From the Sector

Reset
221 results
Winner of Cellulose Fibre Innovation Award 2024 (c) nova-Institute
Winner of Cellulose Fibre Innovation Award 2024
27.03.2024

Winner of Cellulose Fibre Innovation Award 2024

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

40 international speakers presented the latest market trends in their industry and illustrated the innovation potential of cellulose fibres. Leading experts introduced new technologies for the recycling of cellulose-rich raw materials and gave insights into circular economy practices in the fields of textiles, hygiene, construction and packaging. All presentations were followed by exciting panel discussions with active audience participation including numerous questions and comments from the audience in Cologne and online. Once again, the Cellulose Fibres Conference proved to be an excellent networking opportunity to the 214 participants and 23 exhibitors from 27 countries. The annual conference is a unique meeting point for the global cellulose fibre industry.  

For the fourth time, nova-Institute has awarded the “Cellulose Fibre Innovation of the Year” Award at the Cellulose Fibres Conference. The Innovation Award recognises applications and innovations that will lead the way in the industry’s transition to sustainable fibres. Close race between the nominees – “The Straw Flexi-Dress” by DITF & VRETENA (Germany), cellulose textile fibre from unbleached straw pulp, is the winning cellulose fibre innovation 2024, followed by HONEXT (Spain) with the “HONEXT® Board FR-B (B-s1, d0)” from fibre waste from the paper industry, while TreeToTextile (Sweden) with their “New Generation of Bio-based and Resource-efficient Fibre” won third place.

Prior to the event, the conference advisory board had nominated six remarkable innovations for the award. The nominees were neck and neck, when the winners were elected in a live vote by the audience on the first day of the conference.

First place
DITF & VRETENA (Germany): The Straw Flexi-Dress – Design Meets Sustainability

The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

Second place
Honext Material (Spain): HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry

HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, the product is verified in the Product Environmental Footprint.

Third Place
TreeToTextile (Sweden): A New Generation of Bio-based and Resource-efficient Fibre

TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn’t exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

The next conference will be held on 12-13 March 2025.

Source:

nova-Institut für politische und ökologische Innovation GmbH

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year Photo: DITF
The Flexidress in its various forms
22.03.2024

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

New technologies for wet and melt spinning of cellulose and bio-based polyesters, e.g. PLA, from which yarns and fabrics are produced, form the technical basis. Coating and dyeing processes have been developed and tested as part of the project. In addition to reducing the carbon footprint of the product, another environmental goal is to reduce the release of microfibers throughout the textile manufacturing process and life cycle.

Improving the sustainability and recyclability of the developed garments is ensured by design for circularity and digitally networked production means. On-demand production is realized in so-called "microfactories", which are individualized and produce only for actual demand. This production method can be achieved through regional, networked value chains and enables the traceability of materials and manufacturing processes.

The dress presented at the award ceremony is an example of the cooperation and the different qualifications of the project partners: TNO (Netherlands Organization for Applied Scientific Research) provided sustainably produced pulp. The HighPerCell fibers were produced in DITF's spinning facilities. At the same time, designers from the fashion label Vretena created the design for the flexible, two-piece dress, which can be knitted without cutting waste. DITF textile experts worked with the designers to develop the knitting pattern. DITF textile engineers and technicians produced the knitted fabric and assembled the dress at the institutes’ technical center. DITF computer scientists and engineers created the "value chain" and "digital twins" for digital traceability of the production processes.

The innovation prize was awarded to the HEREWEAR consortiu for their joint achievement. Representatives of DITF Denkendorf and Vretena accepted the award on behalf of the EU project partners.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

DITF: CO2-negative construction with new composite material Photo: DITF
Structure of the wall element
20.03.2024

DITF: CO2-negative construction with new composite material

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

Carbon fibers in the form of technical fabrics reinforce the side walls of the wall elements. They absorb tensile forces and are intended to stabilize the building material in the same way as reinforcing steel in concrete. The carbon fibers used are bio-based, produced from biomass. Lignin-based carbon fibers, which have long been technically optimized at DITF Denkendorf, are particularly suitable for this application: They are inexpensive due to low raw material costs and have a high carbon yield. In addition, unlike reinforcing steel, they are not susceptible to oxidation and therefore last much longer. Although carbon fibers are more energy-intensive to produce than steel, as used in reinforced concrete, only a small amount is needed for use in building materials. As a result, the energy and CO2 balance is much better than for reinforced concrete. By using solar heat and biomass to produce the carbon fibers and the weathering of the stone dust, the CO2 balance of the new building material is actually negative, making it possible to construct CO2-negative buildings.

The third component of the new building material is biochar. This is used as a filler between the two rock slabs. The char acts as an effective insulating material. It is also a permanent source of CO2 storage, which plays a significant role in the CO2 balance of the entire wall element.

From a technical point of view, the already realized demonstrator, a wall element for structural engineering, is well developed. The natural stone used is a gabbro from India, which has a high-quality appearance and is suitable for high loads. This has been proven in load tests.  Bio-based carbon fibers serve as the top layer of the stone slabs. The biochar from Convoris GmbH is characterized by particularly good thermal insulation values.

The CO2 balance of a house wall made of the new material has been calculated and compared with that of conventional reinforced concrete. This results in a difference in the CO2 balance of 157 CO2 equivalents per square meter of house wall. A significant saving!

* (Methods for removing atmospheric carbon dioxide (Carbon Dioxide Removal) by Direct Air Carbon Capture, Utilization and Sustainable Storage after Use (DACCUS).

Source:

Deutsche Institute für Textil- und Faserforschung

12.03.2024

Polartec: New Initiative “Beyond Begins Today”

Since inventing the first fleece crafted from recycled plastic water bottles more than three decades ago, Polartec®, a Milliken & Company brand, and the creator of innovative and more sustainable textile solutions, has upheld its pledge to protect the environment.

With its new Beyond Begins Today initiative, Polartec aims to raise awareness around the important global themes of sustainability, diversity and positive change.

Polartec is engaged to make the goal of zero waste a reality – from using 100% recycled and plant-based materials, to delivering certified waste reductions and innovative technologies that reduce the impact of its activities.

Since inventing the first fleece crafted from recycled plastic water bottles more than three decades ago, Polartec®, a Milliken & Company brand, and the creator of innovative and more sustainable textile solutions, has upheld its pledge to protect the environment.

With its new Beyond Begins Today initiative, Polartec aims to raise awareness around the important global themes of sustainability, diversity and positive change.

Polartec is engaged to make the goal of zero waste a reality – from using 100% recycled and plant-based materials, to delivering certified waste reductions and innovative technologies that reduce the impact of its activities.

Beyond Begins Today is a multifaceted campaign featuring static and multimedia content, including short films released throughout the year via multiple touchpoints and channels – the first of which will be released on Earth Day 2024 to underscore the underlying premise that the future is what we make it. Polartec’s commitment to sustainable solutions go beyond the integration of increasingly advanced manufacturing methods or the ongoing exploration of novel fibers, and continued investments in sustainable materials development.

Polartec’s promises that every product launches in 2024 will either reduce the impact on the planet, endure the test of time, or contribute to circularity processes. Beyond Begins Today looks at how Polartec fabrics are made to last, and made to be used and enjoyed from one generation to the next and beyond. It explores the innovative monomaterials, repurposed plastic and plant-based nylon membranes and fabrics that Polartec uses to set new standards for high performance materials and the ambitious climate-related objectives across the entire value chain that exceed existing mandates. This holistic strategy shall allow Polartec to stay at the forefront of its industry by producing top-notch textiles that champion environmental stewardship and pave the way for a more sustainable tomorrow.

Source:

Akimbo Communications for Polartec

5th Edititon of Texhibition Istanbul Fabric and Textile Accessories Fair (c) Texhibition Istanbul
05.03.2024

5th Edititon of Texhibition Istanbul Fabric and Textile Accessories Fair

Texhibition Istanbul Fabric and Textile Accessories Fair, organised by İTKİB Fuarcılık A.Ş. in cooperation with the Istanbul Textile Exporters Association (İTHİB), is ready for its fifth edition. From 6 to 8 March 2024, 558 exhibitors will present themselves to the 30,000 expected visitors from over 100 countries, including the European Union, Great Britain, the USA, North Africa and the Middle East. With this edition, Texhibition has more than doubled the space compared to the last event to 35,000 square metres.

The fifth edition of Texhibition Istanbul offers a comprehensive overview of all product groups in the textile prepress sector: from woven fabrics to knitwear, from denim to artificial leather and textile accessories

Texhibition Istanbul Fabric and Textile Accessories Fair, organised by İTKİB Fuarcılık A.Ş. in cooperation with the Istanbul Textile Exporters Association (İTHİB), is ready for its fifth edition. From 6 to 8 March 2024, 558 exhibitors will present themselves to the 30,000 expected visitors from over 100 countries, including the European Union, Great Britain, the USA, North Africa and the Middle East. With this edition, Texhibition has more than doubled the space compared to the last event to 35,000 square metres.

The fifth edition of Texhibition Istanbul offers a comprehensive overview of all product groups in the textile prepress sector: from woven fabrics to knitwear, from denim to artificial leather and textile accessories

Due to popular demand, the fair has been expanded to five halls, including the new Yarn Hall (Hall 8) with exhibitors such as Sasa, Aksa, Karafiber, Kortex, Tepar, Ensar, Kaplanlar and Iskur and the BlueBlack Denim Hall (Hall 7), which showcases the latest denim trends and presents a wide range from blue shades to black denims with exhibitors such as İsko, Çalık Bossa, Kipas and İskur. BlueBlack Denim is designed by the  designer Idil Tarzi in cooperation with the creative directors Gönül Altunisik and Selvi Yigci.

Curated by Idil Tarzi and her creative team, the Texhibition Trend Area in Halls 4 and 5 presents the latest colour trends, materials and accessories.

Under the direction of designers Arzu Kaprol and Filiz Tunca, the Innovation Hub showcases technological innovations that add value to textile production: from fibre to yarn, from fabrics to clothing.

Digital art installations in the entrance area, which run through the entire trade fair, as well as piano performances in the foyer await visitors at the upcoming Texhibition.

Seminars and workshops with industry experts shed light on current topics in the industry, including innovations, production processes and design developments. These opportunities offer participants a platform to exchange knowledge and discuss the latest developments in the textile industry.

Freudenberg: Fully synthetic wetlaid nonwovens for filtration (c) Freudenberg Performance Materials Holding GmbH
Freudenberg’s fully synthetic wetlaid material for reverse osmosis membranes
01.03.2024

Freudenberg: Fully synthetic wetlaid nonwovens for filtration

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Versatile and flexible manufacturing
Freudenberg’s fully synthetic wetlaid nonwovens can be made of polyester, polyolefin, polyamide and polyvinyl alcohol (PVA), using staple fibers of up to 12mm fiber length and microfibers as fine as 0.04dtex. In terms of weight, the product range spans weights of between 8g/m² and 250g/m². Freudenberg’s flexible wetlaid manufacturing line has the capability to combine various thermal and chemical bonding technologies. The materials have high precision in weight and thickness as well as a defined pore size and high porosity.

Wetlaid capabilities for various applications
In addition to its fully synthetic range, Freudenberg can also incorporate glass fibers, viscose and cellulose. General industry applications for Freudenberg wetlaid nonwovens are surfacing veils for glass-fiber reinforced plastics, compostable desiccant bags, battery separators, acoustics, heatshields, and apparel applications such as embroidery substrates.

Source:

Freudenberg Performance Materials Holding GmbH

FET: New Senior Materials and Process Scientist (c) FET
R&D Manager Dr Jonny Hunter (left) welcomes Dr Kristoffer Kortsen, Senior Materials and Process Scientist
28.02.2024

FET: New Senior Materials and Process Scientist

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has appointed Dr Kristoffer Kortsen as Senior Materials and Process Scientist. He will report directly to R&D Manager, Dr Jonny Hunter, who joined FET in early 2023 in a growing Research and Development team.

Kortsen’s main area of work is in Gel Spinning of UHMWPE (Ultra-High Molecular Weight Polyethylene). His contribution will help provide gel spinning expertise and equipment in the near future to a range of industries including medical, aerospace, defence aerospace and marine.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has appointed Dr Kristoffer Kortsen as Senior Materials and Process Scientist. He will report directly to R&D Manager, Dr Jonny Hunter, who joined FET in early 2023 in a growing Research and Development team.

Kortsen’s main area of work is in Gel Spinning of UHMWPE (Ultra-High Molecular Weight Polyethylene). His contribution will help provide gel spinning expertise and equipment in the near future to a range of industries including medical, aerospace, defence aerospace and marine.

He completed a Master’s in chemistry at KU Leuven, graduating magna cum laude in 2018. For his Master’s placement, he worked on the production of impact modifier additives for PVC at Kaneka Belgium. Continuing a partnership with this international chemical manufacturing company, he joined the Howdle group at the University of Nottingham for a PhD project looking into the industrial potential of scCO2 dispersion polymerisations for additive production. After graduating, he worked in the Shaver group at the University of Manchester, developing a holistic approach to plastics recycling and sustainability across the many stakeholders in the field.

Source:

Fibre Extrusion Technology Ltd (FET)

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024 (c) FUSE GmbH
26.02.2024

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

The STOLL Business Unit will be focussing on thermoplastic materials. Several knit to shape parts with a textile outer surface and a hardened inner surface will be on display. The double-face products can be made from different types of yarn and do not need to be back-moulded for use as side door panels or housing shells, for example. In addition, the ready-to-use design saves on waste and yarn material.

26.02.2024

SGL Carbon: Review of options for Business Unit Carbon Fibers

SGL Carbon SE is currently evaluating various strategic options for the Business Unit Carbon Fibers (CF). These include a possible partial or complete divestment of the Business Unit. In a first step, potential interested parties shall be approached with the general data of the Business Unit to determine their interest in an acquisition. If there is sufficient interest, a structured transaction process will be carried out in a second step. Overall, a share of sales amounting to around € 179.6 million after nine months in 2023 (9M 2022: € 269.0 million) is therefore under review. The CF sales share corresponded to 21.9% of SGL Carbon's consolidated sales after nine months in 2023 (9M 2022: 31.5%). Adjusted EBITDA of the Business Unit excluding the result from joint ventures amounted to minus € 10,9 million after nine months in 2023 (9M 2022: € 27,9 million). Despite the operating loss of CF after nine months in 2023, SGL Carbon maintains its guidance for fiscal year 2023. This shows the positive development of the three other business units and the resilience of SGL Carbon's business model.

SGL Carbon SE is currently evaluating various strategic options for the Business Unit Carbon Fibers (CF). These include a possible partial or complete divestment of the Business Unit. In a first step, potential interested parties shall be approached with the general data of the Business Unit to determine their interest in an acquisition. If there is sufficient interest, a structured transaction process will be carried out in a second step. Overall, a share of sales amounting to around € 179.6 million after nine months in 2023 (9M 2022: € 269.0 million) is therefore under review. The CF sales share corresponded to 21.9% of SGL Carbon's consolidated sales after nine months in 2023 (9M 2022: 31.5%). Adjusted EBITDA of the Business Unit excluding the result from joint ventures amounted to minus € 10,9 million after nine months in 2023 (9M 2022: € 27,9 million). Despite the operating loss of CF after nine months in 2023, SGL Carbon maintains its guidance for fiscal year 2023. This shows the positive development of the three other business units and the resilience of SGL Carbon's business model.

Carbon Fibers manufactures textile, acrylic and carbon fibers as well as composite materials at seven locations in Europe and North America. Following the temporary drop in demand for carbon fibers from the important wind industry market, the Business Unit's sales and earnings fell significantly in the course of fiscal year 2023. Due to the importance of the wind industry for the European Green Deal, SGL Carbon and many experts assumed that the wind industry recovers quickly. Unfortunately, this is currently not the case. Even if demand picks up, the company assumes that Carbon Fibers will need additional resources to remain competitive in the international market environment and to exploit market opportunities in the best possible way. Against this background, SGL Carbon is reviewing all possibilities to support a positive further development of the Carbon Fibers Business Unit.

More information:
SGL Carbon carbon fibers
Source:

SGL Carbon SE 

23.02.2024

RISE® 2024: Call for Presentations and Award Nominations

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for presentations and award nominations for the RISE® (Research, Innovation & Science for Engineered Fabrics) Conference. RISE will be held October 1-2, 2024, at the James B. Hunt, Jr. Library, North Carolina State University, Raleigh, North Carolina. RISE is a two-day conference presenting new research and science that drives innovation and product development. The theme for this year’s event is “The Other Sustainability Story: Extended Use and Reduced Consumption.”

Nonwoven professionals are encouraged to submit their technical abstracts by Friday, April 12, 2024. Topics being considered are raw materials, equipment and processing, product-related technologies, and applications.  Abstracts may be submitted via the RISE website. For questions about abstract submissions, contact Deanna Lovell.

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for presentations and award nominations for the RISE® (Research, Innovation & Science for Engineered Fabrics) Conference. RISE will be held October 1-2, 2024, at the James B. Hunt, Jr. Library, North Carolina State University, Raleigh, North Carolina. RISE is a two-day conference presenting new research and science that drives innovation and product development. The theme for this year’s event is “The Other Sustainability Story: Extended Use and Reduced Consumption.”

Nonwoven professionals are encouraged to submit their technical abstracts by Friday, April 12, 2024. Topics being considered are raw materials, equipment and processing, product-related technologies, and applications.  Abstracts may be submitted via the RISE website. For questions about abstract submissions, contact Deanna Lovell.

RISE® Innovation Award
In addition, INDA is requesting nominations for innovative nonwoven products and technologies for the RISE® Innovation Award. INDA will consider categories such as raw materials, roll goods, converting, packaging, active ingredients, binders, additives and end products for nominations. This Award recognizes innovation in areas within and on the periphery of the nonwovens industry, utilizing advanced science and engineering principles to develop solutions to problems and advance the usage of nonwovens.

Three finalists will be chosen to present their innovations to technology scouts, scientists, researchers, and industry professionals on Tuesday, October 1st. Nominations may be submitted via the INDA website. The Award submission deadline is July 29, 2024. For questions about the Award, contact Vickie Smead.

Last year, the RISE® Innovation Award was presented to TiHive for their SAPMonit technology.

Source:

INDA, the Association of the Nonwoven Fabrics Industry

STFI: Lightweight construction innovations at JEC World in Paris (c) silbaerg GmbH and STFI (see information on image)
23.02.2024

STFI: Lightweight construction innovations at JEC World in Paris

At this year's JEC World, STFI will be presenting highlights from carbon fibre recycling as well as a new approach to hemp-based bast fibres, which have promising properties as reinforcement in lightweight construction.

Green Snowboard
At JEC World in Paris from 5 to 7 March 2024, STFI will be showcasing a snowboard from silbaerg GmbH with a patented anisotropic coupling effect made from hemp and recycled carbon fibres with bio-based epoxy resin. In addition to silbaerg and STFI, the partners Circular Saxony - the innovation cluster for the circular economy, FUSE Composite and bto-epoxy GmbH were also involved in the development of the board. The green snowboard was honoured with the JEC Innovation Award 2024 in the “Sport, Leisure and Recreation” category.

At this year's JEC World, STFI will be presenting highlights from carbon fibre recycling as well as a new approach to hemp-based bast fibres, which have promising properties as reinforcement in lightweight construction.

Green Snowboard
At JEC World in Paris from 5 to 7 March 2024, STFI will be showcasing a snowboard from silbaerg GmbH with a patented anisotropic coupling effect made from hemp and recycled carbon fibres with bio-based epoxy resin. In addition to silbaerg and STFI, the partners Circular Saxony - the innovation cluster for the circular economy, FUSE Composite and bto-epoxy GmbH were also involved in the development of the board. The green snowboard was honoured with the JEC Innovation Award 2024 in the “Sport, Leisure and Recreation” category.

VliesComp
The aim of the industrial partners Tenowo GmbH (Hof), Siemens AG (Erlangen), Invent GmbH (Braunschweig) and STFI united in the VliesComp project is to bring recycled materials back onto the market in various lightweight construction solutions. The application fields "Innovative e-machine concepts for the energy transition" and "Innovative e-machine concepts for e-mobility" were considered as examples. On display at JEC World in Paris will be a lightweight end shield for electric motors made from hybrid nonwovens - a mixture of thermoplastic fibre components and recycled reinforcing fibres - as well as nonwovens with 100% recycled reinforcing fibres. The end shield was ultimately manufactured with a 100% recycled fibre content. The tests showed that, compared to the variant made from primary carbon fibres using the RTM process, a 14% reduction in CO2 equivalent is possible with the same performance. The calculation for the use of the prepreg process using a bio-resin system shows a potential for reducing the CO2 equivalent by almost 70 %.

Bast fibre reinforcement
To increase stability in the plant stem, bast fibres form in the bark area, which support the stem but, in contrast to the rigid wood, are very flexible and allow slender, tall plants to move in the wind without breaking.A new process extracts the bast bark from hemp by peeling.The resulting characteristic values, such as tensile modulus of elasticity, breaking strength and elongation, are very promising in comparison with the continuous rovings made of flax available on the market.The material could be used as reinforcement in lightweight construction.At JEC World, STFI will be exhibiting reinforcing bars that have been processed into a knitted fabric using a pultrusion process based on bio-based reinforcing fibres made from hemp bast for mineral matrices.

Source:

Sächsische Textilforschungsinstitut e.V. (STFI)

DITF: Biopolymers from bacteria protect technical textiles Photo: DITF
Charging a doctor blade with molten PHA using a hot-melt gun
23.02.2024

DITF: Biopolymers from bacteria protect technical textiles

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

These biopolymers have the advantage that they can be produced in anything from small laboratory reactors to large production plants. The most promising biopolymers include polysaccharides, polyamides from amino acids and polyesters such as polylactic acid or polyhydroxyalkanoates (PHAs), all of which are derived from renewable raw materials. PHAs is an umbrella term for a group of biotechnologically produced polyesters. The main difference between these polyesters is the number of carbon atoms in the repeat unit. To date, they have mainly been investigated for medical applications. As PHAs products are increasingly available on the market, coatings made from PHAs may also be increasingly used in technical applications in the future.

The bacteria from which the PHAs are obtained grow with the help of carbohydrates, fats and an increased CO2 concentration and light with suitable wavelength.

The properties of PHA can be adapted by varying the structure of the repeat unit. This makes polyhydroxyalkanoates a particularly interesting class of compounds for technical textile coatings, which has hardly been investigated to date. Due to their water-repellent properties, which stem from their molecular structure, and their stable structure, polyhydroxyalkanoates have great potential for the production of water-repellent, mechanically resilient textiles, such as those in demand in the automotive sector and for outdoor clothing.

The DITF have already carried out successful research work in this area. Coatings on cotton yarns and fabrics made of cotton, polyamide and polyester showed smooth and quite good adhesion. The PHA types for the coating were both procured on the open market and produced by the research partner Fraunhofer IGB. It was shown that the molten polymer can be applied to cotton yarns by extrusion through a coating nozzle. The molten polymer was successfully coated onto fabric using a doctor blade. The length of the molecular side chain of the PHA plays an important role in the properties of the coated textile. Although PHAs with medium-length side chains are better suited to achieving low stiffness and a good textile handle, their wash resistance is low. PHAs with short side chains are suitable for achieving high wash and abrasion resistance, but the textile handle is somewhat stiffer.

The team is currently investigating how the properties of PHAs can be changed in order to achieve the desired resistance and textile properties in equal measure. There are also plans to formulate aqueous formulations for yarn and textile finishing. This will allow much thinner coatings to be applied to textiles than is possible with molten PHAs.

Other DITF research teams are investigating whether PHAs are also suitable for the production of fibers and nonwovens.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

Julien Born Photo HeiQ Materials AG
Julien Born
16.02.2024

Julien Born new CEO of HeiQ AeoniQ Holding

HeiQ AeoniQ Holding, a subsidiary of HeiQ Group, is appointing Julien Born as its CEO, leveraging his extensive executive leadership and profound textile industry expertise cultivated in prestigious organizations such as DuPont, KOCH Industries, and The LYCRA Company, where he served as CEO since 2021. Julien Born will champion the growth of the cellulosic filament fiber HeiQ AeoniQ™.

The HeiQ AeoniQ™ technology is poised for commercial production at the inaugural manufacturing facility in Portugal by the close of 2025. The just concluded €5M acquisition of land and buildings, within a 2-year project total investment of €80M, marks a pivotal milestone for the 15,000m2 facility in Maia, Porto. Situated strategically in Portugal's textile hub and a mere 20 minutes from a major commercial port, this facility is poised to catalyze the scale-up phase of the business, going from pilot manufacture to mass production when it wants to compete at full-scale on cost and performance with fossil fuel-based fibers.

HeiQ AeoniQ Holding, a subsidiary of HeiQ Group, is appointing Julien Born as its CEO, leveraging his extensive executive leadership and profound textile industry expertise cultivated in prestigious organizations such as DuPont, KOCH Industries, and The LYCRA Company, where he served as CEO since 2021. Julien Born will champion the growth of the cellulosic filament fiber HeiQ AeoniQ™.

The HeiQ AeoniQ™ technology is poised for commercial production at the inaugural manufacturing facility in Portugal by the close of 2025. The just concluded €5M acquisition of land and buildings, within a 2-year project total investment of €80M, marks a pivotal milestone for the 15,000m2 facility in Maia, Porto. Situated strategically in Portugal's textile hub and a mere 20 minutes from a major commercial port, this facility is poised to catalyze the scale-up phase of the business, going from pilot manufacture to mass production when it wants to compete at full-scale on cost and performance with fossil fuel-based fibers.

HeiQ intends to consolidate the Group’s current and future activities in Portugal at the newly acquired site. This includes Shared Service Center functions as well as the Innovation Hub for the HeiQ Textile & Flooring business unit.

The recent addition of Julien Born to lead the charge follows the nomination of Robert van de Kerkhof to the HeiQ Board, a seasoned executive with extensive textile experience holding positions as CCO, CSO, Board member of Lenzing Plc, and Chairman of CIRFS, the European Man-Made Fibres Association. Robert will also serve as the Chairman of the HeiQ AeoniQ Holding Board.

HeiQ AeoniQ Holding, established as an independent subsidiary to attract new investors, value-chain partners, and brands, embarks on an ambitious multi-year scale-up strategy. This strategy involves integrating diverse sources of bio-derived feedstock and hyper-scaling cellulosic filament fiber production capacity over the next decade, targeting industries such as apparel, footwear, automotive, home textiles, and aeronautics.

Source:

HeiQ Materials AG

(c) Swiss Textile Machinery Swissmem
16.02.2024

Recycled fibres: Swiss manufacturers for circularity

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Spinning recycled cotton
The use of mechanically recycled fibres in spinning brings specific quality considerations: they have higher levels of short fibres and neps – and may often be colored, particularly if post-consumer material is used. It’s also true that recycled yarns have limitations in terms of fineness. The Uster Statistics 2023 edition features an extended range of fibre data, supporting sustainability goals, including benchmarks for blends of virgin and recycled cotton.
In general, short fibres such as those in recycled material can easily be handled by rotor spinning machines. For ring spinning, the shorter the fibres, the more difficult it is to guide them through the drafting zone to integrate them into the yarn body. Still, for wider yarn counts and higher yarn quality, the focus is now shifting to ring spinning. The presence of short fibres is a challenge, but Rieter offers solutions to address this issue.

Knitting recycled wool
For recycling, wool fibres undergo mechanical procedures such as shredding, cutting, and re-spinning, influencing the quality and characteristics of the resulting yarn. These operations remove the natural scales and variations in fibre length of the wool, causing a decrease in the overall strength and durability of the recycled yarn. This makes the yarn more prone to breakage, especially under the tension exerted during knitting.

Adapting to process recycled materials often requires adjustments to existing machinery. Knitting machines must be equipped with positive yarn suppliers to control fibre tension. Steiger engages in continuous testing of new yarns on the market, to check their suitability for processing on knitting machines. For satisfactory quality, the challenges intensify, with natural yarns requiring careful consideration and adaptation in the knitting processes.

From fibres to nonwovens
Nonwovens technology was born partly from the idea of recycling to reduce manufacturing costs and to process textile waste and previously unusable materials into fabric structures. Nonwovens production lines, where fibre webs are bonded mechanically, thermally or chemically, can easily process almost all mechanically and chemically recycled fibres.

Autefa Solutions offers nonwovens lines from a single source, enabling products such as liners, wipes, wadding and insulation to be produced in a true closed loop. Fibres are often used up to four times for one product.

Recycling: total strategy
Great services, technology and machines from members of Swiss Textile Machinery support the efforts of the circular economy to process recycled fibres. The machines incorporate the know-how of several decades, with the innovative power and quality standards in production and materials.
Stäubli’s global ESG (environmental, social & governance) strategy defines KPIs in the context of energy consumption, machine longevity and the recycling capacity in production units worldwide, as well in terms of machinery recyclability. The machine recyclability of automatic drawing in machines, weaving systems and jacquard machines ranges from 96 to 99%.

Source:

Swiss Textile Machinery Swissmem

Presentation of the certificate for 1st place in the business plan competition KEUR.NRW 2023 to the RWTH start-up SA-Dynamics; from left to right: Oliver Krischer (Minister for the Environment, Nature Conservation and Transport of the State of NRW), Sascha Schriever (SA-Dynamics); Maximilian Mohr (SA-Dynamics); Jens Hofer (SA-Dynamics); Christian Schwotzer (SA-Dynamics) © Business Angels Deutschland e. V. (BAND)
Presentation of the certificate for 1st place in the business plan competition KEUR.NRW 2023 to the RWTH start-up SA-Dynamics; from left to right: Oliver Krischer (Minister for the Environment, Nature Conservation and Transport of the State of NRW), Sascha Schriever (SA-Dynamics); Maximilian Mohr (SA-Dynamics); Jens Hofer (SA-Dynamics); Christian Schwotzer (SA-Dynamics)
26.01.2024

Start-up: Bio-based aerogel fibres replace synthetic insulation materials

The Aachen-based start-up SA-Dynamics is developing sustainable, bio-based and biodegradable insulation materials made from aerogel fibres, thereby setting new standards in resource-saving construction. Dr Sascha Schriever (Institut für Textiltechnik ITA), Maximilian Mohr (ITA), Dr Jens Hofer (ITA Postdoc) and Dr Christian Schwotzer (Department for Industrial Furnaces and Heat Engineering IOB), who trained at RWTH Aachen University, were awarded first place in the KUER.NRW Business Plan Competition 2023 and prize money of €6,000.

SA-Dynamics relies on the impressive properties of aerogel fibres: they have excellent insulating properties, are lightweight, durable, robust, versatile and can be processed very well on conventional textile machines thanks to their flexibility. This makes them comparable to polystyrene, but still sustainable, as SA Dynamics uses bio-based and biodegradable raw materials.

The Aachen-based start-up SA-Dynamics is developing sustainable, bio-based and biodegradable insulation materials made from aerogel fibres, thereby setting new standards in resource-saving construction. Dr Sascha Schriever (Institut für Textiltechnik ITA), Maximilian Mohr (ITA), Dr Jens Hofer (ITA Postdoc) and Dr Christian Schwotzer (Department for Industrial Furnaces and Heat Engineering IOB), who trained at RWTH Aachen University, were awarded first place in the KUER.NRW Business Plan Competition 2023 and prize money of €6,000.

SA-Dynamics relies on the impressive properties of aerogel fibres: they have excellent insulating properties, are lightweight, durable, robust, versatile and can be processed very well on conventional textile machines thanks to their flexibility. This makes them comparable to polystyrene, but still sustainable, as SA Dynamics uses bio-based and biodegradable raw materials.

"We can revolutionise the construction world with bio-based aerogel fibres," explains ITA founder Dr Sascha Schriever proudly. "If all insulation materials in construction are converted to bio-based aerogel fibres, all builders can realise their dream of a sustainable house."

SA Dynamics has come a good deal closer to its founding goal by winning the KUER.NRW 2023 business plan competition. The spin-off from Institut für Textiltechnik (ITA) and Department for Industrial Furnaces and Heat Engineering (IOB) at RWTH Aachen University is scheduled for spring 2025.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Celanese and Under Armour introduce elastane alternative (c) Celanese Corporation
24.01.2024

Celanese and Under Armour introduce elastane alternative

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

NEOLAST™ fibers will be produced using recyclable elastoester polymers. As end users transition to a more circular economy, Celanese and Under Armour are exploring the potential of the fibers to improve the compatibility of stretch fabrics with future recycling systems and infrastructure.

In addition to the sustainability benefits, the new NEOLAST™ fibers deliver increased production precision, allowing spinners to dial power-stretch levels up or down and engineer fibers to meet a broader array of fabric specifications.

Source:

Celanese Corporation

nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

B.I.G. Yarns: Virgin polyester BCF yarns for automotive carpet (c) Beaulieu International Group
17.01.2024

B.I.G. Yarns: Virgin polyester BCF yarns for automotive carpet

To expand its support for high-end and luxurious automotive interiors, B.I.G. Yarns has completed its first industrial production runs of virgin polyester BCF yarns for automotive carpet to complement its line of polyamide PA6 superior yarns.

There is a growing market in PET for automotive interior applications, with polyester allowing automotive OEMs and Tier 1 to develop products that, from the outset, consider eco-design by building MONO-polymer carpets and flooring that are 100% recyclable at End of Life (EOL ). These materials are helping to ensure improved and more sustainable EOL recycling of electric vehicles that are driving the future of the car industry.

To expand its support for high-end and luxurious automotive interiors, B.I.G. Yarns has completed its first industrial production runs of virgin polyester BCF yarns for automotive carpet to complement its line of polyamide PA6 superior yarns.

There is a growing market in PET for automotive interior applications, with polyester allowing automotive OEMs and Tier 1 to develop products that, from the outset, consider eco-design by building MONO-polymer carpets and flooring that are 100% recyclable at End of Life (EOL ). These materials are helping to ensure improved and more sustainable EOL recycling of electric vehicles that are driving the future of the car industry.

The new PET BCF Yarns offer high-performance for automotive carpets, including abrasion and stain resistance, and durability, passing all stringent automotive tests including the Taber test for abrasion performance, compressibility and recovery ability test, light fastness in automotive (DIN EN ISO 105-B06) and VOC (fogging) according the VDA 278 test on VOC and FOG emission. The yarns can be color solution dyed, have a dTex between 1300 – 1500, 81 filaments and are ideally for mats with a composition of 400 to 800 gram per m², while the yarns for molded carpets have a dTex of 1200, 144 filaments for 380 gram per m².

With the addition of PET BCF yarns, B.I.G. Yarns is now a one-stop-shop for 3 types of Solution Dyed BCF carpet yarns for the automotive industry: nylon (PA6), polypropylene (PP) and polyester (PET), and the Eqo-range of PA6 yarns – the sustainability focused EqoBalance, EqoCycle and EqoYarn.

The automotive carpet market is expected to grow strongly in the coming decade with the increased demand for vehicle customization and personalization driven by owners looking to upgrade and enhance interiors, including the flooring area.
A growing awareness around car hygiene is also boosting the market as consumers become more conscious of maintaining cleanliness in their vehicles, including the floors. Automotive carpets provide an effective solution by trapping dirt and preventing it from spreading to other areas.

Source:

Beaulieu International Group

World of Wipes Innovation Award® INDA
09.01.2024

World of Wipes Innovation Award®: Nominations Are Open

INDA, the Association of the Nonwoven Fabrics Industry, announced that nominations are open for the 2024 World of Wipes Innovation Award®. This Award recognizes a product or technology in the wipes sector that creatively uses nonwovens. The Award will be presented at the World of Wipes® (WOW) International Conference, June 17-20 at the Hyatt Regency Minneapolis, Minneapolis, MN.

Nominations will be accepted online through Monday, April 15th via www.inda.org/awards/wow-innovation-award.html. Nominees will be selected from a range of products and technologies that have been commercially available two years prior to WOW 2024. Products and technologies may include end product components, fabrication techniques, or end-products that use a nonwoven technology. Award categories include dry or wet wipes, institutional or industrial wipes, raw materials, and equipment. Three finalists will present their innovations to industry leaders attending WOW on Tuesday, June 18th. The winner will be announced Thursday, June 20th.

INDA, the Association of the Nonwoven Fabrics Industry, announced that nominations are open for the 2024 World of Wipes Innovation Award®. This Award recognizes a product or technology in the wipes sector that creatively uses nonwovens. The Award will be presented at the World of Wipes® (WOW) International Conference, June 17-20 at the Hyatt Regency Minneapolis, Minneapolis, MN.

Nominations will be accepted online through Monday, April 15th via www.inda.org/awards/wow-innovation-award.html. Nominees will be selected from a range of products and technologies that have been commercially available two years prior to WOW 2024. Products and technologies may include end product components, fabrication techniques, or end-products that use a nonwoven technology. Award categories include dry or wet wipes, institutional or industrial wipes, raw materials, and equipment. Three finalists will present their innovations to industry leaders attending WOW on Tuesday, June 18th. The winner will be announced Thursday, June 20th.

Symposium"All about cellulose" Grafik: Thüringisches Institut für Textil- und Kunststoff-Forschung Rudolstadt e.V.
08.01.2024

Rudolstädter Kunststofftage: Symposium "All about cellulose"

As part of the "RUDOLSTÄDTER KUNSTSTOFFTAGE" series, the TITK - Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. invites you to the symposium "All about cellulose: How we can use a native polymer for intelligent, innovative and sustainable products".

In their presentations, speakers from industry and research will highlight the potential and diverse applications of the sustainable platform polymer cellulose for clothing, hygiene and medical textiles, battery and storage technology or as a meltable material for 3D printing.
The conference language is English.

The conference is aimed at textile manufacturers and processors as well as materials scientists and SMEs from the industry in general. As in previous years, there will be the opportunity to visit the technical centres and laboratories of the business-oriented research institute.

Event details and registration options can be found under DATES.

As part of the "RUDOLSTÄDTER KUNSTSTOFFTAGE" series, the TITK - Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. invites you to the symposium "All about cellulose: How we can use a native polymer for intelligent, innovative and sustainable products".

In their presentations, speakers from industry and research will highlight the potential and diverse applications of the sustainable platform polymer cellulose for clothing, hygiene and medical textiles, battery and storage technology or as a meltable material for 3D printing.
The conference language is English.

The conference is aimed at textile manufacturers and processors as well as materials scientists and SMEs from the industry in general. As in previous years, there will be the opportunity to visit the technical centres and laboratories of the business-oriented research institute.

Event details and registration options can be found under DATES.

Source:

Thüringisches Institut für Textil- und Kunststoff-Forschung Rudolstadt e.V.