From the Sector

Reset
12 results
04.01.2024

The climate-friendly carbon fiber - up to 50% less CO2 emissions

SGL Carbon relies on climate-friendly manufacturing processes in the production of its own carbon fibers. By using renewable energy, the carbon footprint of SGL fiber can be reduced by up to 50% compared to a conventional fiber.  

SGL carbon fiber is produced at the Lavradio (Portugal) and Moses Lake (USA) sites. When the Moses Lake site was selected in the 1990s, the use of hydropower as an energy source played a particularly decisive role. As a result, around 75,000 tonnes of CO2 can be saved in Moses Lake by purchasing electricity from hydropower plants compared to a fossil fuel-based electricity mix.

As part of the consistent implementation of its climate strategy, SGL Carbon will be using a CO2-neutral biomass system to generate energy from the beginning of 2024, which will make the production system, which was previously based on natural gas, more flexible and climate-friendly. At full capacity, the biomass system in Lavradio can save more than 90,000 tons of CO2.

The raw material used is wood pellets, which are sourced from a radius of 250 kilometres via short transport routes.

SGL Carbon relies on climate-friendly manufacturing processes in the production of its own carbon fibers. By using renewable energy, the carbon footprint of SGL fiber can be reduced by up to 50% compared to a conventional fiber.  

SGL carbon fiber is produced at the Lavradio (Portugal) and Moses Lake (USA) sites. When the Moses Lake site was selected in the 1990s, the use of hydropower as an energy source played a particularly decisive role. As a result, around 75,000 tonnes of CO2 can be saved in Moses Lake by purchasing electricity from hydropower plants compared to a fossil fuel-based electricity mix.

As part of the consistent implementation of its climate strategy, SGL Carbon will be using a CO2-neutral biomass system to generate energy from the beginning of 2024, which will make the production system, which was previously based on natural gas, more flexible and climate-friendly. At full capacity, the biomass system in Lavradio can save more than 90,000 tons of CO2.

The raw material used is wood pellets, which are sourced from a radius of 250 kilometres via short transport routes.

The climate-friendly energy supply at the site in Moses Lake (USA) combined with the new biomass plant in Lavradio (Portugal) lead to a reduction in CO2 emissions of up to 50% in the production of SGL's own carbon fibers compared to conventional fibers. With the investment in the biomass system, SGL Carbon is pursuing its climate strategy. The target is to save 50% CO2 emissions by the end of 2025 compared to the base year 2019 and to be climate-neutral by the end of 2038. In the period 2019 to 2022, SGL Carbon has reduced its CO2 emissions by 17%.

Source:

SGL Carbon SE

Marchi_Fildi_Filidea headquarter Photo Marchi & Fildi Group
Marchi Fildi Filidea headquarter
24.11.2023

The Marchi & Fildi Group: First Sustainability Report published

The data and the information reported examine the performance relative to the companies Marchi & Fildi S.p.A. and Filidea S.r.l. during the year 1st January 2022 to 31st December 2022. In addition, with the aim of putting the data into a context of developments, a comparison with data pertaining to 2021 was also made.

Amongst the numerous data and insights provided by the analyses given in the Report, some relevant performance factors relating to environmental achievements emerge.

With reference to Marchi & Fildi, and in comparison to 2021, the year 2022 demonstrated:

  • A unit reduction in water consumption of 57% and unit reduction of waste water of 19%
  • A unit reduction in electric power consumption of 13%

An overall reduction in CO2 emissions (Scope I + Scope II) of 22% In the same period, for Filidea the following results are shown:

The data and the information reported examine the performance relative to the companies Marchi & Fildi S.p.A. and Filidea S.r.l. during the year 1st January 2022 to 31st December 2022. In addition, with the aim of putting the data into a context of developments, a comparison with data pertaining to 2021 was also made.

Amongst the numerous data and insights provided by the analyses given in the Report, some relevant performance factors relating to environmental achievements emerge.

With reference to Marchi & Fildi, and in comparison to 2021, the year 2022 demonstrated:

  • A unit reduction in water consumption of 57% and unit reduction of waste water of 19%
  • A unit reduction in electric power consumption of 13%

An overall reduction in CO2 emissions (Scope I + Scope II) of 22% In the same period, for Filidea the following results are shown:

  • A unit reduction in water consumption of 26%, unit waste water of 22%
  • A reduction in unit natural gas consumption of 7%
  • A reduction in unit electric power consumption of 14%
  • An overall reduction in CO2 emissions (Scope I + Scope II) of 7%

These data offer quantitative feedback on the constant commitment to the optimisation of resources and use of production technologies with low energy impact, which the Group has adopted for years.

Massimo Marchi, Marchi & Fildi’s President, has this to say about the choice to invest in this form of reporting:
“The decision to write a Sustainability Report represents for us one of the elements which guide us towards the constant improvement of company performance with reference to ESG. This is one of the stages towards the formalisation of a strategic plan for the management of sustainability, a journey which the Group has been committed to for years and in which we believe 100%.”

 

Source:

Marchi & Fildi Group

(c) Sappi Europe
19.06.2023

Sappi Gratkorn’s increases share of renewable energy

As part of Sappi Europe's full scale decarbonisation roadmap, Gratkorn mill is expanding the share of biomass to be used as an energy source, further driving the move away from fossil fuels as part of the mill’s contribution to the European roadmap. The project follows the recent modernisation of the power plant boiler which enabled the shift from coal to a combined approach of biomass and natural gas.

The mill is now embarking on a next step, enhancing its infrastructure and therefore capacity in order to handle the delivery, sorting and processing of increased biomass levels. This increased utilisation requires an improved biomass handling system at the mill as well as decentralised intermediate storage terminals within the surrounding regions.

"With our long-standing competent wood sourcing partner Papierholz Austria, we will continue our journey to move away from fossil fuels at Gratkorn mill and work towards a climate-neutral future”, says Peter Putz, Managing Director of Sappi Austria GmbH.

For the near term, Sappi’s decarbonisation roadmap includes close to 80 projects being carried out across its European mills by 2025.

As part of Sappi Europe's full scale decarbonisation roadmap, Gratkorn mill is expanding the share of biomass to be used as an energy source, further driving the move away from fossil fuels as part of the mill’s contribution to the European roadmap. The project follows the recent modernisation of the power plant boiler which enabled the shift from coal to a combined approach of biomass and natural gas.

The mill is now embarking on a next step, enhancing its infrastructure and therefore capacity in order to handle the delivery, sorting and processing of increased biomass levels. This increased utilisation requires an improved biomass handling system at the mill as well as decentralised intermediate storage terminals within the surrounding regions.

"With our long-standing competent wood sourcing partner Papierholz Austria, we will continue our journey to move away from fossil fuels at Gratkorn mill and work towards a climate-neutral future”, says Peter Putz, Managing Director of Sappi Austria GmbH.

For the near term, Sappi’s decarbonisation roadmap includes close to 80 projects being carried out across its European mills by 2025.

“Our 2025 roadmap identifies the path we have embarked on towards a carbon-neutral future,” explains Sarah Price, Director Sustainability of Sappi Europe. The objective is to reduce emissions of specific greenhouse gases (Scope 1 and 2) by 25 per cent and to increase the share of renewable energy in Europe to 50 per cent by 2025 (compared to 2019). Additionally, Sappi’s 2030 science-based target is to reduce carbon emissions by 41.5% per ton of product. “We’re already making good progress towards these targets, with a large number of projects already well-underway or completed”.

Source:

Sappi Europe

(c) A. Monforts Textilmaschinen GmbH & Co. KG
Members and associates of the WasserSTOFF consortium from Monforts, Pleva, NTB Nova Textil, TU Freiberg, Hochschule Niederrhein and Honeywell Thermal Solutions, at the launch meeting of the new project at the Monforts ATC in Mönchengladbach.
28.04.2023

Monforts presents green hydrogen project WasserSTOFF at ITMA 2023

At ITMA 2023 in Milan from June 8-14 this year, Monforts is organising two free-to-attend seminars and discussions on the potential of green hydrogen as a new energy source for textile finishing, drying and related processes.

Monforts is currently leading a consortium of industrial partners and universities in the three-year WasserSTOFF project, launched in November 2022, that is exploring all aspects of this exciting and fast-rising new industrial energy option.
The target of the government-funded project is to establish to what extent hydrogen can be used in the future as an alternative heating source for textile finishing processes. This will first involve tests on laboratory equipment together with associated partners and the results will then be transferred to a stenter frame at the Monforts Advanced Technology Center (ATC).

At ITMA 2023 in Milan from June 8-14 this year, Monforts is organising two free-to-attend seminars and discussions on the potential of green hydrogen as a new energy source for textile finishing, drying and related processes.

Monforts is currently leading a consortium of industrial partners and universities in the three-year WasserSTOFF project, launched in November 2022, that is exploring all aspects of this exciting and fast-rising new industrial energy option.
The target of the government-funded project is to establish to what extent hydrogen can be used in the future as an alternative heating source for textile finishing processes. This will first involve tests on laboratory equipment together with associated partners and the results will then be transferred to a stenter frame at the Monforts Advanced Technology Center (ATC).

To be considered “green”, hydrogen must be produced using a zero-carbon process that is powered by renewable energy sources such as wind or solar. Currently, the cleanest method of hydrogen production is electrolysis, using an electrically-powered electrolyzer to separate water molecules into hydrogen and oxygen. The purity of the hydrogen is also important, and impurities must be removed via a separation process.

“Despite all its advantages, there are obstacles to overcome on the way to widespread, economically-feasible green hydrogen use,” explains Monforts Textile Technologies Engineer Jonas Beisel. “Until there are widely available, reliable and economical sources of this clean power, the cost of producing it will remain prohibitive. The infrastructure is not yet there, and hydrogen also has a tendency to make steel brittle and subject to fracture, which is something that requires further investigation in both its transportation and use in industrial processing.
“Green energy’s potential as a clean fuel source is tremendous, but there is much we need to explore when considering its use in the textile finishing processes carried out globally on our industry-leading Montex stenter dryers and other machines.”

At its Advanced Technology Center (ATC) in Mönchengladbach, Monforts will be carrying out intensive tests and trials to assess the reliability of both processes and final products when different natural gas and hydrogen mixtures – up to 100% green hydrogen – are employed. The results will be closely analysed by the consortium partners because there are many parameters that at this stage remain unknown.

The aim, Beisel adds, is to both reduce CO2 emissions and – following the rising prices and industry turbulence experienced by manufacturers over the past year or so – to further reduce a dependency on natural gas.

The three-year WasserSTOFF project is sponsored by Germany’s Federal Ministry for Economic Affairs and Climate Action, and with Monforts at the helm brings together industrial partners Pleva and NTB Nova Textil, with academic input from the Hochschule Niederrhein and the Technical University of Freiberg.

27.01.2022

Radici Yarn certified to ISO 50001 Energy Management Systems

Over 400 employees work hard every day to improve the environmental performance of Radici Yarn’s site. Through teamwork and continuous improvement in energy efficiency, Radici Yarn has obtained ISO 50001 Energy Management Systems certification, which attests to the organization’s commitment to contain and progressively reduce energy consumption.

Radici Yarn, one of the companies in the RadiciGroup Advanced Textile Solutions Business Area, is engaged in the production and sale of polyamide 6 polymer, PA6 and PA66 continuous filament and staple yarn, and other synthetic fibres, including products made of recycled or bio-based materials.

All the processes - polymerization and spinning (Villa d'Ogna plant), as well as warping and draw-warping (Ardesio plant) - are run under constant monitoring with the goal of achieving maximum energy efficiency and lower consumption. Both sites are powered by two hydroelectric power plants owned by Geogreen, a RadiciGroup partner and energy supplier. The share of energy consumption from renewable sources and reduced environmental impact (natural gas) sources  is constantly increasing.

Over 400 employees work hard every day to improve the environmental performance of Radici Yarn’s site. Through teamwork and continuous improvement in energy efficiency, Radici Yarn has obtained ISO 50001 Energy Management Systems certification, which attests to the organization’s commitment to contain and progressively reduce energy consumption.

Radici Yarn, one of the companies in the RadiciGroup Advanced Textile Solutions Business Area, is engaged in the production and sale of polyamide 6 polymer, PA6 and PA66 continuous filament and staple yarn, and other synthetic fibres, including products made of recycled or bio-based materials.

All the processes - polymerization and spinning (Villa d'Ogna plant), as well as warping and draw-warping (Ardesio plant) - are run under constant monitoring with the goal of achieving maximum energy efficiency and lower consumption. Both sites are powered by two hydroelectric power plants owned by Geogreen, a RadiciGroup partner and energy supplier. The share of energy consumption from renewable sources and reduced environmental impact (natural gas) sources  is constantly increasing.

The energy issue has always been a priority for Radici Yarn, whose products serve numerous sectors, including automotive, clothing and furnishings.

"Already at the beginning of the 1990s, Radici Yarn started investing in cogeneration, the simultaneous production of electricity and steam,” pointed out Laura Ravasio, energy manager of Radici Yarn SpA. “We have recently started up an advanced trigeneration plant – a highly efficient system that produces not only electricity and steam, but also chilled water for our production processes. One of the first results recorded in 2021 was a 30% reduction in water consumption. Thus, ISO 50001 certification seemed like the next logical step to take in formalizing a long-term approach to energy.”

The ISO 50001 certification, which is voluntary and valid for a period of three years, was added to the ISO 14001 Environmental and ISO 9001 Quality Management system certifications previously achieved by Radici Yarn.

Source:

RadiciGroup

(c) Composites Evolution
19.01.2022

Composites Evolution launches new Evopreg® thermoplastic tapes

  • Evopreg® range expanded with unidirectional fibre-reinforced thermoplastic tapes

Composites Evolution, a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials, has announced the launch of a new range of unidirectional thermoplastic tapes, to sit alongside its existing line-up of Evopreg® prepregs. The first product families being launched are Evopreg® PA polyamide tapes, and Evopreg® PP polypropylene tapes, with further product lines expected as new customer requirements emerge.

Thermoplastic tapes, also known as thermoplastic prepregs, can be used in a wide variety of markets and applications, including flexible pipes for oil & gas and water transportation, pressure vessels (for example; hydrogen storage tanks and compressed natural gas tanks), and for providing local reinforcement to pre-formed components.

  • Evopreg® range expanded with unidirectional fibre-reinforced thermoplastic tapes

Composites Evolution, a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials, has announced the launch of a new range of unidirectional thermoplastic tapes, to sit alongside its existing line-up of Evopreg® prepregs. The first product families being launched are Evopreg® PA polyamide tapes, and Evopreg® PP polypropylene tapes, with further product lines expected as new customer requirements emerge.

Thermoplastic tapes, also known as thermoplastic prepregs, can be used in a wide variety of markets and applications, including flexible pipes for oil & gas and water transportation, pressure vessels (for example; hydrogen storage tanks and compressed natural gas tanks), and for providing local reinforcement to pre-formed components.

Marketing Director, Ben Hargreaves, explains further: “Our state-of-the-art manufacturing line gives us the capability to produce tapes on an industrial scale, using a variety of combinations of fibre and polymer. This is complemented by a pilot-scale line that allows us to carry out development trials, or manufacture small quantities of tape if required.”

“Because they can be repeatedly re-formed (via the application of heat and pressure), Evopreg® thermoplastic tapes are also very well-suited to multi-stage processing, meaning they are an excellent choice for producing hybrid structures, inserts or over-moulded components. In addition, this ability to be repeatedly re-formed opens the door to much easier recycling than is currently possible with thermoset composites.”

 

Source:

Composites Evolution

Political Tailwind for Alternative Carbon Sources (c) Renewable Carbon Initiative
European Policy under the new green deal
22.12.2021

Political Tailwind for Alternative Carbon Sources

  • More than 30 leading pioneers of the chemical and material sector welcome the latest political papers from Brussels, Berlin and Düsseldorf

The political situation for renewable carbon from biomass, CO2 and recycling for the defossilisation of the chemical and materials industry has begun to shift fundamentally in Europe. For the first time, important policy papers from Brussels and Germany take into consideration that the term decarbonisation alone is not sufficient, and that there are important industrial sectors with a permanent and even growing carbon demand. Finally, the need for a sustainable coverage of this carbon demand and the realisation of sustainable carbon cycles have been identified on the political stage. They are elemental to the realisation of a sustainable chemical and derived materials industry.

  • More than 30 leading pioneers of the chemical and material sector welcome the latest political papers from Brussels, Berlin and Düsseldorf

The political situation for renewable carbon from biomass, CO2 and recycling for the defossilisation of the chemical and materials industry has begun to shift fundamentally in Europe. For the first time, important policy papers from Brussels and Germany take into consideration that the term decarbonisation alone is not sufficient, and that there are important industrial sectors with a permanent and even growing carbon demand. Finally, the need for a sustainable coverage of this carbon demand and the realisation of sustainable carbon cycles have been identified on the political stage. They are elemental to the realisation of a sustainable chemical and derived materials industry.

The goal is to create sustainable carbon cycles. This requires comprehensive carbon management of renewable sources, which includes carbon from biomass, carbon from Carbon Capture and Utilisation (CCU) – the industrial use of CO2 as an integral part – as well as mechanical and chemical recycling. And only the use of all alternative carbon streams enables a true decoupling of the chemical and materials sector from additional fossil carbon from the ground. Only in this way can the chemical industry stay the backbone of modern society and transform into a sustainable sector that enables the achievement of global climate goals. The Renewable Carbon Initiative’s (RCI) major aim is to support the smart transition from fossil to renewable carbon: utilising carbon from biomass, CO2 and recycling instead of additional fossil carbon from the ground. This is crucial because 72% of the human-made greenhouse gas emissions are directly linked to additional fossil carbon. The RCI supports all renewable carbon sources available, but the political support is fragmented and differs between carbon from biomass, recycling or carbon capture and utilisation (CCU). Especially CCU has so far not been a strategic objective in the Green Deal and Fit-for-55.

This will change fundamentally with the European Commission's communication paper on “Sustainable Carbon Cycles” published on 15 December. The position in the paper represents an essential step forward that shows embedded carbon has reached the political mainstream – supported by recent opinions from members of the European parliament and also, apparently, by the upcoming IPCC assessment report 6. Now, CCU becomes a recognised and credible solution for sustainable carbon cycles and a potentially sustainable option for the chemical and  material industries. Also, in the political discussions in Brussels, the term “defossilation” is appearing more and more often, complementing or replacing the term decarbonisation in those areas where carbon is indispensable. MEP Maria da Graça Carvahlo is among a number of politicians in Brussels who perceive CCU as an important future industry, putting it on the political map and creating momentum for CCU. This includes the integration of CCU into the new Carbon Removal Regime and the Emission Trading System (ETS).

As the new policy documents are fully in line with the strategy of the RCI, the more than 30 member companies of the initiative are highly supportive of this new development and are ready to support policy-maker with data and detailed suggestions for active support and the realisation of sustainable carbon cycles and a sound carbon management. The recent political papers of relevance are highlighted in the following.

Brussels: Communication paper on “Sustainable Carbon Cycles”
On 15 December, the European Commission has published the communication paper “Sustainable Carbon Cycles” . For the first time, the importance of carbon in different industrial sectors is clearly stated. One of the key statements in the paper is the full recognition of CCU for the first time as a solution for the circular economy, which includes CCU-based fuels as well. The communication paper distinguishes between bio-based CO2, fossil CO2 and CO2 from direct air capture when addressing carbon removal and it also announces detailed monitoring of the different CO2 streams. Not only CCU, but also carbon from the bioeconomy is registered as an important pillar for the future. Here, the term carbon farming has been newly introduced, which refers to improved land management practices that result in an increase of carbon sequestration in living biomass, dead organic matter or soils by enhancing carbon capture or reducing the release of carbon. Even though the list of nature-based carbon storage technologies is non-exhaustive in our view, we strongly support the paper’s idea to deem sustainable land and forest management as a basis for the bioeconomy more important than solely considering land use as a carbon sink. Surprisingly, chemical recycling, which is also an alternative carbon source that substitutes additional fossil carbon from the ground (i.e. carbon from crude oil, natural gas or from coal), is completely absent from the communication paper.

Berlin: Coalition paper of the new German Government: “Dare more progress – alliance for freedom, justice and sustainability”
The whole of Europe is waiting to see how the new German government of Social Democrats, Greens and Liberals will shape the German climate policy. The new reform agenda focuses in particular on solar and wind energy as well as especially hydrogen. Solar energy is to be expanded to 200 GW by 2030 and two percent of the country's land is to be designated for onshore wind energy. A hydrogen grid infrastructure is to be created for green hydrogen, which will form the backbone of the energy system of the future – and is also needed for e-fuels and sustainable chemical industry, a clear commitment to CCU. There is a further focus on the topic of circular economy and recycling. A higher recycling quota and a product-specific minimum quota for the use of recyclates and secondary raw materials should be established at European level. In the coalition paper, there is also a clear commitment to chemical recycling to be found. A significant change for the industry is planned to occur in regards to the so-called “plastic tax” of 80 cents per kilogram of non-recycled plastic packaging. This tax has been implemented by the EU, but most countries are not passing on this tax to the manufacturers and distributors, or only to a limited extent. The new German government now plans to fully transfer this tax over to the industry.

Düsseldorf: Carbon can protect the climate – Carbon Management Strategy North Rhine-Westphalia (NRW)
Lastly, the RCI highly welcomes North Rhine-Westphalia (NRW, Germany) as the first region worldwide to adopt a comprehensive carbon management strategy, a foundation for the transformation from using additional fossil carbon from the ground to the utilisation of renewable carbon from biomass, CO2 and recycling. For all three alternative carbon streams, separate detailed strategies are being developed to achieve the defossilisation of the industry. This is all the more remarkable as North Rhine-Westphalia is the federal state with the strongest industry in Germany, in particular the chemical industry. And it is here, of all places, that a first master plan for the conversion of industry from fossil carbon to biomass, CO2 and recycling is implemented. If successful, NRW could become a global leader in sustainable carbon
management and the region could become a blueprint for many industrial regions.

20.12.2021

Kelheim Fibres: Severe Impact of Natural Gas Price Increases

Over the past 14 days, the wholesale cost of natural gas in Germany has risen by more than 50%. This increase presents an extraordinary challenge for industry, and there is no sign of support or intervention from the Government. Indeed, recent statements are destined to provoke a worsening of the situation.

Kelheim Fibres is entirely dependent on natural gas for the generation of electrical energy and steam and has no viable short-term alternatives. In addition, the raw materials used by the company often consume high levels of energy in their production and are also increasing significantly in cost. These increases in cost jeopardise the future of the business if they cannot be passed on though the supply chain.

Kelheim Fibres is calling on the Government of Germany to take immediate steps to mitigate the impact of the cost increases for natural gas and is committed to work to implement alternative sources of energy in the medium term.

Over the past 14 days, the wholesale cost of natural gas in Germany has risen by more than 50%. This increase presents an extraordinary challenge for industry, and there is no sign of support or intervention from the Government. Indeed, recent statements are destined to provoke a worsening of the situation.

Kelheim Fibres is entirely dependent on natural gas for the generation of electrical energy and steam and has no viable short-term alternatives. In addition, the raw materials used by the company often consume high levels of energy in their production and are also increasing significantly in cost. These increases in cost jeopardise the future of the business if they cannot be passed on though the supply chain.

Kelheim Fibres is calling on the Government of Germany to take immediate steps to mitigate the impact of the cost increases for natural gas and is committed to work to implement alternative sources of energy in the medium term.

In parallel, the disruption to global logistic networks that has been seen throughout 2021 is now expected to continue throughout 2022. Massive increases in shipping rates – in some cases in excess of 80% – are being imposed without notice and with no opportunity for negotiation. These costs must also be passed on though the supply chain if businesses are to remain viable.

To address these issues, Kelheim Fibres is implementing the following measures with immediate effect:

  • The increased cost of energy and freight will be passed on in prices to customers at the soonest opportunity;
  • If necessary, changes or adjustments to existing agreements will be negotiated to reflect the increased cost levels;
  • If the necessary increase in fibre prices cannot be secured, cuts to production will be implemented with the objective of minimising losses until the cost increases can be mitigated.

As the drivers for the increases in natural gas prices appear to be temporary in nature, we will maintain any price adjustments under review and pass on any relief to customers.

Craig Barker, CEO of Kelheim Fibres, describes the current situation as critical. “The cost increases we are facing are unprecedented and call for swift and decisive action. We are determined to take the necessary steps to preserve the future of our business and provide security of supply for our customers. At the same time, we are relying on the support of our customers to help us conquer the challenges our business is facing.”

Source:

Kelheim Fibres GmbH

08.10.2021

Price increase for MERACRYL™ MMA (methyl methacrylate) and other methacrylate monomer products

Due to soaring natural gas and ammonia prices, Röhm GmbH announces a price increase for MERACRYL™ MMA (methyl methacrylate) and other methacrylate monomer products in Europe with immediate effect.

As agreements allow, the increase is:

MERACRYL™ MMA: 130 EUR/mt
MERACRYL™ GMAA: 130 EUR/mt
MERACRYL™ n-BMA: 95 EUR/mt
MERACRYL™ i-BMA: 95 EUR/mt
MERACRYL™ HEMA 98: 110 EUR/mt
MERACRYL™ HPMA 98: 110 EUR/mt

Due to soaring natural gas and ammonia prices, Röhm GmbH announces a price increase for MERACRYL™ MMA (methyl methacrylate) and other methacrylate monomer products in Europe with immediate effect.

As agreements allow, the increase is:

MERACRYL™ MMA: 130 EUR/mt
MERACRYL™ GMAA: 130 EUR/mt
MERACRYL™ n-BMA: 95 EUR/mt
MERACRYL™ i-BMA: 95 EUR/mt
MERACRYL™ HEMA 98: 110 EUR/mt
MERACRYL™ HPMA 98: 110 EUR/mt

Source:

Röhm GmbH

(c) German Popp. Dr. Marina Crnoja-Cosic (Kelheim Fibres) and Linda Dengler (Microbify)
28.06.2021

Kelheim Fibres presents award at “Plan B” start-up competition

For the fourth time, the international start-up competition "Plan B - Biobased.Business.Bavaria." organised by BioCampus Straubing honoured the best new business ideas in the field of biobased solutions.

Dr Crnoja-Cosic, Director New Business Development, and Matthew North, Commercial Director, represented Kelheim Fibres at the award ceremony. The manufacturer of special viscose fibres has been working with the BioCampus Straubing for many years and is a supporter of the competition, this year as prize sponsors. In this capacity, Dr. Crnoja-Cosic congratulated the newly founded team of Microbify GmbH on their third place and presented them with a cheque for 3,000 Euros. As a spin-off from the University of Regensburg, Microbify works, among other things, on the use of old natural gas storage facilities for the production of green natural gas using extremophilic microorganisms.

For the fourth time, the international start-up competition "Plan B - Biobased.Business.Bavaria." organised by BioCampus Straubing honoured the best new business ideas in the field of biobased solutions.

Dr Crnoja-Cosic, Director New Business Development, and Matthew North, Commercial Director, represented Kelheim Fibres at the award ceremony. The manufacturer of special viscose fibres has been working with the BioCampus Straubing for many years and is a supporter of the competition, this year as prize sponsors. In this capacity, Dr. Crnoja-Cosic congratulated the newly founded team of Microbify GmbH on their third place and presented them with a cheque for 3,000 Euros. As a spin-off from the University of Regensburg, Microbify works, among other things, on the use of old natural gas storage facilities for the production of green natural gas using extremophilic microorganisms.

Driving the change from a fossil-based to a bio-based economy is a declared goal of Kelheim Fibres - their speciality fibres replacing fossil materials in more and more applications. To this end, the fibre manufacturer seeks inspiration and exchange within its own industry as well as with innovation partners from outside the industry, start-ups and science in an open innovation approach.

More information:
Kelheim Fibres Microbify GmbH
Source:

Kelheim Fibres GmbH

04.05.2021

Target climate neutrality: Lenzing invests EUR 200 mn in Asia

  • CO2 emissions will be reduced by 320,000 tons per year
  • First supplier of wood-based cellulosic fibers in China to completely eliminate coal
  • Share in eco-responsible specialty fibers will be significantly increased
  • Lenzing is strategically well on track with these investments

The Lenzing Group, the leading global supplier of wood-based specialty fibers, will invest more than EUR 200 mn in its production sites in Purwakarta (Indonesia) and Nanjing (China) to convert existing standard viscose capacity into environmentally responsible specialty fibers.

In Nanjing (China) Lenzing will establish the first wood-based fiber complex in China that is independent from coal as an energy source. By using natural gas based cogeneration, Lenzing will reduce CO2 emissions at the site by more than 200,000 tons. At the same time a line of standard viscose will be converted to a 35.000 tons TENCEL™ branded modal fibers line making Lenzing (Nanjing) Fibers Co., Ltd a 100 percent wood-based specialty fiber site by the end of 2022.

  • CO2 emissions will be reduced by 320,000 tons per year
  • First supplier of wood-based cellulosic fibers in China to completely eliminate coal
  • Share in eco-responsible specialty fibers will be significantly increased
  • Lenzing is strategically well on track with these investments

The Lenzing Group, the leading global supplier of wood-based specialty fibers, will invest more than EUR 200 mn in its production sites in Purwakarta (Indonesia) and Nanjing (China) to convert existing standard viscose capacity into environmentally responsible specialty fibers.

In Nanjing (China) Lenzing will establish the first wood-based fiber complex in China that is independent from coal as an energy source. By using natural gas based cogeneration, Lenzing will reduce CO2 emissions at the site by more than 200,000 tons. At the same time a line of standard viscose will be converted to a 35.000 tons TENCEL™ branded modal fibers line making Lenzing (Nanjing) Fibers Co., Ltd a 100 percent wood-based specialty fiber site by the end of 2022.

In Purwakarta (Indonesia), Lenzing will reduce its CO2 emissions by increasingly using biogenic fuels. Additional investments to reduce emissions to air and water will make this facility fully compliant with the EU Ecolabel by the end of 2022. That will allow converting standard viscose capacity into LENZING™ ECOVERO™ branded fibers for textile applications as well as LENZING™ Viscose Eco fibers for personal care and hygiene applications. As a result, the site in Indonesia will also become a pure specialty viscose supplier as of 2023.

Both investments are fully in line with Lenzing’s target to reduce its greenhouse gas emissions per ton of product by 50 percent by 2030. By avoiding or reducing the use of fossil fuels at the two sites, the Lenzing Group will be able to reduce CO2 emissions by more than 320,000 tons in total, or 18 percent, compared to 2017. In addition, this investment allows Lenzing also to reduce its total sulfur emissions by more than 50 percent, compared to 2019.

Together with its major lyocell fiber project in Thailand, Lenzing will also boost its share in specialty fibers as a percentage of fiber revenues to well above the targeted 75 percent already by 2023, which in turn is an important step towards achieving the company’s EBITDA target of EUR 800 mn by 2024.

 

More information:
climate-neutral viscose fibers
Source:

Lenzing AG

(c) Sika
05.02.2019

JEC World 2019 Sika Advances Resins innovates with its new high-performance resin

At JEC World 2019, Sika Advanced Resins will unveil Ullit’s new composite tank for trucks that run on compressed natural gas (CNG).

Together with its tailor-made epoxy system designed by Sika Advanced Resins, who are a leader in the development and production of high-performance resins, the tank helps to reduce pollution in urban traffic.

An epoxy laminating system that adapts to different designs
The tank, which contains up to 320 liters is the same size as a conventional diesel fuel tank. "We have been innovating together for more than 10 years! Sika Advanced Resins has developed a specific resin for our new range of high-pressure tanks. This high-performance resin can be adapted to all design constraints, particularly for our very high-pressure hydrogen tanks, up to 700 bar," explains Ullit founder and CEO Claude Hembert.

At JEC World 2019, Sika Advanced Resins will unveil Ullit’s new composite tank for trucks that run on compressed natural gas (CNG).

Together with its tailor-made epoxy system designed by Sika Advanced Resins, who are a leader in the development and production of high-performance resins, the tank helps to reduce pollution in urban traffic.

An epoxy laminating system that adapts to different designs
The tank, which contains up to 320 liters is the same size as a conventional diesel fuel tank. "We have been innovating together for more than 10 years! Sika Advanced Resins has developed a specific resin for our new range of high-pressure tanks. This high-performance resin can be adapted to all design constraints, particularly for our very high-pressure hydrogen tanks, up to 700 bar," explains Ullit founder and CEO Claude Hembert.

Sika Advanced Resins has used its expertise to develop a tailor-made resin to withstand the cyclic pressurization loads on the filament-wound tanks. In combination with carbon fiber the resin provides mechanical resistance for different tank shapes including those for vehicles running on natural gas. "The tank is placed in the same place as a diesel fuel tank and avoids the need for transformations in trucks. In addition Ullit-Sika composites reduce the weight of the tank by a factor of four, a huge benefit when we estimate that one tonne saved on a truck saves four liters of fuel per 100 kilometers in urban traffic," explains Patrick Noirclerc, Local Expert Composites at Sika Advanced Resins.

More information:
JEC World 2019 Sika
Source:

Agence Apocope