From the Sector

Reset
262 results
17.04.2024

Stahl: 2023 ESG Report

Stahl has published its 2023 Environmental, Social and Governance (ESG) Report. The report outlines Stahl's recent progress on its ESG Roadmap to 2030 and the steps the company is taking to live its purpose of Touching lives, for a better world.

Stahl’s ESG Roadmap to 2030 includes interim targets for 2023, making this a year in which Stahl reached several important milestones. For example, the company reduced its scope 1 and 2 greenhouse gas (GHG) emissions by 22% versus 2022. Furthermore, in 2023 the Science Based Targets initiative (SBTi) validated Stahl's scope 1, 2 and 3 targets, making it one of the first coatings companies on the SBTi-approved list.

To reduce its GHG emissions, Stahl is actively increasing its use of clean energy. At the end of 2023, renewable energy generation, such as solar panels, had been installed at four Stahl sites, compared to its target of three.

Stahl has published its 2023 Environmental, Social and Governance (ESG) Report. The report outlines Stahl's recent progress on its ESG Roadmap to 2030 and the steps the company is taking to live its purpose of Touching lives, for a better world.

Stahl’s ESG Roadmap to 2030 includes interim targets for 2023, making this a year in which Stahl reached several important milestones. For example, the company reduced its scope 1 and 2 greenhouse gas (GHG) emissions by 22% versus 2022. Furthermore, in 2023 the Science Based Targets initiative (SBTi) validated Stahl's scope 1, 2 and 3 targets, making it one of the first coatings companies on the SBTi-approved list.

To reduce its GHG emissions, Stahl is actively increasing its use of clean energy. At the end of 2023, renewable energy generation, such as solar panels, had been installed at four Stahl sites, compared to its target of three.

Measuring – and reducing – the impact of products is an important step in the company’s scope 3 emissions. As such, 353 Stahl products now have either life cycle assessment (LCA) or product carbon footprint (PCF) data, far exceeding the 2023 target of 50.
 
New ratings and certifications
In 2023, 2,161 of Stahl's products were certified by Zero Discharge of Hazardous Chemicals (ZDHC), in line with ZDHC MRSL V3.1. These products represented 70% of the company’s sales revenue, demonstrating increased demand for coatings with a lower risk to health and the environment.

Stahl was also proud to achieve a Platinum rating from EcoVadis for the second year in a row, which places it in the top 1% of companies evaluated. Stahl also exceeded its 2023 target of an average EcoVadis rating of at least 60/100 for their top ten suppliers, with an average rating of 68/100 reported in December 2023.
Fostering a safe and welcoming work environment

A core pillar of Stahl’s ESG approach is how it supports its employees’ physical and mental well-being. The 2023 ESG Report outlines several examples of this commitment, such as improvement in its key safety KPIs for the third year in a row.

Besides keeping people safe, Stahl continues to make progress in fostering an open and inclusive workplace. For example, in support of diversity, equity and inclusion (DEI), Stahl appointed its first female leadership team member, trained 98% of its staff in DEI and established DEI committees at all Stahl sites. In addition, to strengthen communication, engagement and collaboration across the workforce, Stahl also established an internal workplace hub, MyStahl.

More information:
Stahl Coatings ESG
Source:

Stahl

16.04.2024

Stratasys published Second ESG and Sustainability Report

Stratasys Ltd. published its second Mindful Manufacturing™ ESG and Sustainability Report in accordance with the Global Reporting Initiative (GRI) standards, fulfilling its commitment to transparency. The report includes an extensive overview of activities and advancements in Stratasys’ environmental, social and governance (ESG) programs.

Some highlights of the Mindful Manufacturing ESG and Sustainability report, by category, include:

Environmental

  • Stratasys reduced water intensity by 32.5 percent across global operations, leading to an overall reduction in water usage by the company.
  • Solar panels installed at Israeli facilities generated 441,339 kWh of renewable energy, which contributed to 207 metric tons of reduced CO2 emissions, or the equivalent of planting 3,423 trees
  • Double digit (11.3 percent) increases in the number of spools, cartridges and canisters recycled through a new recycling program.

Social

Stratasys Ltd. published its second Mindful Manufacturing™ ESG and Sustainability Report in accordance with the Global Reporting Initiative (GRI) standards, fulfilling its commitment to transparency. The report includes an extensive overview of activities and advancements in Stratasys’ environmental, social and governance (ESG) programs.

Some highlights of the Mindful Manufacturing ESG and Sustainability report, by category, include:

Environmental

  • Stratasys reduced water intensity by 32.5 percent across global operations, leading to an overall reduction in water usage by the company.
  • Solar panels installed at Israeli facilities generated 441,339 kWh of renewable energy, which contributed to 207 metric tons of reduced CO2 emissions, or the equivalent of planting 3,423 trees
  • Double digit (11.3 percent) increases in the number of spools, cartridges and canisters recycled through a new recycling program.

Social

  • More than 38,000 hours of employee training were provided, equaling 18 hours of training per employee.
  • Approaching world-class status with employee engagement, with a 78 percent participation rate in the last all-employee survey, with an all-time high engagement score of 73.
  • 81 percent of managers participated in management training.
  • 4 diversity KPIs were set in 2022, focusing on hiring practices. Targets were:
  • 100 percent of candidate slates for manager and above will have a diverse slate
  • 35 percent of management hires will be women
  • 25 percent of tech hires will be women
  • 40 percent of intern/student hires to reflect a range of ethnicity and gender diversity.

Governance

  • 100 percent of new suppliers in 2021 and 2022 signed the Supplier Code of Conduct, which includes environmental, social and ethical standards.
  • More than 97% of all employees completed compliance training.
  • No product-related health and safety incidents of non-compliance occurred in 2021 or 2022.
Source:

Stratasys Ltd.

Winner of Cellulose Fibre Innovation Award 2024 (c) nova-Institute
Winner of Cellulose Fibre Innovation Award 2024
27.03.2024

Winner of Cellulose Fibre Innovation Award 2024

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

40 international speakers presented the latest market trends in their industry and illustrated the innovation potential of cellulose fibres. Leading experts introduced new technologies for the recycling of cellulose-rich raw materials and gave insights into circular economy practices in the fields of textiles, hygiene, construction and packaging. All presentations were followed by exciting panel discussions with active audience participation including numerous questions and comments from the audience in Cologne and online. Once again, the Cellulose Fibres Conference proved to be an excellent networking opportunity to the 214 participants and 23 exhibitors from 27 countries. The annual conference is a unique meeting point for the global cellulose fibre industry.  

For the fourth time, nova-Institute has awarded the “Cellulose Fibre Innovation of the Year” Award at the Cellulose Fibres Conference. The Innovation Award recognises applications and innovations that will lead the way in the industry’s transition to sustainable fibres. Close race between the nominees – “The Straw Flexi-Dress” by DITF & VRETENA (Germany), cellulose textile fibre from unbleached straw pulp, is the winning cellulose fibre innovation 2024, followed by HONEXT (Spain) with the “HONEXT® Board FR-B (B-s1, d0)” from fibre waste from the paper industry, while TreeToTextile (Sweden) with their “New Generation of Bio-based and Resource-efficient Fibre” won third place.

Prior to the event, the conference advisory board had nominated six remarkable innovations for the award. The nominees were neck and neck, when the winners were elected in a live vote by the audience on the first day of the conference.

First place
DITF & VRETENA (Germany): The Straw Flexi-Dress – Design Meets Sustainability

The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

Second place
Honext Material (Spain): HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry

HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, the product is verified in the Product Environmental Footprint.

Third Place
TreeToTextile (Sweden): A New Generation of Bio-based and Resource-efficient Fibre

TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn’t exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

The next conference will be held on 12-13 March 2025.

Source:

nova-Institut für politische und ökologische Innovation GmbH

DITF: CO2-negative construction with new composite material Photo: DITF
Structure of the wall element
20.03.2024

DITF: CO2-negative construction with new composite material

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

Carbon fibers in the form of technical fabrics reinforce the side walls of the wall elements. They absorb tensile forces and are intended to stabilize the building material in the same way as reinforcing steel in concrete. The carbon fibers used are bio-based, produced from biomass. Lignin-based carbon fibers, which have long been technically optimized at DITF Denkendorf, are particularly suitable for this application: They are inexpensive due to low raw material costs and have a high carbon yield. In addition, unlike reinforcing steel, they are not susceptible to oxidation and therefore last much longer. Although carbon fibers are more energy-intensive to produce than steel, as used in reinforced concrete, only a small amount is needed for use in building materials. As a result, the energy and CO2 balance is much better than for reinforced concrete. By using solar heat and biomass to produce the carbon fibers and the weathering of the stone dust, the CO2 balance of the new building material is actually negative, making it possible to construct CO2-negative buildings.

The third component of the new building material is biochar. This is used as a filler between the two rock slabs. The char acts as an effective insulating material. It is also a permanent source of CO2 storage, which plays a significant role in the CO2 balance of the entire wall element.

From a technical point of view, the already realized demonstrator, a wall element for structural engineering, is well developed. The natural stone used is a gabbro from India, which has a high-quality appearance and is suitable for high loads. This has been proven in load tests.  Bio-based carbon fibers serve as the top layer of the stone slabs. The biochar from Convoris GmbH is characterized by particularly good thermal insulation values.

The CO2 balance of a house wall made of the new material has been calculated and compared with that of conventional reinforced concrete. This results in a difference in the CO2 balance of 157 CO2 equivalents per square meter of house wall. A significant saving!

* (Methods for removing atmospheric carbon dioxide (Carbon Dioxide Removal) by Direct Air Carbon Capture, Utilization and Sustainable Storage after Use (DACCUS).

Source:

Deutsche Institute für Textil- und Faserforschung

Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

13.03.2024

IDEA®25: Call for abstracts

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

  • Natural Fibers (Cotton, Hemp, Bamboo, Banana, Wood Pulp, Regenerated Cellulose, Wool, Fur, Chitin, Feathers)
  • Polymers (Biopolymers, Regenerated and Recycled polymers, Unconventional and Alternatives to Traditional Polymers)
  • Sustainable Chemistries (finishes, lubricants, adhesives, and additives)

INNOVATIONS IN SUSTAINABILITY

  • Process Improvements with Sustainability Impact (reduced waste, reduced energy, reduced water consumption)
  • Product Design Improvements with Sustainability Impact (lightweighting, designs for end-of-life, “good enough” design)

END-OF-LIFE SOLUTIONS

  • End-of-Life or Next-Life Considerations (compostability, biodegradability, recycling, advanced recycling and circularity)
  • Presenting is an opportunity for technical professionals to showcase pioneering research, innovative solutions, and expert insights with technology scouts.

Abstracts must be submitted via the INDA website by June 7, 2024.

Source:

INDA - Association of the Nonwoven Fabrics Industry

Thomas Stegmaier appointed Sustainability Officer Photo: DITF
Dr.-Ing. habil. Thomas Stegmaier
11.03.2024

DITF: Thomas Stegmaier appointed Sustainability Officer

The EU directive on the further development of sustainability reporting (CSRD) poses major challenges for companies and the public sector. Until now, the regulations have only applied to large capital market-oriented companies. However, far-reaching changes to sustainability reporting are expected when the CSRD is transposed into national law in 2024. The German Institutes of Textile and Fiber Research (DITF) are facing up to this challenge of external reporting and at the same time the responsibility for sustainable and resource-conserving science. The Textile Research Center has therefore set up a specialist department reporting to the Executive Board.

The DITF are reaffirming their commitment to sustainability with the appointment of the previous Head of the Competence Center Textile Chemistry, Environment & Energy, Dr.-Ing. habil. Thomas Stegmaier, as Chief Sustainability Officer (CSO). In addition to this new role, Stegmaier will continue to provide his expertise to the Competence Center Textile Chemistry, Environment & Energy as Deputy Head.

The EU directive on the further development of sustainability reporting (CSRD) poses major challenges for companies and the public sector. Until now, the regulations have only applied to large capital market-oriented companies. However, far-reaching changes to sustainability reporting are expected when the CSRD is transposed into national law in 2024. The German Institutes of Textile and Fiber Research (DITF) are facing up to this challenge of external reporting and at the same time the responsibility for sustainable and resource-conserving science. The Textile Research Center has therefore set up a specialist department reporting to the Executive Board.

The DITF are reaffirming their commitment to sustainability with the appointment of the previous Head of the Competence Center Textile Chemistry, Environment & Energy, Dr.-Ing. habil. Thomas Stegmaier, as Chief Sustainability Officer (CSO). In addition to this new role, Stegmaier will continue to provide his expertise to the Competence Center Textile Chemistry, Environment & Energy as Deputy Head.

The task of the Chief Sustainability Officer is to develop solutions to reduce the DITF's energy and resource consumption, promote renewable energies and implement efficient energy use. The management team, the operational organizational units and all employees are involved in the process.

The CSO also acts as a driving force for both the Executive Board and the research departments to promote sustainability issues.

DITF: Modernized spinning plant for sustainable and functional fibres Photo: DITF
Bi-component BCF spinning plant from Oerlikon Neumag
06.03.2024

DITF: Modernized spinning plant for sustainable and functional fibres

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

Since polyamide (PA) and many other polymers were developed more than 85 years ago, various melt-spun fibers have revolutionized the textile world. In the field of technical textiles, they can have on a variety of functions: depending on their exact composition, they can for example be electrically conductive or luminescent. They can also show antimicrobial properties and be flame-retardant. They are suitable for lightweight construction, for medical applications or for insulating buildings.

In order to protect the environment and resources, the use of bio-based fibers will be increased in the future with a special focus on easy-to-recycle fibers. To this end, the DITF are conducting research into sustainable polyamides, polyesters and polyolefins as well as many other polymers. Many 'classic', that is, petroleum-based polymers cannot or only insufficiently be broken down into their components or recycled directly after use. An important goal of new research work is therefore to further establish systematic recycling methods to produce fibers of the highest possible quality.

For these forward-looking tasks, a bicomponent spinning plant from Oerlikon Neumag was set up and commissioned on an industrial scale at the DITF in January. The BCF process (bulk continuous filaments) allows special bundling, bulking and processing of the (multifilament) fibers. This process enables the large-scale synthesis of carpet yarns as well as staple fiber production, a unique feature in a public research institute. The system is supplemented by a so-called spinline rheometer. This allows a range of measurement-specific chemical and physical data to be recorded online and inline, which will contribute to a better understanding of fiber formation. In addition, a new compounder will be used for the development of functionalized polymers and for the energy-saving thermomechanical recycling of textile waste.

05.03.2024

Denim Expert's Goal: 100% wastewater recycling

The announcement of a new effluent treatment plant (ETP) marks a milestone in Denim Expert's journey towards sustainability. This upcoming facility is a testament to the company's dedication to reducing its ecological footprint and safeguarding local ecosystems through advanced water management techniques.

The new Effluent Treatment Plant (ETP) being developed by Denim Expert strives for 100% wastewater recycling. As the ETP rises from concept to reality, Denim Expert embarks on a transition towards its next horizon: aligning with the Zero Discharge of Hazardous Chemicals (ZDHC) Wastewater Guidelines Version 2.0.

The announcement of a new effluent treatment plant (ETP) marks a milestone in Denim Expert's journey towards sustainability. This upcoming facility is a testament to the company's dedication to reducing its ecological footprint and safeguarding local ecosystems through advanced water management techniques.

The new Effluent Treatment Plant (ETP) being developed by Denim Expert strives for 100% wastewater recycling. As the ETP rises from concept to reality, Denim Expert embarks on a transition towards its next horizon: aligning with the Zero Discharge of Hazardous Chemicals (ZDHC) Wastewater Guidelines Version 2.0.

Denim Expert's proactive approach to sustainability has been recognized on a global scale. The company has been named 'New Champion' by the World Economic Forum and has partnered with organizations such as the Sustainable Apparel Coalition (SAC), the United Nations Framework Convention on Climate Change (UNFCCC), and the Ellen MacArthur Foundation's Jeans Redesign program. As one of the first factories to join the Partnership for Cleaner Textile (PaCT) and in the process of implementing the 3E program, Denim Expert is dedicated to achieving 100% water reuse and full reliance on solar energy, further solidifying its commitment to driving positive environmental change.

01.03.2024

AkzoNobel: New manufacturing plant in Pakistan

A new €26 million manufacturing plant with its own forest has been opened by AkzoNobel in Faisalabad – the company’s largest investment in Pakistan to date.

The 25-acre site, which has facilities for making decorative paint, wood finishes, automotive and specialty coatings, coil coatings and protective coatings, will help to meet increasing customer demand across a variety of markets.

Also incorporated into the Faisalabad location is a forest spanning an area of 5,450 square feet. More than 1,400 native trees and shrubs – planted using the Japanese Miyawaki gardening technique – are expected to grow into a flourishing self-sustaining ecosystem over the next two years.

The site, which employs nearly 200 people, has been constructed to comply with the company’s strict environmental standards and includes a series of sustainability features, such as renewable energy generation and energy efficient design.

A new €26 million manufacturing plant with its own forest has been opened by AkzoNobel in Faisalabad – the company’s largest investment in Pakistan to date.

The 25-acre site, which has facilities for making decorative paint, wood finishes, automotive and specialty coatings, coil coatings and protective coatings, will help to meet increasing customer demand across a variety of markets.

Also incorporated into the Faisalabad location is a forest spanning an area of 5,450 square feet. More than 1,400 native trees and shrubs – planted using the Japanese Miyawaki gardening technique – are expected to grow into a flourishing self-sustaining ecosystem over the next two years.

The site, which employs nearly 200 people, has been constructed to comply with the company’s strict environmental standards and includes a series of sustainability features, such as renewable energy generation and energy efficient design.

Source:

AkzoNobel

CARBIOS and Landbell Group: Collaboration for biorecycling plant (c) Landbell Group / CARBIOS
01.03.2024

CARBIOS and Landbell Group: Collaboration for biorecycling plant

CARBIOS and Landbell Group, a global operator of more than 40 producer responsibility organizations (PROs) and a provider of closed-loop recycling solutions, announce the signing of a non-binding Memorandum of Understanding for the sourcing, preparation and recycling of post-consumer PET waste using CARBIOS’ biorecycling technology at its first commercial plant in Longlaville from 2026.  

The partnership will leverage Landbell Group’s expertise and network in the sourcing of PET packaging and textile waste which will be prepared for biorecycling. Thanks to CARBIOS’ highly selective enzyme, less sorting and washing is required compared to current recycling technologies, offering future savings in energy and water use. From 2026, Landbell Group will supply CARBIOS with 15 kt/year of PET flakes, ensuring a steady supply chain for sustainable PET production. These flakes will serve as essential feedstock for CARBIOS’ production of food-grade PTA and MEG, further re-polymerized into PET.

CARBIOS and Landbell Group, a global operator of more than 40 producer responsibility organizations (PROs) and a provider of closed-loop recycling solutions, announce the signing of a non-binding Memorandum of Understanding for the sourcing, preparation and recycling of post-consumer PET waste using CARBIOS’ biorecycling technology at its first commercial plant in Longlaville from 2026.  

The partnership will leverage Landbell Group’s expertise and network in the sourcing of PET packaging and textile waste which will be prepared for biorecycling. Thanks to CARBIOS’ highly selective enzyme, less sorting and washing is required compared to current recycling technologies, offering future savings in energy and water use. From 2026, Landbell Group will supply CARBIOS with 15 kt/year of PET flakes, ensuring a steady supply chain for sustainable PET production. These flakes will serve as essential feedstock for CARBIOS’ production of food-grade PTA and MEG, further re-polymerized into PET.

Through the partnership with Landbell Group in Germany, the supply of multilayer trays through the CITEO tender in France  and the MoU with Indorama Ventures, CARBIOS will have sourced over 70% of its feedstock required for the 50kt/year capacity when its first commercial plant in Longlaville, France, will operate at full capacity. Close to the borders with Belgium, Germany and Luxembourg, the plant’s location is strategic for nearby waste supplies.

Through this partnership with CARBIOS, Landbell Group will ensure that the problematic PET fractions such as multilayered, colored and opaque trays from packaging waste and polyester textile waste are redirected towards recycling. In this way, Landbell Group strengthens its commitment to the development of recycling solutions to enable a circular economy.

Graphic CHT Germany GmbH
28.02.2024

PERFORMANCE DAYS: CHT presents sustainable textile innovations

At the PERFORMANCE DAYS Functional Fabric Fair in Munich on 20 and 21 March 2024, CHT will present its latest sustainable textile technologies with a focus on dyeing and effect chemicals.

These products are used to finish textiles with special functions such as water repellency, breathability and efficient moisture transport. Significant amounts of water and energy can be saved during the dyeing and finishing process, resulting in a lower CO2 footprint.

In addition to effect chemicals, CHT will be presenting its dyeing products with a focus on the use of bio-based, biodegradable and recycled materials to support the circular economy.

At the PERFORMANCE DAYS Functional Fabric Fair in Munich on 20 and 21 March 2024, CHT will present its latest sustainable textile technologies with a focus on dyeing and effect chemicals.

These products are used to finish textiles with special functions such as water repellency, breathability and efficient moisture transport. Significant amounts of water and energy can be saved during the dyeing and finishing process, resulting in a lower CO2 footprint.

In addition to effect chemicals, CHT will be presenting its dyeing products with a focus on the use of bio-based, biodegradable and recycled materials to support the circular economy.

Source:

CHT Germany GmbH

Generating its own energy with solar panels Photo Karl Mayer Group
Generating its own energy with solar panels
23.02.2024

Karl Mayer Group: Generating its own energy with solar panels

The Karl Mayer Group is reducing its ecological footprint when it comes to energy utilisation: The Group's largest photovoltaic system to date has just been installed at its headquarters in Obertshausen.

Following the construction of a stable substructure, the first photovoltaic elements were installed on the roof of the assembly hall in Obertshausen on 16 February 2024. This will be followed by the step-by-step conversion of other roofs. If everything goes according to plan, around 6,000 modules will have been installed on an area of approx. 12,000 m² and over 60,000 metres of cable laid by the middle of the year.

"With a total output of 2.4 MWp, we will be able to generate over 35% of the total electricity consumption at the site ourselves," explains Michael Sustelo, Head of Facility Management at the Karl Mayer Group.

The Karl Mayer Group is reducing its ecological footprint when it comes to energy utilisation: The Group's largest photovoltaic system to date has just been installed at its headquarters in Obertshausen.

Following the construction of a stable substructure, the first photovoltaic elements were installed on the roof of the assembly hall in Obertshausen on 16 February 2024. This will be followed by the step-by-step conversion of other roofs. If everything goes according to plan, around 6,000 modules will have been installed on an area of approx. 12,000 m² and over 60,000 metres of cable laid by the middle of the year.

"With a total output of 2.4 MWp, we will be able to generate over 35% of the total electricity consumption at the site ourselves," explains Michael Sustelo, Head of Facility Management at the Karl Mayer Group.

Source:

Karl Mayer Group

STFI: Lightweight construction innovations at JEC World in Paris (c) silbaerg GmbH and STFI (see information on image)
23.02.2024

STFI: Lightweight construction innovations at JEC World in Paris

At this year's JEC World, STFI will be presenting highlights from carbon fibre recycling as well as a new approach to hemp-based bast fibres, which have promising properties as reinforcement in lightweight construction.

Green Snowboard
At JEC World in Paris from 5 to 7 March 2024, STFI will be showcasing a snowboard from silbaerg GmbH with a patented anisotropic coupling effect made from hemp and recycled carbon fibres with bio-based epoxy resin. In addition to silbaerg and STFI, the partners Circular Saxony - the innovation cluster for the circular economy, FUSE Composite and bto-epoxy GmbH were also involved in the development of the board. The green snowboard was honoured with the JEC Innovation Award 2024 in the “Sport, Leisure and Recreation” category.

At this year's JEC World, STFI will be presenting highlights from carbon fibre recycling as well as a new approach to hemp-based bast fibres, which have promising properties as reinforcement in lightweight construction.

Green Snowboard
At JEC World in Paris from 5 to 7 March 2024, STFI will be showcasing a snowboard from silbaerg GmbH with a patented anisotropic coupling effect made from hemp and recycled carbon fibres with bio-based epoxy resin. In addition to silbaerg and STFI, the partners Circular Saxony - the innovation cluster for the circular economy, FUSE Composite and bto-epoxy GmbH were also involved in the development of the board. The green snowboard was honoured with the JEC Innovation Award 2024 in the “Sport, Leisure and Recreation” category.

VliesComp
The aim of the industrial partners Tenowo GmbH (Hof), Siemens AG (Erlangen), Invent GmbH (Braunschweig) and STFI united in the VliesComp project is to bring recycled materials back onto the market in various lightweight construction solutions. The application fields "Innovative e-machine concepts for the energy transition" and "Innovative e-machine concepts for e-mobility" were considered as examples. On display at JEC World in Paris will be a lightweight end shield for electric motors made from hybrid nonwovens - a mixture of thermoplastic fibre components and recycled reinforcing fibres - as well as nonwovens with 100% recycled reinforcing fibres. The end shield was ultimately manufactured with a 100% recycled fibre content. The tests showed that, compared to the variant made from primary carbon fibres using the RTM process, a 14% reduction in CO2 equivalent is possible with the same performance. The calculation for the use of the prepreg process using a bio-resin system shows a potential for reducing the CO2 equivalent by almost 70 %.

Bast fibre reinforcement
To increase stability in the plant stem, bast fibres form in the bark area, which support the stem but, in contrast to the rigid wood, are very flexible and allow slender, tall plants to move in the wind without breaking.A new process extracts the bast bark from hemp by peeling.The resulting characteristic values, such as tensile modulus of elasticity, breaking strength and elongation, are very promising in comparison with the continuous rovings made of flax available on the market.The material could be used as reinforcement in lightweight construction.At JEC World, STFI will be exhibiting reinforcing bars that have been processed into a knitted fabric using a pultrusion process based on bio-based reinforcing fibres made from hemp bast for mineral matrices.

Source:

Sächsische Textilforschungsinstitut e.V. (STFI)

16.02.2024

Lenzing updated its climate targets

The Lenzing Group has updated its climate targets to align with the goals of the Paris Agreement to limit the human-induced global temperature increase to 1.5 degrees Celsius. The Science Based Targets Initiative (SBTi) has reviewed and confirmed this target improvement.

By 2030, Lenzing aims to reduce its direct emissions from the production of its fiber and pulp plants (scope 1) and its emissions from purchased energy (scope 2) by 42 percent and its indirect emissions along the value chain (scope 3) by 25 percent on the way to net zero, from 2021 baseline. This corresponds to an absolute reduction of 1,100,000 tons (instead of the previously targeted 700,000 tons).

The following targets were recognized and confirmed by the SBTi:

The Lenzing Group has updated its climate targets to align with the goals of the Paris Agreement to limit the human-induced global temperature increase to 1.5 degrees Celsius. The Science Based Targets Initiative (SBTi) has reviewed and confirmed this target improvement.

By 2030, Lenzing aims to reduce its direct emissions from the production of its fiber and pulp plants (scope 1) and its emissions from purchased energy (scope 2) by 42 percent and its indirect emissions along the value chain (scope 3) by 25 percent on the way to net zero, from 2021 baseline. This corresponds to an absolute reduction of 1,100,000 tons (instead of the previously targeted 700,000 tons).

The following targets were recognized and confirmed by the SBTi:

  1. Overall net-zero target: Lenzing AG commits to reach net-zero greenhouse gas emissions along the entire value chain by 2050.
  2. Near-term targets: Lenzing AG commits to reduce absolute scope 1 and scope 2 greenhouse gas emissions by 42 percent by 2030 from a base year 2021. Lenzing AG also commits to reduce absolute scope 3 greenhouse gas emissions from purchased goods and services, fuels and energy-related activities as well as upstream transport and distribution by 25 percent within the same timeframe.
  3. Long-term targets: Lenzing AG commits to reduce absolute scope 1 and scope 2 greenhouse gas emissions by 90 percent by 2050 from a base year 2021. Lenzing AG also commits to reduce absolute scope 3 greenhouse gas emissions by 90 percent within in the same timeframe.

These updated targets replace the old SBTi approved Lenzing Group’s climate target in 2019.

(c) Swiss Textile Machinery Swissmem
16.02.2024

Recycled fibres: Swiss manufacturers for circularity

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Spinning recycled cotton
The use of mechanically recycled fibres in spinning brings specific quality considerations: they have higher levels of short fibres and neps – and may often be colored, particularly if post-consumer material is used. It’s also true that recycled yarns have limitations in terms of fineness. The Uster Statistics 2023 edition features an extended range of fibre data, supporting sustainability goals, including benchmarks for blends of virgin and recycled cotton.
In general, short fibres such as those in recycled material can easily be handled by rotor spinning machines. For ring spinning, the shorter the fibres, the more difficult it is to guide them through the drafting zone to integrate them into the yarn body. Still, for wider yarn counts and higher yarn quality, the focus is now shifting to ring spinning. The presence of short fibres is a challenge, but Rieter offers solutions to address this issue.

Knitting recycled wool
For recycling, wool fibres undergo mechanical procedures such as shredding, cutting, and re-spinning, influencing the quality and characteristics of the resulting yarn. These operations remove the natural scales and variations in fibre length of the wool, causing a decrease in the overall strength and durability of the recycled yarn. This makes the yarn more prone to breakage, especially under the tension exerted during knitting.

Adapting to process recycled materials often requires adjustments to existing machinery. Knitting machines must be equipped with positive yarn suppliers to control fibre tension. Steiger engages in continuous testing of new yarns on the market, to check their suitability for processing on knitting machines. For satisfactory quality, the challenges intensify, with natural yarns requiring careful consideration and adaptation in the knitting processes.

From fibres to nonwovens
Nonwovens technology was born partly from the idea of recycling to reduce manufacturing costs and to process textile waste and previously unusable materials into fabric structures. Nonwovens production lines, where fibre webs are bonded mechanically, thermally or chemically, can easily process almost all mechanically and chemically recycled fibres.

Autefa Solutions offers nonwovens lines from a single source, enabling products such as liners, wipes, wadding and insulation to be produced in a true closed loop. Fibres are often used up to four times for one product.

Recycling: total strategy
Great services, technology and machines from members of Swiss Textile Machinery support the efforts of the circular economy to process recycled fibres. The machines incorporate the know-how of several decades, with the innovative power and quality standards in production and materials.
Stäubli’s global ESG (environmental, social & governance) strategy defines KPIs in the context of energy consumption, machine longevity and the recycling capacity in production units worldwide, as well in terms of machinery recyclability. The machine recyclability of automatic drawing in machines, weaving systems and jacquard machines ranges from 96 to 99%.

Source:

Swiss Textile Machinery Swissmem

Archroma launches Super Systems+ Photo: Archroma
14.02.2024

Archroma launches Super Systems+

Archroma introduced Super Systems+. These end-to-end systems combine fiber-specific processing solutions and intelligent effects to help textile and apparel brands, retailers and mills positively impact their economic and environmental sustainability.

Archroma’s Super Systems+ suite encompass wet processing solutions that deliver measurable environmental impact; durable colors and functional effects that add value and longevity to the end product; and technologies that eliminate harmful or regulated substances. It will allow brands and mills to achieve their desired level of sustainability through measurable resource savings and cleaner chemistries.

Archroma introduced Super Systems+. These end-to-end systems combine fiber-specific processing solutions and intelligent effects to help textile and apparel brands, retailers and mills positively impact their economic and environmental sustainability.

Archroma’s Super Systems+ suite encompass wet processing solutions that deliver measurable environmental impact; durable colors and functional effects that add value and longevity to the end product; and technologies that eliminate harmful or regulated substances. It will allow brands and mills to achieve their desired level of sustainability through measurable resource savings and cleaner chemistries.

Products and technologies that are be used in Super Systems+ solutions include: AVITERA® SE for resource savings, an improved cost-to-performance ratio for cotton and its blends and chlorine fastness; DIRESUL® EVOLUTION BLACK for shade and wash-down effects on black denim and an overall impact reduction of 57%*; aniline-free** DENISOL® PURE INDIGO 30 LIQ for authentic blue denim; ERIOPON® E3-SAVE all-in-one auxiliary for resource-intensive polyester dyeing that reduces processing time and conserves water and energy; and PHOBOTEX® NTR-50 LIQ for bio-based, PFAS-free, formaldehyde-free and crosslinker-free durable water repellence.

*As determined by Ecoterrae, a leading Spain-based sustainability consulting firm, through a Life Cycle Analysis (UNE-EN ISO 14044:2006) at the synthesis stage, using the ReCiPe 2016 Impact calculation methodology.
**Below limits of detection according to industry standard test methods.

Source:

Archroma

07.02.2024

RadiciGroup’s roadmap to a sustainable future

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

In the context of a complex and constantly changing scenario, the Group has therefore decided to capitalize on the goals achieved and look beyond them with a plan defining the medium-term targets and the actions to be taken to fulfil them and covering all areas considered to be "material”, i.e., relevant from the point of view of ESG and financial risks, opportunities and impacts. Indeed, the ultimate goal of "From Earth to Earth" is to support business continuity and the growth of the company and all its stakeholders.

The project was the result of a multi-year collaboration with Deloitte, which contributed an external and objective viewpoint on the definition of the material targets and themes. However, it was not an armchair exercise, but the result of an extensive listening process involving internal and external stakeholders, all of whom were sustainability experts who helped define a shortlist of strategic themes for both the Group and its main stakeholders. These issues were then analysed in detail using working tables on the different themes to identify the objectives in Environmental, Social and Governance areas and the related concrete actions needed to achieve them, in line with the European decarbonization and energy transition policies and the
United Nations Sustainable Development Goals, a global blueprint for sustainable growth.

In particular, RadiciGroup’s environmental goals include: a 20% increase and differentiation in renewable source electricity consumption, an 80% reduction in total direct greenhouse gas emissions by 2030 compared to 2011, attention to water consumption to limit the impact on local communities and biodiversity, the extension of Life Cycle Assessment (LCA) methodology to measure the environmental impact of 70% of the products (in terms of weight) manufactured by the entire Group, collaboration among the various actors in the supply chain from an ecodesign perspective and the search for increasingly more sustainable and circular packaging solutions.

26.01.2024

Solvay reduces transportation carbon footprint

Solvay is partnering with transportation providers KIITOSIMEON and ADAMS LOGISTICS to reduce the carbon footprint of its facility in Voikkaa, Finland. Known for its hydrogen peroxide technology, the site has a yearly capacity of 85 kilotons, making it the largest hydrogen peroxide unit in the country and one of the largest in Europe. However, the transportation of its products results in more than 850 tons of CO2 emissions annually, attributed to the several thousands deliveries conducted each year.

While the Voikkaa site has been operating on 100% wind-generated electricity since 2023, the journey towards decarbonization takes another step forward as it transitions transportation fuel from diesel to biofuel in the first quarter of 2024. This shift will result in a significant annual reduction of over 700 tons of CO2 emissions, representing more than 8O% reduction in the site's transportation carbon footprint.

Solvay is partnering with transportation providers KIITOSIMEON and ADAMS LOGISTICS to reduce the carbon footprint of its facility in Voikkaa, Finland. Known for its hydrogen peroxide technology, the site has a yearly capacity of 85 kilotons, making it the largest hydrogen peroxide unit in the country and one of the largest in Europe. However, the transportation of its products results in more than 850 tons of CO2 emissions annually, attributed to the several thousands deliveries conducted each year.

While the Voikkaa site has been operating on 100% wind-generated electricity since 2023, the journey towards decarbonization takes another step forward as it transitions transportation fuel from diesel to biofuel in the first quarter of 2024. This shift will result in a significant annual reduction of over 700 tons of CO2 emissions, representing more than 8O% reduction in the site's transportation carbon footprint.

As part of its commitment to carbon neutrality by 2050, Solvay has outlined a sustainability roadmap with around 40 energy transition projects. These projects focus on eliminating coal usage, emphasizing renewable energy sources, prioritizing energy efficiency, and driving process innovation. Solvay has further committed to reduce its emissions* along the value chain by 20% by 2030.

*scope 3 emissions, focus 5 categories, 2021 baseline

Archroma showcases Super Systems+ at Colombiatex 2024 Photo: Archroma
19.01.2024

Archroma showcases Super Systems+ at Colombiatex 2024

Archroma is showcasing its planet conscious innovations and solution systems at this year’s Colombiatex de Las Américas, being held from January 23 to 25, 2024.

Archroma is using its attendance at Colombiatex 2024 to introduce a new concept that promises to help the region’s brands and mills optimize their productivity, add value to their products and create a positive impact on the environment: Super Systems+.

The Super Systems+ solutions offer great performance, including end-product durability, while meeting sustainability targets with cleaner chemistries that comply with current and anticipated industry regulations or deliver resource savings, or both. Solutions are currently available for popular end-use segments, from denim to cotton and poly-cotton knits.

Archroma is showcasing its planet conscious innovations and solution systems at this year’s Colombiatex de Las Américas, being held from January 23 to 25, 2024.

Archroma is using its attendance at Colombiatex 2024 to introduce a new concept that promises to help the region’s brands and mills optimize their productivity, add value to their products and create a positive impact on the environment: Super Systems+.

The Super Systems+ solutions offer great performance, including end-product durability, while meeting sustainability targets with cleaner chemistries that comply with current and anticipated industry regulations or deliver resource savings, or both. Solutions are currently available for popular end-use segments, from denim to cotton and poly-cotton knits.

For black denim with a cleaner environmental footprint, brands and mills can choose DIRESUL® EVOLUTION BLACK to create unique shade and wash-down effects with an overall impact reduction of 57% compared to standard Sulfur Black 1 liquid.* For authentic blue denim, Archroma’s aniline-free** pre-reduced DENISOL® PURE INDIGO 30 LIQ produces coveted indigo colors with the same performance and efficiency as conventional indigo dye, but in a more planet-friendly way.

To embrace circularity and create natural shades on cellulosic-based fibers including cotton, kapok, linen and viscose, brand owners can now turn to Archroma’s patented EarthColors® technology. It makes high-performance biosynthetic dyes from non-edible natural waste, such as almond shells, bitter orange residues and cotton production byproducts, helping conserve natural resources. For next-generation processing of polyester and its blends, Archroma’s ERIOPON® E3-SAVE all-in-one auxiliary combines pre-scouring, dyeing and reduction clearing in a single bath to achieve substantial savings of water, energy and time.

For weather protection and stain resistance that is both economically and environmentally sustainable, Archroma Super Systems+ draw on an extensive portfolio of fluorine-free durable water repellents.

* Ecotarrae lifecycle analysis
** Below limits of detection according to industry standard test methods

Source:

Archroma