon Kammler presented a concept for a lecture series on Smart Textiles at ITA and develops a new type of measuring stand for measuring the capacity and conductivity of fibres. The project is funded by the Wilhelm-Lorch-Stiftung with a prize money of 10,000 Euro.

Smart Textiles enable the textile to interact with the environment and the human user. Today they are therefore in demand in many areas of everyday life such as sport, health, living, life and mobility and offer completely new practical solutions. In combination with digital networked services, Smart Textiles promise support and innovation in almost all situations of daily life.

With the conception of a new lecture series, Mr. Simon Kammler is supporting ITA in its goal of providing the best possible training for young scientists. The focus is on imparting far-reaching interdisciplinary skills in order to master the challenges of current fields of research.

Background:

The Wilhelm-Lorch-Stiftung supports particularly talented young people from all areas of the textile industry. Its purpose is the promotion of subject-specific education and further education as well as the promotion of projects at universities, academic schools and vocational schools, which are characterised by the sustainable communication of innovative learning content in science and research. In total, thirteen sponsorship prizes were awarded in 2020. Due to the Corona crisis, the forum of TextilWirtschaft, which is normally the venue for the awards ceremony, unfortunately had to be cancelled in 2020.

Logo Vivolo
Vivolo presents SS2021 Collection
23.03.2020

Vivolo presents its SS2021 collection

Labels and small accessories stand together for the company’s great passion for leather, featuring a mix of eclectic inspirations, complemented by a variety of solutions and with a new exclusive Green Book, with a very sustainable approach.

Labels and small accessories stand together for the company’s great passion for leather, featuring a mix of eclectic inspirations, complemented by a variety of solutions and with a new exclusive Green Book, with a very sustainable approach.

A creative selection of proposals enriched with a new line of completely green products defines the SS2021 collection by Vivolo. Sustainability is the running theme, thanks to the development of concepts that focus on the combination of zero-impact processing techniques and state-of-the-art materials, bringing to life RE Vivolo.
This special Green Book gathers a selection of products that provide a sustainable interpretation of the beauty of Vivolos work. The selection of specific raw materials defines five micro-areas in terms of options: leather (recycled, solvent-free and vegetable-tanned), eco-leather (solventfree and jacron), technical solutions (silicon and recycled post-industrial polyurethane), fabrics (organic cotton, recycled cotton, felt obtained from the recycling of post-consumer plastic materials) and the brand new plant-based options (Apple Skin, Piñatex® and Bananatex®). In parallel with this eco-line, the collection presents the evolution of more classical option.
The heritage style results in the selection of new designs, made thanks to an combination heat embossing and hand painting enhancing the quality of leather through the creation of miniature works of art. An additional highlight is the embroidery section.
Technical inspirations remain the most direct expression of the research by the inhouse R&D team. From the use of high-performance materials to the implementation of ideal processing techniques, the mood emphasizes the high-tech character of these options, through mirrored, reflective and  iridescent finishings along with a fluorescent color palette. Silicon and polyurethane make again in this season their appearance.

The collection comes to a close with the accessories – patches as well as  drawstrings, puller, buttons and cord stoppers, along with many others – conceived to become the added detail to embellish and enhance outerwear and knitwear. Once again, Vivolo proves its ability in  interpreting a style that transcends time, representative of the Made in Italy tradition along with an unparalleled approach to production.

More information:
Vivolo Leather
Source:

Vivolo

archroma Photo: Archroma
15.07.2019

Archroma to introduce new water-based ultra-low VOC Coating Technology

Archroma has launched at the recent ITMA exhibition its new Lurapret® N5396 & N5392 liq, a water-based ultra-low VOC polyurethane (PU) polymer coating technology.

The innovation was developed in compliance with “The Archroma Way: safe, efficient, enhanced, it’s our nature”. The approach finds its origin in Archroma’s deep belief that it is possible to make the textile industry sustainable, economically and ecologically.

Coatings are used in the textile industry to achieve features such as waterproofness, flexibility, durability and UV resistance. With the growing demand for safer and more ecological products, water-based PU coatings are progressively prevailing as the preferred coating technology.

Archroma has launched at the recent ITMA exhibition its new Lurapret® N5396 & N5392 liq, a water-based ultra-low VOC polyurethane (PU) polymer coating technology.

The innovation was developed in compliance with “The Archroma Way: safe, efficient, enhanced, it’s our nature”. The approach finds its origin in Archroma’s deep belief that it is possible to make the textile industry sustainable, economically and ecologically.

Coatings are used in the textile industry to achieve features such as waterproofness, flexibility, durability and UV resistance. With the growing demand for safer and more ecological products, water-based PU coatings are progressively prevailing as the preferred coating technology.

More information:
Archroma ITMA 2019
Source:

Archroma

(c) Hexcel
04.03.2019

Hexcel at JEC World 2019

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

Visitors to JEC will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® reinforcements, and an Opticoms rib made with HiMax™ NCF. The Opticoms rib and I Beam were both manufactured using C-RTM (Compression Resin Transfer Molding). They were injected with Hexcel’s RTM6 resin in a process taking less than 5 minutes. The total manufacturing cycle for both parts was just 4.5 hours.

Also among the Aerospace exhibits, Hexcel will display a composite petal for a satellite antenna, manufactured by Thales Alenia Space Italia. The petal is part of a set of 24 deployable structural elements that form the large area reflector assembly used on board Low Earth Orbit (LEO) observation satellites. Thales Alenia Space Italia selected Hexcel’s HexPly® M18 prepreg for this application, acknowledging the superior mechanical and outgassing properties provided.

Another Hexcel prepreg application on show is a “zero” frame, manufactured by Aerofonctions for the engine area of Daher’s TBM 910/930 single-engine turboprop aircraft. Hexcel’s HexPly® M56 prepreg was selected by Daher for the “zero” frame – a product developed for Out of Autoclave applications that provides the same high quality and performance as autoclave-cured prepregs, from a simple vacuum bag cure in an oven.

With 50 years of experience behind its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate, and is introducing two new fibers to its portfolio. HexTow® HM50 combines high modulus and high tensile strength, making it ideal for commercial and defense aircraft and engines. HexTow® 85 was developed specifically to replace rayon-based carbon fiber for ablative applications.

HexTow® carbon fiber holds the most qualified carbon fiber positions on aerospace programs in the industry and is the best unsized fiber available on the market. It provides excellent bonding interfacial properties with thermoplastic matrices and is the best-performing fiber for 3D printing applications.

Additive manufacturing is another area of expertise for Hexcel, using PEKK ultra-high performance polymers and HexAM™ technology to manufacture carbon-reinforced 3D printed parts. This
innovative process provides a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Hexcel is well known for its range of weight-saving, stiffness-enhancing honeycombs and the company adds value by providing a range of engineered core solutions to customers from facilities in the USA, Belgium and the newly opened Casablanca plant in Morocco. Hexcel’s engineered core capabilities enable highly contoured parts with precision profiling to be produced to exacting customer specifications. An example of such a part will be on display at JEC. Made from Aluminum FlexCore®, the part is CNC machined on both sides, and formed and stabilized with both peel ply and flyaway layers of stabilization. Aircraft engines benefit from a number of Hexcel core technologies including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.

Hexcel’s Acousti-Cap® broadband noise-reducing honeycomb significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs.

HexBond™ – the new name in Adhesives

Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil. The company has now decided to unite the range by marketing all of its adhesive products using HexBond™ branding. The comprehensive range of HexBond™ structural film adhesives, foaming adhesive films, paste adhesives, liquid shims, epoxy fillets and Chromium free liquid primers is suitable for a wide range of applications in combination with Hexcel’s prepreg and honeycomb products.

Automotive Innovations

Hexcel’s carbon prepreg patch technology provides an innovative way of locally stiffening and reinforcing metal parts, providing noise and vibration management functionality. HexPly® prepreg patches consist of unidirectional carbon fiber impregnated with a fast curing epoxy matrix that has self-adhesive properties, enabling it to bond to metal in a highly efficient one-step process. These key technology properties are demonstrated in an 18.5kg aluminum subframe (that is 50% lighter than steel equivalents), which was reinforced with 500 grams of HexPly® prepreg and tested by Saint Jean Industries. The part demonstrates a significant reduction in noise, vibration and harshness (NVH). Other benefits include lower production costs, energy savings, increased driver comfort, production flexibility and part count reduction. With this technology Hexcel is a finalist in the JEC Innovation Awards 2019 in the Automotive Applications category.

HexPly® prepreg patch technology was also applied to a hybrid side sill demonstrator developed with Volkswagen and Dresden University to address future crash test requirements, specifically for electric cars. Combining fiber-reinforced plastic (FRP) with metal, the hybrid construction allows for optimum performance including weight savings, enhanced safety, increased energy absorption, battery protection in a crash situation and production flexibility.

Hexcel will also display a lightweight CFRP transmission crossmember produced from Hexcel’s high performance HexMC®-i 2000 molding compound. The transmission crossmember was developed in partnership with the Institute of Polymer Product Engineering (at Linz University), Engel and Alpex. As the part connects the chassis together and supports transmission it has to be stiff and strong, resisting fatigue and corrosion. Hexcel’s HexMC®-i 2000 was selected as the best-performing molding compound on the market, curing in as little as two minutes to produce lightweight, strong and stiff parts.
To produce the transmission crossmember HexMC®-i 2000 preforms are laid up in Alpex molds and compression-molded in a v-duo press that was tailored for the application by Engel. Ribs, aluminum inserts and other functions can be molded into the part using the single-stage process, reducing component-count. Any offcuts from the preforms can be interleaved between the plies of material to provide additional reinforcement in key areas - meaning that the process generates no waste.

Other Automotive promotions on Hexcel’s stand at JEC World include a composite leaf spring manufactured by ZF using HexPly® M901 prepreg. In contrast to steel leaf springs, composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. HexPly® M901 prepreg reduces the cure cycle to below 15 minutes and provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure.

Marine Innovations

Hexcel has a comprehensive range of products aimed at racing yacht and luxury boat builders that include America’s Cup, IMOCA class and DNV GL-approved prepregs, woven reinforcements and multiaxial fabrics for hull and deck structures, masts and appendages.

At JEC World Hexcel will display an IMOCA yacht mast manufactured by Lorima using HexPly® high modulus and high strength carbon fiber prepreg from Hexcel Vert-Le-Petit. Lorima is the exclusive official supplier of masts for IMOCA 60 class racing boats.

Hexcel’s HexTow® IM8 carbon fiber has been selected as the highest performing industrial carbon fiber on the market and will be used by spar and rigging manufacturer Future Fibres to manufacture their AEROrazr solid carbon rigging for all the teams in the 36th America’s Cup.

Hexcel’s HiMax™ DPA (Dot Pattern Adhesive) reinforcements are non-crimp fabrics supplied pre-tacked, allowing multiple fabrics to be laid-up more easily in preparation for resin infusion. Providing an optimal, consistent level of adhesion, they allow a faster and more consistent resin flow, as well as eliminating the use of spray adhesive for a healthier working environment and lower risk of contamination. Simply unrolled and applied to the mold or core layer before the introduction of resin, HiMax™ DPA fabrics are widely used in boat building, where lay-up times can be reduced by up to 50%.

Wind Energy Innovations

Hexcel has developed a range of HexPly® surface finishing prepregs and semi-pregs for wind turbine blades and marine applications. Providing a tough, durable and ready-to-paint surface without using in-mold coats, these products shorten the manufacturing cycle and reduce material costs. HexPly® XF2(P) prepreg is optimized for wind blades and has a ready-to-paint surface, straight from the mold, saving at least 2 hours of takt time.

Polyspeed® pultruded carbon laminates were developed for load-carrying elements in a blade structure and are manufactured with a polyurethane matrix that provides outstanding mechanical performance in terms of stiffness and durability. The blade manufacturing process is optimized, with increased throughput. The pultruded laminates are supplied in coils as continuous cross section profiles.
HiMax™ non-crimp fabrics using E-glass, high modulus glass and carbon fibers are also available in a wide range of unidirectional, biaxial and triaxial constructions. HiMax™ fabrics have applications throughout the turbine, from the stitched carbon fiber UDs used in the main structural elements, to glass fabrics and hybrids for blade shells and nacelles. There are also specialist applications such as lightweight fabrics for heated leading edge de-icing zones.

Source:

AGENCE APOCOPE

Erstes thermoplastisches Polyurethan auf Basis der CO2-Technologie (c) Covestro
11.10.2018

Erstes thermoplastisches Polyurethan auf Basis der CO2-Technologie

  • Neue Polyole verringern Kohlenstoff-Fußabdruck
  • Weitere TPU-Entwicklungen für die Textilanwendung und Oberflächengestaltung

Unter dem Namen cardyon™ entwickelt und vermarktet Covestro neue Polyethercarbonatpolyole, die mit Hilfe des Treibhausgases Kohlendioxid (CO2) hergestellt werden. Mit Desmopan® 37385A bietet das Unternehmen nun den ersten Vertreter einer neuen Reihe von thermoplastischen Polyurethanen (TPU) an, die Polyethercarbonatpolyole auf Basis der CO2-Technologie enthalten.

Verglichen mit konventionellen TPU-Materialien hinterlassen die neuen TPU-Werkstoffe einen geringeren ökologischen Fußabdruck und helfen, den Kohlenstoffkreislauf zu schließen. Außerdem schonen sie die fossilen Rohstoffquellen und treten im Gegensatz zu vielen biobasierten Materialien nicht in Konkurrenz zur Produktion von Nahrungsmitteln.

  • Neue Polyole verringern Kohlenstoff-Fußabdruck
  • Weitere TPU-Entwicklungen für die Textilanwendung und Oberflächengestaltung

Unter dem Namen cardyon™ entwickelt und vermarktet Covestro neue Polyethercarbonatpolyole, die mit Hilfe des Treibhausgases Kohlendioxid (CO2) hergestellt werden. Mit Desmopan® 37385A bietet das Unternehmen nun den ersten Vertreter einer neuen Reihe von thermoplastischen Polyurethanen (TPU) an, die Polyethercarbonatpolyole auf Basis der CO2-Technologie enthalten.

Verglichen mit konventionellen TPU-Materialien hinterlassen die neuen TPU-Werkstoffe einen geringeren ökologischen Fußabdruck und helfen, den Kohlenstoffkreislauf zu schließen. Außerdem schonen sie die fossilen Rohstoffquellen und treten im Gegensatz zu vielen biobasierten Materialien nicht in Konkurrenz zur Produktion von Nahrungsmitteln.

„Unsere Kunden können mit dem neuen TPU den ökologischen Fußabdruck ihrer Erzeugnisse verringern und dadurch gegenüber ihren Wettbewerbern eine Vorreiterrolle in puncto Nachhaltigkeit einnehmen“, erklärt Georg Fuchte, TPU-Experte bei Covestro. „Das gilt besonders für Unternehmen der Konsumgüterindustrie, die häufig Produkte mit nur kurzer Lebensdauer herstellen.“

Exzellente mechanische Eigenschaften

Desmopan® 37385A hat eine Härte von 85 Shore A. Seine mechanischen Eigenschaften liegen mindestens auf dem Niveau von konventionellen TPU-Typen ähnlicher Härte, übertreffen diese sogar zum Teil. Beispielsweise hat es eine Zugfestigkeit von 36 Megapascal. Die Reißdehnung erreicht 660 Prozent (DIN 53504). Der Kunststoff ist für die Extrusion ausgelegt, eignet sich aber auch für das Spritzgießen. „Das Einsatzspektrum deckt typische Anwendungen von konventionellen TPU-Typen mit vergleichbarer Härte ab und reicht von Sohlen und Komponenten des Oberschuhs über Sportbekleidung, Griffe und Knäufe bis hin zu Verpackungen für empfindliche Elektronik“, so Fuchte.

Verschiedene Produktvarianten

Covestro plant, die neue TPU-Reihe um Varianten unterschiedlicher Härte zu erweitern. In der Entwicklung weit vorangeschritten ist zum Beispiel ein Produkt mit einer Härte von 95 Shore A, dessen Schmelze bei der Verarbeitung schnell aushärtet. „Wir zielen damit auf spritzgegossene Anwendungen, in denen es besonders auf eine wirtschaftliche Fertigung in kurzen Zykluszeiten ankommt“, erläutert Fuchte.

Covestro kooperiert eng mit Unternehmen und Forschungseinrichtungen, um die CO2-Technologie auch als Syntheseplattform für andere großchemisch eingesetzte Rohstoffe zu nutzen. Zum Beispiel wird an neuen CO2-basierten Polyolen für Polyurethan-Hartschäume gearbeitet, die etwa in der Wärmedämmung von Gebäuden, im Automobil und in Sportartikeln Verwendung finden könnten. Im Werk Dormagen betreibt Covestro bereits eine Produktionsanlage, auf der CO2-basierte Polyole für Polyurethan-Weichschäume produziert werden. Letztere kommen in der kommerziellen Fertigung von Polstermöbeln und Matratzen zum Einsatz.

Weitere TPU-Highlights auf der Fakuma

Garn: Covestro zeigt auch innovative TPU-Entwicklungen auf petrochemischer Basis. Dazu gehören gleichförmige und glänzende Fasern aus TPU und Polyamid für gestrickte Gewebe. Die Fasern haben eine einzigartige Haptik und kommen vor allem in Sportschuhen zum Einsatz, wo die Verwendung gestrickten Obermaterials groß in Mode ist. Dabei sind viele dekorative Varianten möglich. Die Gewebe lassen sich wirtschaftlich in einem einzigen Strickprozess herstellen, auch mittels automatisierter Produktion.

Oberflächenstruktur: Seit Jahrzehnten ist die herausragende Abbildegenauigkeit von TPU-Produkten der Desmopan® Serie bekannt. Durch Einsatz verschiedener Technologien können einzigartige Oberflächenstrukturen erzeugt werden. Zurzeit arbeitet Covestro mit dem Partner J. & F. Krüth in Solingen zusammen, um mit Hilfe der innovativen und volldigitalen 3D-Laser-Gravur nahezu unbegrenzte Möglichkeiten für die Oberflächengestaltung zu erschließen.

More information:
Covestro polyurethane
Source:

Covestro AG Communications