From the Sector

Reset
122 results
12.06.2023

Circular Polymers by Ascend launches Cerene™

Nylon 6, nylon 6,6, polypropylene, PET and calcium carbonate are available through the company’s proprietary carpet recycling process

Circular Polymers by Ascend, a market-leading recycler of post-consumer carpet, today the launch of Cerene™, a line of recycled polymers and materials made from the company’s proprietary carpet reclaiming technology. Cerene is available as polyamide 6 and 66, PET, polypropylene and calcium carbonate as a consistent,
sustainable feedstock for many applications, including molding and compounding.
Recycling experts from Circular Polymers will be showcasing Cerene at Compounding World Expo on June 14-15 at the Messe Essen in Germany.

Ascend Performance Materials, a fully integrated producer of durable high-performance materials and the majority owner of Circular Polymers by Ascend, is known for its innovations in nylon 6,6. Cerene will continue that legacy with offerings in nylon 6,6 while also bringing to market recycled polymers such as nylon 6, PET and PP.

Nylon 6, nylon 6,6, polypropylene, PET and calcium carbonate are available through the company’s proprietary carpet recycling process

Circular Polymers by Ascend, a market-leading recycler of post-consumer carpet, today the launch of Cerene™, a line of recycled polymers and materials made from the company’s proprietary carpet reclaiming technology. Cerene is available as polyamide 6 and 66, PET, polypropylene and calcium carbonate as a consistent,
sustainable feedstock for many applications, including molding and compounding.
Recycling experts from Circular Polymers will be showcasing Cerene at Compounding World Expo on June 14-15 at the Messe Essen in Germany.

Ascend Performance Materials, a fully integrated producer of durable high-performance materials and the majority owner of Circular Polymers by Ascend, is known for its innovations in nylon 6,6. Cerene will continue that legacy with offerings in nylon 6,6 while also bringing to market recycled polymers such as nylon 6, PET and PP.

“Customers around the globe are seeking consistent and reliable post-consumer recycled materials,” said Maria Field, business director of Circular Polymers by Ascend. “Cerene is mechanically recycled using a process that minimizes our carbon footprint and environmental impact.”

Circular Polymers by Ascend converts post-consumer carpet into fiber and pellets. The company uses a proprietary process in its California-based facilities to achieve high efficiency in recycling, successfully providing a new life for virtually every component of the carpet and backing. The company has redirected 85 million pounds of carpet from landfills into new goods since 2018.

Source:

Circular Polymers by Ascend

07.06.2023

DyStar Africa sells Manufacturing Site to Oakland Polymers

DyStar, a specialty chemical company with a heritage of more than a century in product development and innovation, is announcing the sale of its auxiliary manufacturing site located at Pietermaritzburg, South Africa.

Oakland Polymers Pty Ltd, a local manufacturer, has acquired DyStar’s manufacturing facility and will take over the site to expand their polymer business. Under the sale and purchase agreement, DyStar divested the entire facility, which is approximately 12,000 sqm, to Oakland Polymers and Oakland Properties. DyStar Africa’s operations will continue to lease part of the premises from Oakland for office and warehousing use.

Mr. Xu Yalin, Managing Director, and President of DyStar Group said, “The sale of the manufacturing site at DyStar Africa is part of our ongoing efforts to reconsolidate our business resources in Turkey, Africa & Middle East (TAME) region, with a focus on improving productivity and utilization rates.”

As a result of the acquisition, all employees at the manufacturing site have already been informed. Compensation packages are offered to affected colleagues as well.

DyStar, a specialty chemical company with a heritage of more than a century in product development and innovation, is announcing the sale of its auxiliary manufacturing site located at Pietermaritzburg, South Africa.

Oakland Polymers Pty Ltd, a local manufacturer, has acquired DyStar’s manufacturing facility and will take over the site to expand their polymer business. Under the sale and purchase agreement, DyStar divested the entire facility, which is approximately 12,000 sqm, to Oakland Polymers and Oakland Properties. DyStar Africa’s operations will continue to lease part of the premises from Oakland for office and warehousing use.

Mr. Xu Yalin, Managing Director, and President of DyStar Group said, “The sale of the manufacturing site at DyStar Africa is part of our ongoing efforts to reconsolidate our business resources in Turkey, Africa & Middle East (TAME) region, with a focus on improving productivity and utilization rates.”

As a result of the acquisition, all employees at the manufacturing site have already been informed. Compensation packages are offered to affected colleagues as well.

Customers have also been informed of undisrupted supply to their orders during the transition period and are further assured of a seamless customer journey going forward when the acquisition is completed.

Source:

DyStar

(c) TNO/Fraunhofer UMSICHT
02.06.2023

Fraunhofer: New guide to the future of plastics

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

Versatile and inexpensive materials with low weight and very good barrier properties: That's what plastics are. In addition to their practical benefits, however, the materials are also associated with a significant share of mankind's greenhouse gas emissions. The production and use of plastics cause environmental pollution and microplastics, deplete fossil resources and lead to import dependencies. At the same time, alternatives - such as glass packaging - could cause even more environmental burden or have poorer product properties.

Researchers from TNO and Fraunhofer UMSICHT have elaborated a white paper that provides a basis for the transformation of plastics production and use. They consider the integration of the perspectives of all stakeholders and their values and the potential of current and future technologies. In addition, the functional properties of the target product, the comparison with alternative products without plastics, and their impact in a variety of environmental, social and economic categories over the entire life cycle are crucial. In this way, a systematic assessment and ultimately a systematic decision as to where we can use, reject or replace plastics can be realized.

Strategies for the Circular Economy
As a result, the researchers describe four strategic approaches for transforming today's largely linear plastics economy into a fully circular future: Narrowing the Loop, Operating the Loop, Slowing the Loop, and Closing the Loop. By Narrowing the Loop, the researchers recommend, as a first step, to reduce the amount of materials mobilized in a circular economy. Operating the Loop refers to using renewable energy, minimizing material losses, and sourcing raw materials sustainably. For Slowing the Loop, measures are needed to extend the useful lifetime of materials and products. Finally, for Closing the Loop, plastics must be collected, sorted and recycled to high standards.

Individual strategies fall under each of the four approaches. While the ones under Operating the Loop (O strategies) should be applied in parallel and as completely as possible. According to the researchers, the decision for the strategies in the other fields (R strategies) requires a complex process: “Usually, more than one R-strategy can be considered for a given product or service. These must be carefully compared in terms of their feasibility and impact in the context of the status quo and expected changes”, explains Jürgen Bertling from Fraunhofer UMSICHT. The project partners have therefore developed a guiding principle for prioritization based on the idea of the waste hierarchy.

A holistic change, as we envision it, can only succeed if science, industry, politics and citizens work together across sectors. “This implies several, partly quite drastic changes at 4 levels: legislation and policy, circular chain collaboration, design and development, and education and information. For instance, innovations in design and development include redesign of polymers to more oxygen rich ones based on biomass and CO2 utilisation. Current recycling technologies have to be improved for high quantity and quality recycling,” explains Jan Harm Urbanus from TNO.

Hands-on platform for cross-sector collaboration
“Therefore, in a next step, TNO and Fraunhofer UMSICHT are building a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP," explains Esther van den Beuken, Principal Consultant from TNO. It will give companies, associations and non-governmental organizations the opportunity to work together on existing barriers and promising solutions for a Circular Plastics Economy. The platform will also offer its members regular hands-on workshops on plastics topics, roundtable discussions on current issues, and participation in multi-client studies on pressing technical challenges. Regular meetings will be held in the cross-border region of Germany and the Netherlands as well as online. The goal is to bring change to the public and industry.

Source:

Fraunhofer UMSICHT

(c) Beaulieu International Group
22.05.2023

B.I.G. Yarns launches Sustainable Yarns at Clerkenwell Design Week

B.I.G. Yarns unveils its new “SustainableYarns” platform, with Clerkenwell Design Week visitors the first to be invited to get on board and focus on what matters most for the design and manufacture of sustainable soft floorings.

The expert in polyamide (PA) 1 step 3 ply yarns offers a range of options for manufacturers to introduce sustainable yarns into carpet solutions and reach sustainability targets faster and more efficiently.

The Sustainable Yarns range creates opportunities to design with recycled content yarn (EqoCycle), to work with renewable resources (EqoBalance), and, following the launch of new polyamide 6 (PA6) EqoYarn at Clerkenwell Design Week, to also leverage the low-impact value chain.

New addition EqoYarn is a new low-impact PA6 carpet yarn based on the most recent innovations in polymer production, which enable yarn manufacturers to lower their carbon footprint by nearly 50% and give carpet manufacturers more options to reduce their impact.

B.I.G. Yarns unveils its new “SustainableYarns” platform, with Clerkenwell Design Week visitors the first to be invited to get on board and focus on what matters most for the design and manufacture of sustainable soft floorings.

The expert in polyamide (PA) 1 step 3 ply yarns offers a range of options for manufacturers to introduce sustainable yarns into carpet solutions and reach sustainability targets faster and more efficiently.

The Sustainable Yarns range creates opportunities to design with recycled content yarn (EqoCycle), to work with renewable resources (EqoBalance), and, following the launch of new polyamide 6 (PA6) EqoYarn at Clerkenwell Design Week, to also leverage the low-impact value chain.

New addition EqoYarn is a new low-impact PA6 carpet yarn based on the most recent innovations in polymer production, which enable yarn manufacturers to lower their carbon footprint by nearly 50% and give carpet manufacturers more options to reduce their impact.

For its EqoYarn Bulk Continuous Filament (BCF) production process, B.I.G. Yarns has selected the few best-in-class partners that have made major steps forward in terms of sustainability, and reduced their greenhouse gas emissions thanks to continuous investments in process efficiency, green energy, heat optimization and waste reduction. The result is EqoYarn with a carbon footprint of 4 kg CO2 eq/kg yarns, which is a CO2 reduction of up to 50% compared to conventional PA yarns.

EqoBalance PA6 yarns enable customers to reach an even higher CO2 reduction of up to 75%. Manufactured with polymers made from renewable resources such as organic waste from cooking oil instead of virgin or fossil feedstock, these yarns have a carbon footprint of 1.98 kg CO2 eq./ kg yarns. They help carpet manufacturers to create products with an extremely low carbon footprint.

EqoCycle PA6 yarns are fully recyclable and incorporate 75% recycled content originating from recycled and regenerated PA6 granules. With a carbon footprint of 4.64 kg CO2 eq./ kg yarns, they deliver the same high-quality performance of virgin PA6 yarn with the benefit of 37% CO2 reduction. EqoCycle yarns offer carpet manufacturers a sustainable alternative to help reduce the ecological footprint of their products and move towards a circular economy without jeopardizing the end-product quality.

In addition to the different CO2-reducing options, B.I.G. Yarns’ customers can access an unlimited colour range to elevate their designs. Its BCF technology for polyamide yarns, twisted and heat-set yarns, one-colour to multi-colour, between 650 and 15000 dTex, along with its colour studio, are available to support their creation of customised collections.

Source:

Beaulieu International Group

(c) INDA
10.05.2023

Four Nonwoven Industry Professionals honored with INDA Lifetime Awards

NDA, the Association of the Nonwoven Fabrics Industry, announced four recipients for the Lifetime Service Award and Lifetime Technical Achievement Awards. Jan O’Regan, Seshadri Ramkumar, Jim Robinson, and Ed Thomas are being recognized for their key contributions to the growth of the nonwovens industry and INDA.

NDA, the Association of the Nonwoven Fabrics Industry, announced four recipients for the Lifetime Service Award and Lifetime Technical Achievement Awards. Jan O’Regan, Seshadri Ramkumar, Jim Robinson, and Ed Thomas are being recognized for their key contributions to the growth of the nonwovens industry and INDA.

Jan O’Regan: INDA Lifetime Service Award
Jan O’Regan was the Director, Strategic Initiatives and Nonwovens Marketing, for Cotton Incorporated and retired in 2022. In this capacity, she uncovered new opportunities for cotton to bring value into the nonwovens industry. Her work included leading efforts in strategic planning, technical and market project management, and sharing new ideas and results with the global supply chain.
O’Regan spent over four decades in the nonwovens industry in various roles, including sales, marketing, strategic planning and business management. Market responsibilities included consumer and industrial markets on regional, national, and global teams. Over the most recent years, she applied these broad experiences to new markets for cotton in nontraditional applications.
Serving and volunteering with INDA for decades, O’Regan most recently chaired the World of Wipes® committee, which she efficiently organized to produce innovative conferences for the wipes industry.  She was a frequent speaker at INDA, INSIGHT, EDANA, and other events, and for nearly two decades was a go to source of information for cotton fibers in nonwovens and hygiene. O’Regan earned a BS in Textiles and Business, summa cum laude, from Penn State University and an MBA from New York University’s Stern School of Business.

Seshadri Ramkumar: INDA Lifetime Technical Achievement Award
Seshadri Ramkumar has over twenty-five years of experience within the technical nonwovens space, conducting industry leading research and educating nonwovens professionals at Texas Tech University (TTU).  At TTU, he established the Nonwovens Laboratory. Many of Ramkumar’s students have gone on to become technical leaders within their organizations and the nonwovens industry.
Ramkumar has numerous patent and invention disclosures, including Fibertect® toxic chemical decontamination wipes which have been recognized by the American Chemical Society as a notable success of federally supported innovation, endorsed by Lawrence Livermore National Laboratory, and adopted by multiple branches of the military.
In addition to many peer-reviewed publications, articles, and columns collectively over 500, including one on nanofibers that has been cited over 2,100 times, Ramkumar has contributed his expertise on the editorial boards of multiple fiber, nonwoven, and textile journals. Ramkumar has also organized conferences for nonwovens and textiles and actively promoted INDA and its technical training offerings for over 20 years.
He is a longtime member of the INDA Technical Advisory Board, been recognized by TAPPI, Society of Dyers and Colorists (UK), the Textile Institute (UK), and the Textile Association (INDIA), and received numerous awards from TTU.
Ramkumar holds a Bachelors of Technology (Textiles), Graduated with Distinction, and a Masters of Technology (Textiles), University First Rank in the Discipline, Anna University, and a Ph.D. (Textile Materials) from the University of Leeds, UK.

Jim Robinson: INDA Lifetime Technical Achievement Award
Jim Robinson has 33 years in the absorbent hygiene industry, including 28 years as a Technical Service Manager at BASF. He led technical teams that focused on the application of superabsorbent polymers (SAP) in hygiene products. Robinson has extensive knowledge of SAP applications, absorbent core formation, and hygiene article design, performance and testing. While with BASF, Robinson led efforts with multiple external companies to provide co-supplier solutions to hygiene converters.
Robinson’s extensive understanding of test methods and test method development led to his coordinating the establishment of fitness for use standards of adult incontinent products with the National Association for Continence and involvement in development and review of absorbent product test methods with INDA/EDANA. He is also an active contributor to INDA’s Technical Advisory Board and Hygienix organizing committee and was a contributing developer in establishing the INDA Absorbent Hygiene Training Course. Robinson has provided numerous presentations at INSIGHT, Hygienix, and RISE on performance and interactions of absorbent system components.
Recently, Robinson has been consulting and contributing to the success of multiple start-ups including those having been nominated for INDA product awards. Robinson has a BS in Chemistry from Hampden-Sydney College and an MS in Chemistry from Duke University.

Ed Thomas: INDA Lifetime Technical Achievement Award
Ed Thomas retired after 39 years, with 32 years in the nonwovens industry, and has remained active teaching the Intermediate Nonwovens Training Course for INDA and The Nonwovens Institute at North Carolina State University, as well as providing consulting services to the industry.
Thomas’ experience includes Process Engineering Manager and Plant Management, DuPont; Technical Director, Reemay; VP of Research and Operations, VP of Operations and Technology, and Global VP of Research and Development for Fiberweb/BBA Nonwovens; and Head of Research and Product Development, First Quality Nonwovens.
Thomas holds 10 U.S. nonwoven patents and he and his teams have been awarded more than 250 patents for numerous and diverse innovations that have played significant roles in the success of the nonwovens industry. These include applications for the global hygiene market, industrial nonwovens, and filtration media.
During his career, Thomas has presented several keynote addresses and papers to industry conferences, participated in North Carolina State University’s Nonwovens Cooperative Research Center (NCRC) prior to it becoming The Nonwovens Institute (NWI), INDA’s Technical Advisory Board, INDA’s Sustainability Committee, and was Vice Chair of NWI’s Industrial Advisory Board prior to retirement and remains an Emeritus member.
Thomas received his mechanical engineering degree from SUNY Buffalo.

(c) Carbios
05.05.2023

Carbios accelerates enzyme optimization

  • Carbios has developed an ultra-high throughput microfluidic screening of PET-depolymerizing enzymes in partnership with the Paul Pascal Research Center[1], a joint research unit of the CNRS[2] and the University of Bordeaux
  • Microfluidics enables millions of enzymes to be screened in a day, compared with a few thousand a week with conventional technologies
  • Future polymers of interest will benefit from this acceleration of the R&D phase, enabling Carbios to develop its portfolio of innovations on different types of plastic more rapidly

Carbios has accelerated its enzyme screening process with a microfluidic technology developed in partnership with the Paul Pascal Research Centre (a joint research unit of the CNRS and the University of Bordeaux, which specializes in microfluidics). This technology enables the screening of millions of enzymes in just one day, speeding up the process to optimize enzymes breaking down PET.

  • Carbios has developed an ultra-high throughput microfluidic screening of PET-depolymerizing enzymes in partnership with the Paul Pascal Research Center[1], a joint research unit of the CNRS[2] and the University of Bordeaux
  • Microfluidics enables millions of enzymes to be screened in a day, compared with a few thousand a week with conventional technologies
  • Future polymers of interest will benefit from this acceleration of the R&D phase, enabling Carbios to develop its portfolio of innovations on different types of plastic more rapidly

Carbios has accelerated its enzyme screening process with a microfluidic technology developed in partnership with the Paul Pascal Research Centre (a joint research unit of the CNRS and the University of Bordeaux, which specializes in microfluidics). This technology enables the screening of millions of enzymes in just one day, speeding up the process to optimize enzymes breaking down PET. This competitive advantage enables Carbios to reduce the time between the R&D phase and the production of its proprietary enzymes, and therefore to develop concrete solutions to plastic pollution even faster.

Microfluidics
Microfluidics allows the production of devices handling very small amounts of liquid. Each droplet generated can be considered as an independent microreactor having a volume in the picoliter range (10-12 liters) and containing a particular enzyme whose PET depolymerization activity will be screened. These droplets move through analysis units the size of a microchip allowing ultra-high throughput screening of 150 enzymes per second.

Previously, conventional robotic systems allowed screening in microplate format with a volume in the milliliter range (10-3 liters) and with rates of around one enzyme per minute.

The use of microfluidics to screen for more efficient or new enzymes will become widely adopted in the coming years, therefore accelerating the development of bioprocessing. Currently used by Carbios for the development of its PET depolymerization process, microfluidics should be used to accelerate the development of new enzymes for other types of plastic such as polyamide.

Carbios researchers specialized in microfluidics
Microfluidic processes require special expertise. At present, two researchers at Carbios are dedicated to microfluidics and based in the cooperative laboratory with TBI[3] hosted by INSA[4] Toulouse.  Alexandra Tauzin, Researcher in Enzyme Engineering and Microfluidics, and Alexandre Gilles, Engineer specialized in robotics, work in partnership with the Paul Pascal Research Center.

[1] Centre de Recherche Paul Pascal (CRPP)
[2] Centre National de la Recherche Scientifique (CNRS) = National Center for Scientific Research
[3] Toulouse Biotechnology Institute
[4] National Institute of Applied Sciences

More information:
Carbios plastics Enzyme polymers
Source:

Carbios

(c) FET
FET Melt Spinning system
05.05.2023

FET exhibits at ITMA 2023

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting at ITMA 2023, taking place between 8-14 June Milan, Italy. FET has commissioned its biggest ever stand to reflect the company’s commitment to this event and the textile industry.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide. Central to FET’s success has always been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques.

The new FET Fibre Development Centre will further improve this service, allowing clients to trial their own products in an ideal environment. Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients worldwide and will enable continued growth of the company through innovation.  

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting at ITMA 2023, taking place between 8-14 June Milan, Italy. FET has commissioned its biggest ever stand to reflect the company’s commitment to this event and the textile industry.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide. Central to FET’s success has always been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques.

The new FET Fibre Development Centre will further improve this service, allowing clients to trial their own products in an ideal environment. Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients worldwide and will enable continued growth of the company through innovation.  

For the first time at ITMA, the new FET Spunbond range will feature. This system provides opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents. Recent customers to benefit from FET spunbond systems include the University of Leeds and an integrated metlblown / spunbond system at the University of Erlangen-Nuremberg in Germany.

FET’s established expertise remains in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. FET has successfully processed almost 30 different polymer types in multifilament, monofilament and non-woven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

A major theme at ITMA will again be sustainability. The FET range of laboratory and pilot extrusion lines is ideally suited for both process and end product development of sustainable materials. “This year we are celebrating FET’s 25th anniversary” says FET Managing Director Richard Slack “and we look forward to meeting customers at ITMA, where we can discuss their fibre technology needs.”

Source:

Fibre Extrusion Technology Ltd

26.04.2023

STFI: Bionanopolis Open Call to support companies

The international association that will manage the Single-Entry-Point (SEP) of the BIONANOPOLYS project has been formally constituted and will be able to support companies across the European Union in the market introduction of bionanomaterials through technical, legal, regulatory, safety, economic and financial support services.

The SEP was established as an AISBL (non-profit entity) on 17 February 2023 in the framework of the European project BIONANOPOLYS, funded by the Horizon 2020 programme. The technical director of ITENE and coordinator of this project, Carmen Sánchez, is the president of this association in which representatives of other project partners also act as directors. Specifically, the CTP (Centre Technique du Papier) from France; CIDAUT (Fundación para la Investigación y Desarrollo en Transporte y Energía), from Spain; CENTI (Centre for Nanotechnology and Smart Materials), from Portugal, and the law firm Gil & Robles - San Bartolome & Associés, from Luxembourg.

The international association that will manage the Single-Entry-Point (SEP) of the BIONANOPOLYS project has been formally constituted and will be able to support companies across the European Union in the market introduction of bionanomaterials through technical, legal, regulatory, safety, economic and financial support services.

The SEP was established as an AISBL (non-profit entity) on 17 February 2023 in the framework of the European project BIONANOPOLYS, funded by the Horizon 2020 programme. The technical director of ITENE and coordinator of this project, Carmen Sánchez, is the president of this association in which representatives of other project partners also act as directors. Specifically, the CTP (Centre Technique du Papier) from France; CIDAUT (Fundación para la Investigación y Desarrollo en Transporte y Energía), from Spain; CENTI (Centre for Nanotechnology and Smart Materials), from Portugal, and the law firm Gil & Robles - San Bartolome & Associés, from Luxembourg.

The BIONANOPOLYS SEP will reduce the risks and barriers to the commercial exploitation of bio-based materials and polymeric bionanocomposites with nanotechnology and accelerate market penetration and innovation processes. SMEs, large companies, and potential customers who are users of the BIONANOPOLYS OITB (Open Innovation Test Bed) will be able to access the services offered by the project partners through this entity, which will act as a one-stop shop, at affordable costs and conditions.

The test bed consists of 14 enhanced pilot plants and complementary services to support technological and commercial breakthroughs. Collaboration between all the partners that make up BIONANOPOLYS and access through the SEP allows joint access to all the services offered by the partners and helps to drive collaborative open innovation.

Call for access to the BIONANOPOLYS OITB
The SEP and the project partners will be in charge of evaluating the projects submitted to the BIONANOPOLYS platform once the open call launched last February to select five projects from different European countries that will be able to access its services free of charge to develop, test or scale-up bionanomaterials in the BIONANOPOLYS OITB closes.

Companies wishing to access the services to develop or test nanomaterials can submit their applications until 30 April.

The BIONANOPOLYS test bed could benefit companies involved in the production of biopolymers, cellulose paper, nonwovens, foams, or coatings, as well as the packaging, agriculture, food, cosmetics, pharmaceuticals, hygiene, textiles and 3D printing sectors.

Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

Photo: ANDRITZ
26.04.2023

ANDRITZ: High-speed hygiene converting lines to Predo, Türkiye

International technology group ANDRITZ has received an order from Predo Health Products Inc, Türkiye, for delivery of two high-speed hygiene converting lines to produce adult open diapers and feminine sanitary napkins. With this investment, Predo is entering the growing adult and femcare market. The company already operates four baby diaper lines from ANDRITZ.

The two state-of-the-art lines are designed for high-speed production and contain the most advanced forming technology for absorbent core and SAP (superabsorbent polymers) dosing. Based on their flexibility and user-friendly configuration, Predo will be able to produce a wide range of different product compositions and sizes. In addition, the lines are designed for zero waste production. This will enable Predo to produce high-performing products with a sustainable approach.

The lines will be installed in Predo’s factory in Gaziantep, with start-up scheduled for the first half of 2024.

Predo is one of the leading manufacturers of baby care products and is expanding its business to other hygiene sectors. The company exports to 55 countries across the globe.

International technology group ANDRITZ has received an order from Predo Health Products Inc, Türkiye, for delivery of two high-speed hygiene converting lines to produce adult open diapers and feminine sanitary napkins. With this investment, Predo is entering the growing adult and femcare market. The company already operates four baby diaper lines from ANDRITZ.

The two state-of-the-art lines are designed for high-speed production and contain the most advanced forming technology for absorbent core and SAP (superabsorbent polymers) dosing. Based on their flexibility and user-friendly configuration, Predo will be able to produce a wide range of different product compositions and sizes. In addition, the lines are designed for zero waste production. This will enable Predo to produce high-performing products with a sustainable approach.

The lines will be installed in Predo’s factory in Gaziantep, with start-up scheduled for the first half of 2024.

Predo is one of the leading manufacturers of baby care products and is expanding its business to other hygiene sectors. The company exports to 55 countries across the globe.

More information:
Andritz Predo Turkey Hygiene polymers
Source:

ANDRITZ AG

12.04.2023

ExxonMobil showcases hygiene solutions at INDEX™23

ExxonMobil will present its portfolio of products that enable innovative solutions with sustainability benefits for hygiene and personal care applications at INDEX™23. This portfolio includes ExxonMobil™ PP, Achieve™ Advanced PP (polypropylene) and Vistamaxx™ performance polymers that can be used to create differentiated hygiene and personal care products.

ExxonMobil will present its portfolio of products that enable innovative solutions with sustainability benefits for hygiene and personal care applications at INDEX™23. This portfolio includes ExxonMobil™ PP, Achieve™ Advanced PP (polypropylene) and Vistamaxx™ performance polymers that can be used to create differentiated hygiene and personal care products.

An innovation being presented will be the model baby diaper of which the chassis is made exclusively with ExxonMobil’s extensive portfolio of products. Also on display will be a new version of the high-loft, ultra-soft, silky-smooth nonwoven solution for premium hygiene products using a blend of Vistamaxx™ performance polymers, Achieve™ Advanced PP and ExxonMobil™ PP. Developed collaboratively with Reifenhäuser Reicofil, this nonwoven solution delivers sustainability benefits by including ExxonMobil™ PP ISCC PLUS mass balance certified circular polymers using Exxtend™ technology for advanced recycling of plastic waste. Produced efficiently in one step from pellet to nonwoven via high-speed spunbond process, this soft nonwoven is ideal for use in premium diapers, pant-type diapers, feminine care and adult incontinence products.

Source:

ExxonMobil

(c) SABIC
05.04.2023

SABIC presents portfolio for healthcare and hygiene market at INDEX™23

SABIC will present its portfolio of PURECARES™ and TRUCIRCLE™ materials for the healthcare and hygiene market at INDEX™23 from April 18 to 21 in Geneva, Switzerland, under the theme of ‘Collaborating for sustainability and innovative solutions’.

At INDEX, SABIC will highlight a joint project with two market leaders, using certified circular polymers from the TRUCIRCLE portfolio in recyclable films for feminine hygiene, baby care and disposable medical applications. In all of these cases from diapers to surgical drapes and medical gowns, the sustainable materials can serve as direct drop-in alternatives with no compromise in production efficiency and product performance.

Further examples on display at the company’s booth will feature TRUCIRCLE solutions for facemasks, including an N95 design that localizes the value chain with SABIC® PURECARES PP spunbond and meltblown polymers in Saudi Arabia. SABIC provides complete solutions for facemask production as part of its localization strategy and has been a key enabler of the Saudi Made initiative. Also shown will be a closed-loop facemask developed in collaboration with industrial and research partners in Europe.

SABIC will present its portfolio of PURECARES™ and TRUCIRCLE™ materials for the healthcare and hygiene market at INDEX™23 from April 18 to 21 in Geneva, Switzerland, under the theme of ‘Collaborating for sustainability and innovative solutions’.

At INDEX, SABIC will highlight a joint project with two market leaders, using certified circular polymers from the TRUCIRCLE portfolio in recyclable films for feminine hygiene, baby care and disposable medical applications. In all of these cases from diapers to surgical drapes and medical gowns, the sustainable materials can serve as direct drop-in alternatives with no compromise in production efficiency and product performance.

Further examples on display at the company’s booth will feature TRUCIRCLE solutions for facemasks, including an N95 design that localizes the value chain with SABIC® PURECARES PP spunbond and meltblown polymers in Saudi Arabia. SABIC provides complete solutions for facemask production as part of its localization strategy and has been a key enabler of the Saudi Made initiative. Also shown will be a closed-loop facemask developed in collaboration with industrial and research partners in Europe.

The company’s PURECARES polyolefin products are based on technologies free of both tris (nonylphenyl) phosphite (TNPP) and phthalates. Consumer comfort is achieved by using SABIC polypropylene (PP) and polyethylene (PE) polymers for bi-component fibers to answer multiple needs for soft and loft handfeel nonwovens, enabling easy lamination to other building blocks on medical nonwovens or absorbent hygiene applications.

In addition, SABIC produces TRUCIRCLE certified circular polymers for its PURECARES PP and PE portfolio with feedstock based on advanced recycling of mixed and used plastic that would otherwise typically not be suitable for mechanical recycling processes. These more sustainable solutions can be adopted in downstream processes as direct drop-in alternatives to incumbent materials with no compromise in production efficiency, purity and product performance.

Source:

SABIC

Dr Ioana Slabu and Benedict Bauer with the nanomodified stent. Photo Peter Winandy
30.03.2023

Nanomodified polymerstent: Novel technology for tumour therapy

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

Ioana Slabu of the AME explains: "Not only can we drastically reduce treatment costs, but above all we can provide relief for millions of patients worldwide.
 
A manufacturing process and proof of concept for magnetic hyperthermia are already in place. This novel technology has a very high development potential because it can also be used for tumours in other parts of the body such as the prostate, stomach, intestine or urinary bladder or for cardiovascular diseases.  

The AiF/IGF project started under the project title "ProNano" funded by BMWK. Now the approval for the follow-up project "ProNano2" has also been received. The approved project is called: "Validation of the innovation potential of heatable stents for heat-induced treatment of cavity tumours" and is funded by BMBF in course of the VIP+ program. With the Clinic for General, Visceral and Transplantation Surgery of the University Hospital Aachen and the Institute for Technology and Innovation Management at RWTH Aachen University, the consortium is enriched by clinical and economic expertise. Every year, RWTH Aachen University honours particularly innovative university projects with the Innovation Award. Professor Malte Brettel, Prorector for Business and Industry, presented the certificates to four outstanding projects as part of RWTHtransparent.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

24.03.2023

RadiciGroup: Zeta Polimeri becomes Radici EcoMaterials Srl

A little over three years have passed since RadiciGroup announced the acquisition of Zeta Polimeri, an Italian company headquartered in Buronzo (VC) with over 30 years' experience in the recovery of pre- and post-consumer synthetic fibres and thermoplastic materials. Today, the company has become a full member of the Group with its new name Radici EcoMaterials Srl.

The new company’s long-standing know-how, combined with RadiciGroup’s as a whole, will create a virtuous production system that recovers worn-out materials (fabric, yarn and granules), or otherwise unusable materials, and processes them into raw materials available for other production cycles by taking advantage of industrial synergy.

A little over three years have passed since RadiciGroup announced the acquisition of Zeta Polimeri, an Italian company headquartered in Buronzo (VC) with over 30 years' experience in the recovery of pre- and post-consumer synthetic fibres and thermoplastic materials. Today, the company has become a full member of the Group with its new name Radici EcoMaterials Srl.

The new company’s long-standing know-how, combined with RadiciGroup’s as a whole, will create a virtuous production system that recovers worn-out materials (fabric, yarn and granules), or otherwise unusable materials, and processes them into raw materials available for other production cycles by taking advantage of industrial synergy.

Radici EcoMaterials is a strategic production site because it handles all the preliminary recovery stages: the sorting, processing and pre-treatment of materials, including those used for the production of post-consumer yarns and engineering polymers. In this sense, Radici EcoMaterials is in line with the most recent European policies on sustainable textiles, which address minimizing the share of materials destined for disposal sites, favouring instead more structured recycling solutions.

Radici EcoMaterials is also GRS certified. GRS certification ensures the complete traceability of its materials, which are made in a safe plant that meets the highest environmental and social certification standards.

The company is also equipped with a photovoltaic system and, for the portion of its energy needs not covered by the photovoltaic source, it partially relies on renewable energy. The goal is to use 100% green energy in the next few years, in accord with RadiciGroup's goals.

Source:

RadiciGroup

Photo Fibre Extrusion Technology Ltd (FET)
23.03.2023

FET prepares for INDEX 23 Exhibition in Geneva

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Source:

Fibre Extrusion Technology Ltd (FET)

(c) Carbios
15.02.2023

Carbios: Four new Board members to strengthen international expertise

  • Carbios strengthens its Board of Directors with the appointments of Prof. Karine AUCLAIR, Sandrine CONSEILLER, Amandine DE SOUZA and Mateus SCHREINER GARCEZ LOPES
  • Carbios has reached its CSR objective of 60% independent directors ahead of 2024 target date, and has increased its female representation

Carbios‘four new members to its Board of Directors:  Prof. Karine AUCLAIR, professor of Chemistry at McGill University, Sandrine CONSEILLER, former CEO of Aigle, Amandine DE SOUZA, General Manager of LE BHV MARAIS, Eataly and Home, DIY and Leisure Purchasing at Galeries Lafayette Group, and Mateus SCHREINER GARCEZ LOPES, Global Director for Energy Transition and Investments at Raizen, have all been appointed members of Carbios’ Board of Directors.  In the new structure, Prof. Karine AUCLAIR succeeds Jacqueline LECOURTIER, Sandrine CONSEILLER succeeds Jean FALGOUX, Amandine DE SOUZA succeeds Alain CHEVALLIER, and Mateus SCHREINER GARCEZ LOPES succeeds Jean-Claude LUMARET.

  • Carbios strengthens its Board of Directors with the appointments of Prof. Karine AUCLAIR, Sandrine CONSEILLER, Amandine DE SOUZA and Mateus SCHREINER GARCEZ LOPES
  • Carbios has reached its CSR objective of 60% independent directors ahead of 2024 target date, and has increased its female representation

Carbios‘four new members to its Board of Directors:  Prof. Karine AUCLAIR, professor of Chemistry at McGill University, Sandrine CONSEILLER, former CEO of Aigle, Amandine DE SOUZA, General Manager of LE BHV MARAIS, Eataly and Home, DIY and Leisure Purchasing at Galeries Lafayette Group, and Mateus SCHREINER GARCEZ LOPES, Global Director for Energy Transition and Investments at Raizen, have all been appointed members of Carbios’ Board of Directors.  In the new structure, Prof. Karine AUCLAIR succeeds Jacqueline LECOURTIER, Sandrine CONSEILLER succeeds Jean FALGOUX, Amandine DE SOUZA succeeds Alain CHEVALLIER, and Mateus SCHREINER GARCEZ LOPES succeeds Jean-Claude LUMARET.

Three of the new members have strong, proven expertise in various industries covering fashion, retail and energy, as well as business development and senior executive management in high-growth markets and sectors around the world.  The new scientific expertise will also help enhance and advance Carbios’ research into biological solutions for the life cycle of plastics and textiles.  In addition, a sensitivity to CSR issues and proven results in this field was also a key selection factor to join the Board.  The new members’ combined strategic vision, solid industry experience and CSR commitments will support Carbios in its industrial and commercial plans.
 
Prof. Karine AUCLAIR is Professor of Chemistry at McGill University and holds the Tier 1 Canada Research Chair in Antimicrobials and Green Enzymes.  She has received numerous awards over the years, including the Clara Benson Award of the Canadian Society of Chemistry, the McGill Tomlinson Professorship, the Leo Yaffe Teaching Award, and the McGill Fessenden Professorship, to name a few. She is an internationally recognized bioorganic chemist with significant scientific contributions to the fields of antimicrobial resistance, biocatalysis and enzymology. Her research led to several patents notably in the clean enzymatic depolymerization of untreated, high crystallinity PET plastics for closed-loop recycling.  Her work has been published in nearly 100 peer-reviewed publications in high-impact journals, and often highlighted by the media.  As a recognized leader in her field, she is often invited to speak at industrial and academic conferences around the world, and to review theses and grant applications for worldwide institutions.
 
Sandrine CONSEILLER is former Chief Executive Officer of Aigle (the emblematic French brand committed to sustainable fashion).  Prior to joining Aigle, Sandrine was Group Marketing & Branding Executive Vice-President at Lacoste (another historic French fashion brand) from 2011 to 2015.  She contributed to the Lacoste maison turnaround with strong growth and numerous professional awards including several Cannes Lions Awards.  She was also Member of the Executive Board.  Sandrine began her career at Unilever and spent 20 years leading global businesses within various divisions, mainly in Personal Care, in Latin America, Europe, and Asia.  Sandrine is also Member of the Board of Phildar (the iconic French knitwear brand), Member of the Board of Raise Sherpa (the first philantropic endowment fund dedicated to start-ups) and is a funding partner of NEO FOUNDERS (a venture fund mentoring impact start-ups).
 
Amandine DE SOUZA is General Manager of LE BHV MARAIS (French retail, decoration and fashion department stores), Eataly (an Italian gastronomy concept franchise) and Home, DIY and Leisure Purchasing at Galeries Lafayette Group since 2018.  She has been a Member of its Executive Committee since 2020.  Amandine has 17 years’ experience in different types of companies of various sizes: from family business, to start-up,  and multinational.  She was General Manager for France at Westwing (an e-commerce start-up) from 2015 to 2018.  From 2009 to 2015, she was International Merchandise Director at Casino Group (food and non-food retail distribution).  Prior to this, she worked as a strategic consultant at Bain & Company within their Distribution and Consumer Goods Division in France and internationally.
 
Mateus SCHREINER GARCEZ LOPES is Global Director for Energy Transition and Investments at Raizen (global leader in bioenergy from Brazil), leading technology, new business development and intellectual property at the company.  He was previously Global Manager for Innovation and Business Development in Renewable Chemicals at Braskem (the largest producer of thermoplastic resins in the Americas and the world’s largest producer of biopolymers).  Before his transition to the corporate world, Mateus held several researcher and lecturer positions on Synthetic Biology and metabolic Engineering at Universities in Mexico, Germany, United States and Brazil.  He is also a Board Member of Iogen Energy Corporation, Vice-Chairman of the Board of the Brazilian Association of Bio Innovation, and Advisory Committee Member from the MIT Energy Initiative.

More information:
Carbios
Source:

Carbios

(c) NatureWorks
15.02.2023

New Ingeo™️ PLA Biopolymer Manufacturing Facility in Thailand

NatureWorks, the manufacturer of low-carbon polylactic acid (PLA) biopolymers made from renewable resources, hosted a cornerstone laying ceremony to celebrate construction of their new Ingeo™️ PLA manufacturing complex in Thailand. The ceremony which took place on February 1st, 2023 commemorated the progress made to date on the new fully integrated biopolymer facility. The day also featured a ceremonial groundbreaking that mirrored the ceremony held in Blair, Nebraska, USA in 2000 when NatureWorks began construction on the world’s first commercial scale PLA manufacturing facility.

The new manufacturing facility located on the Nakhon Sawan Biocomplex (NBC) in Nakhon Sawan Province, Thailand is designed to be fully integrated including production sites for lactic acid, lactide, and polymer. With completion expected in the second half of 2024, the manufacturing site will have an annual capacity of 75,000 tons and will produce the full portfolio of Ingeo biopolymer grades.

NatureWorks, the manufacturer of low-carbon polylactic acid (PLA) biopolymers made from renewable resources, hosted a cornerstone laying ceremony to celebrate construction of their new Ingeo™️ PLA manufacturing complex in Thailand. The ceremony which took place on February 1st, 2023 commemorated the progress made to date on the new fully integrated biopolymer facility. The day also featured a ceremonial groundbreaking that mirrored the ceremony held in Blair, Nebraska, USA in 2000 when NatureWorks began construction on the world’s first commercial scale PLA manufacturing facility.

The new manufacturing facility located on the Nakhon Sawan Biocomplex (NBC) in Nakhon Sawan Province, Thailand is designed to be fully integrated including production sites for lactic acid, lactide, and polymer. With completion expected in the second half of 2024, the manufacturing site will have an annual capacity of 75,000 tons and will produce the full portfolio of Ingeo biopolymer grades.

The expanded global production of Ingeo biopolymer will support growth in markets including 3D printing and hygiene as well as compostable coffee capsules, tea bags, flexible packaging, and food serviceware that demand sustainable, low-carbon biomaterials and require the high-performance attributes that Ingeo is uniquely suited to deliver.

“This ceremony is a meaningful milestone for the entire NatureWorks team,” said Rich Altice, president and CEO of NatureWorks. “For the last three decades, we have not only been building a company and manufacturing facilities, but also a whole new industry and market for low-carbon, renewable biomaterials that are revolutionizing the sustainability and safety of packaging and product materials used in our everyday lives.”

More information:
NatureWorks PLA biopolymer
Source:

NatureWorks

(c) FET Ltd
17.01.2023

FET looks forward following sucessful year

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

FET is now looking forward to 2023 with a record order book. The company’s newly opened Fibre Development Centre features over £1.5 million investment in customer laboratory systems that will further enable fibre trials and product R&D. Three new polymer types were developed with clients in 2022 and several more are lined up in 2023, which is expected to bring the total of different polymer types to more than 40 in multifilament, monofilament and nonwoven formats.

FET will be exhibiting at two major exhibitions in 2023; INDEX 23, a leading Nonwovens show at Geneva in April; and ITMA, Milan, an international textile and garment technology exhibition in June.

Source:

FET Ltd

(c) Fraunhofer ICT
06.01.2023

Fraunhofer CPM develop programmable material for ergonomic lying position

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Materials and microstructuring
Materials for applications requiring specific changes to stiffness or shape are being developed by researchers from Fraunhofer CPM, which is formed of six core institutes with the aim of designing and producing programmable materials. So, how can we program materials? “Essentially, there are two key areas where adjustments can be made: the base material – thermoplastic polymers in the case of mattresses and metallic alloys for other applications, including shape memory alloys – and, more specifically, the microstructure,” explains Dr. Heiko Andrä, spokesperson on the topic at the Fraunhofer Institute for Industrial Mathematics ITWM, one of the Fraunhofer CPM core institutes. “The microstructure of these metamaterials is made up of unit cells that consist of structural elements such as small beams and thin shells.” While the size of each unit cell and its structural elements in conventional cellular materials, like foams, vary randomly, the cells in the programmable materials are also variable – but can be precisely defined, i.e., programmed. This programming can be made, for example, in such a way that pressure on a particular position will result in specific changes at other regions of the mattress, i.e., increase the size of the contact surface and provide optimal support to certain areas of the body.

Materials can also react to temperature or humidity
The change in shape that the material should exhibit and the stimuli to which it reacts - mechanical stress, heat, moisture or even an electric or magnetic field - can be determined by the choice of material and its microstructure.

The journey to application
A single piece of material can take the place of entire systems of sensors, regulators and actuators. The goal of Fraunhofer CPM is to reduce the complexity of systems by integrating their functionalities into the material and reducing material diversity. We always have industrial products in mind when developing the programmable materials. As such, we take mass production processes and material fatigue into account, among other things,” says Franziska Wenz, deputy spokesperson on the topic at the Fraunhofer Institute for Mechanics of Materials IWM, another core institute of Fraunhofer CPM. The initial pilot projects with industry partners are also already underway. The research team expects that initially, programmable materials will act as replacements for components in existing systems or be used in special applications such as medical mattresses, comfortable chairs, variable damping shoe soles and protective clothing. “Gradually, the proportion of programmable materials used will increase,” says Andrä. Ultimately, they can be used everywhere – from medicine and sporting goods to soft robotics and even space research.

Source:

Fraunhofer ITWM

(c) SANITIZED AG
Dr. Martin Čadek, CTO SANITIZED AG
02.12.2022

SANITIZED AG stärkt Innovationskompetenz mit neuem CTO

Swiss-based SANITIZED AG is increasing its innovation expertise by appointing a new CTO, Dr. Martin Čadek, who will oversee global technological activities for the specialist antimicrobial hygiene brand. Dr. Čadek will lead the company’s Competence Centre for Technology Innovation and will focus on breaking new ground to develop innovations in sustainability.

Dr. Čadek is a graduate physicist with a master’s degree in polymer science with many years’ experience in the industry working with polymers, fibres, industrial textiles, and extruded polymers. He is joining SANITIZED AG from his most recent role as Managing Director for German subsidiary the Flint Group. His previous roles include the Global Head of Innovation for Energy and Polymer Systems at Evonik/Orion, the Head of Extrusion Technology Business Unit in Europe for Emerell AG, and work with the SGL Group.

Swiss-based SANITIZED AG is increasing its innovation expertise by appointing a new CTO, Dr. Martin Čadek, who will oversee global technological activities for the specialist antimicrobial hygiene brand. Dr. Čadek will lead the company’s Competence Centre for Technology Innovation and will focus on breaking new ground to develop innovations in sustainability.

Dr. Čadek is a graduate physicist with a master’s degree in polymer science with many years’ experience in the industry working with polymers, fibres, industrial textiles, and extruded polymers. He is joining SANITIZED AG from his most recent role as Managing Director for German subsidiary the Flint Group. His previous roles include the Global Head of Innovation for Energy and Polymer Systems at Evonik/Orion, the Head of Extrusion Technology Business Unit in Europe for Emerell AG, and work with the SGL Group.

The Competence Centre for Technology & Innovation will provide services to all three of SANITIZED’s business units: Textiles, Polymer Additives, and Coatings and Preservation. It will be built on top of SANITIZED’s TecCenter for Analytics, Microbiology and Applications and its regulatory department.

More information:
Sanitized AG CTO Hygiene
Source:

SANITIZED AG

FET-200LAB wet spinning system Photo: Fibre Extrusion Technology Limited (FET)
21.11.2022

FET wet spinning system selected for major fibre research programme

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

FET-200 Series wet spinning systems complement FET’s renowned range of melt spinning equipment. The FET-200LAB is a laboratory scale system, which is especially suitable for the early stages of formulation and process development. It is used for processing new functional textile materials in a variety of solvent and polymer combinations.

In particular, the FET-200LAB will be utilised in trials for a family of fibres made from wood pulp, a sustainable resource rather than the usual fossil fuels. Bio-based polymers are produced from biomass feedstocks such as cellulose and are commonly used in the manufacture of high end apparel. The key to cellulose and other materials like lyocell and viscose is that they can be recycled, treated and fed back into the wet spinning system for repeat manufacture.

Established in 1998, FET is a leading supplier of laboratory and pilot melt spinning systems with installations in over 35 countries and has now successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

Source:

DAVID STEAD PROJECT MARKETING LTD