From the Sector

Reset
71 results
(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – presents its Innovation Awards 2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

Category “Research and Science”
First place in the “Research and Science” category was awarded to the German Aerospace Center (DLR) for its Bondline Control Technology (BCT). This innovative process is used for quality control and assurance of bonded joints. The core element is a porous fabric which is applied to a joining surface using an epoxy adhesive or matrix resin. Peeling away the fabric creates a chemically reactive and undercut surface and can also be used as a test to check adhesion to the substrate. BCT has potential in a variety of possible applications. For example, peel ply can be replaced by BCT fabric to produce composite components with an optimised joining surface. The cost-effective BCT peel test is suitable for coupon testing and process control. In addition, the combined adhesion test and surface pre-treatment can be used for quality assurance of bonded repairs on fibre composite structures.

Second place was taken by the Institute of Textile Technology (ITA) at RWTH Aachen University and its partners AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR with “StoneBlade – Lightweight construction with granite for the wind industry”. This innovation enables manufacturers to reduce the amount of non-recyclable materials used in rotor blade construction. At the same time, it reduces the weight of these components and improves the mechanical properties relating to the stability of wind turbines. The innovative approach replaces glass-fibre reinforced plastic in the blade components with hard rock – a natural, cost-effective and recyclable lightweight material. The slabs of rock are cut and ground to a thickness of just a few millimetres and embedded in a fibre composite laminate with carbon fibre, which stabilises them for alternating load cases. The pre-stressed material is pressure-stable in the composite and can absorb tensile forces in the event of continuously alternating loads without any loss of stiffness.

Third place went to the Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK) with its partner Mercedes Benz AG for the interdisciplinary development of a highly integrated inductive charging module for electric vehicles. The ultra-thin charging module was designed to make optimum use of space in the vehicle underbody without reducing ground clearance. An interdisciplinary approach was adopted for the development process. This involved the electrical, mechanical and process characterisation of high-frequency Litz wires, ferromagnetic foil and metal wire cloth as well as the creation of a simulation model. The result is a demonstrator for a charging system with a structural height of 15 mm and a total weight of 8 kg. It achieves a transmission efficiency of up to 92 percent at 7.2 kW nominal power and active air cooling. The hardware demonstrator was fabricated in a 3-step process using RTM and VARI techniques.

Overview of all the winners in the three categories:
Category “Innovative Products/Applications”
1st Place: “Traffic signs from Nabasco (N-BMC)” – Nabasco Products BV and Lorenz Kunststofftechnik GmbH, partners: Pol Heteren BV and NPSP BV
2nd Place: “Novel, ultratough vinyl ester resin for the construction of large marine vessels” Evonik Operations GmbH
3rd Place: “Air intake housing with a multi-material design for gas turbines” – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH and Leichtbau-Systemtechnologien KORROPOL GmbH.
Category “Innovative Processes”
1st Place: “In-mould wrapping” off-tool, film-coated, fibre composite components for exterior applications – BMW Group, Partner: Renolit SE
2nd Place: “Adaptive automated repair of composite structural components in the aviation sector” – Lufthansa Technik AG, Partner: iSAM AG
3rd Place: “Automated surface pre-treatment using VUV excimer lamps” – CTC GmbH
Category “Research and Science”
1st Place: “Bondline Control Technology (BCT)” – German Aerospace Center (DLR)
2nd Place: “StoneBlade – Lightweight construction with granite for the wind industry” – Institute of Textile Technology at RWTH Aachen University, Partners: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3rd Place: “Interdisciplinary development of a highly integrated inductive charging module for electric vehicles” – Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK), Partner: Mercedes Benz AG

Submissions for the next Innovation Award can be made from the end of January 2022.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

08.11.2021

Composites Evolution showcased prepregs and new thermoplastic unidirectional tapes

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution has a family of specialist prepregs for various applications, including Evopreg® EPC epoxy component prepregs which are a range of pre-impregnated fabrics suitable for moulding into high-performance, lightweight, structural components; Evopreg® EPT epoxy tooling prepregs which have been designed to help composite tooling manufacturers improve the flexibility and efficiency of their tooling manufacturing processes; and Evopreg® PFC fire-retardant prepregs a 100% bio-derived alternative to phenolics for applications where fire performance is a critical requirement.

Evopreg® ampliTex™ combines Composite Evolution’s high-performance Evopreg® epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

Composites Evolution launched their new range of Evopreg® PA Thermoplastic Tapes at Advanced Engineering; these are manufactured from polyamide-6 (PA6) polymer with unidirectional carbon fibre and are suitable for automated tape laying, winding and compression moulding into high-performance, lightweight components.

Source:

Composites Evolution Ltd

ANDRITZ to supply a neXline wetlace hybrid line to Albaad, Israel © ANDRITZ
Albaad orders neXline wetlace hydrid - handshake at INDEX show
20.10.2021

ANDRITZ to supply a neXline wetlace hybrid line to Albaad, Israel

International technology group ANDRITZ has received an order from Albaad Massuot Yitzhak Ltd. to supply a neXline wetlace hybrid line for their Dimona facilities, Israel. The line will produce a wide variety of pulp-based wet wipes and is scheduled for start-up during the third quarter 2023.

The state-of-the-art neXline wetlace hybrid is the perfect combination of inline drylaid and wetlaid web forming with hydroentanglement and drying, including quality control equipment and a Metris Industry 4.0 package. All components will be delivered by ANDRITZ and are designed to produce first-class fabrics, including biodegradable, carded-pulp and flushable/dispersible nonwovens for end uses as wipes.

Tobias Schäfer, Vice President Sales at ANDRITZ Nonwoven, comments: “Our innovative production line gives Albaad enormous flexibility in the production of wipes. In addition, the Metris digitalization package by ANDRITZ will provide Albaad with highly efficient and smart operation.”

International technology group ANDRITZ has received an order from Albaad Massuot Yitzhak Ltd. to supply a neXline wetlace hybrid line for their Dimona facilities, Israel. The line will produce a wide variety of pulp-based wet wipes and is scheduled for start-up during the third quarter 2023.

The state-of-the-art neXline wetlace hybrid is the perfect combination of inline drylaid and wetlaid web forming with hydroentanglement and drying, including quality control equipment and a Metris Industry 4.0 package. All components will be delivered by ANDRITZ and are designed to produce first-class fabrics, including biodegradable, carded-pulp and flushable/dispersible nonwovens for end uses as wipes.

Tobias Schäfer, Vice President Sales at ANDRITZ Nonwoven, comments: “Our innovative production line gives Albaad enormous flexibility in the production of wipes. In addition, the Metris digitalization package by ANDRITZ will provide Albaad with highly efficient and smart operation.”

Dan Mesika, CEO and President of Albaad, says: “We are dedicated to developing new products – such as eco-friendly, biodegradable wipes. As pioneering manufacturers of our Hydrofine® flushable wipes, we are committed to environmental sustainability. Thanks to the new ANDRITZ line, we will enlarge the product portfolio at our Dimona production site with innovative fabrics and high efficiency.

Gadi Choresh, President of the Nonwovens Division at Albaad, says: “Our knowledge and experience in drylaid and wetlaid technology, together with the state-of-the-art equipment supplied by ANDRITZ, will enable us to provide the market with natural-source nonwovens and the best answer to the market demand.”
 
Albaad is one of the world’s three largest wet wipe manufacturers and is committed to delivering excellent wipes for every need. The company runs world-leading production facilities on three continents, each equipped with the latest technologies. Albaad produces spunlace and flushable fabrics in its facilities as well as purchasing from other roll goods suppliers in order to support production of a wide variety of wipes.

DiloGroup at Techtextil India (c) DiloGroup
3D-Lofter
20.10.2021

DiloGroup at Techtextil India

  • DiloGroup looks forward to participating in the Techtextil India show 2021.

DiloGroup offers tailor-made production systems from one supplier and will inform at this forum in the German pavillon about its portfolio and the latest equipment developments from fibre opening to the finished felt.

A new, simplified elliptical needle beam drive makes Hyperpunch technology also attractive for standard application. Hyperpunch HαV allows a more uniform stitch distribution in the preneedling process especially in combination with the new needle pattern 6000X. In a complete needling line this felt homogenization process can be improved further by using the new needle pattern 8000X which is a milestone in the needle pattern development process and results in endproduct surfaces with low markings over a wide range of advances/stroke.

  • DiloGroup looks forward to participating in the Techtextil India show 2021.

DiloGroup offers tailor-made production systems from one supplier and will inform at this forum in the German pavillon about its portfolio and the latest equipment developments from fibre opening to the finished felt.

A new, simplified elliptical needle beam drive makes Hyperpunch technology also attractive for standard application. Hyperpunch HαV allows a more uniform stitch distribution in the preneedling process especially in combination with the new needle pattern 6000X. In a complete needling line this felt homogenization process can be improved further by using the new needle pattern 8000X which is a milestone in the needle pattern development process and results in endproduct surfaces with low markings over a wide range of advances/stroke.

The “3D-Lofter” which was first presented during ITMA 2019 in Barcelona offers a wider range of nonwovens applications by exploring the third dimension. A series of single web forming units which work according to the aerodynamic web forming principle deliver defined fibre masses in varied patterns on a base needlefelt. A stress oriented production of technical formed parts resulting in fibre savings or patterned DI-LOUR or DI-LOOP felts are two examples for this technology which explores new application areas for needlefelts.

The 3D-Lofter technology may also be used “inverted” for filling up bad spots in web mats and thus achieves a better homogeneity of e. g. spunlace, thermobond or airlay products. The DiloLine 4.0 concept offer I4.0 modules which not only support the user but also facilitate quality control and maintenance by a maximum data transparency in production and control of operation. The Dilo solutions “Smart Start” for a fully automatic start of the production line or “DI-LOWATT” for energy savings are accompanied by Siemens solutions which can be selected via App or Data Cloud “MindSphere”.

With more than 370 installations delivered to the nonwovens industry worldwide, DiloGroup has the necessary know-how and the complete equipment portfolio to engineer the perfect production line for any product specification. The efficiency of Dilo production lines is the result of long-term research work and experience. Apart from machines for needling technology we offer in cooperation with partner companies also production lines including thermobonding and hydroentangling components.

Source:

Oskar Dilo Maschinenfabrik KG

(c) Reifenhäuser
18.10.2021

Reifenhäuser Reicofil exhibits sustainable nonwovens at INDEX

Reifenhäuser Reicofil will exhibit at the world's leading nonwovens trade show INDEX in Geneva from October 19 to 22, 2021. Under the slogan "Living Nonwovens", the nonwoven line specialist will showcase solutions for the production of sustainable nonwovens for a wide range of applications.

Sustainable nonwoven production starts with the amount of material used - the less raw material needed, the better. The "Reicofil 5x" line series is specialized in this application and achieves fabric weights of 8 gsm (grams per square meter) or even less through efficient downgauging, even on 1000 m/min Composite lines containing 3 Spunbond beams.

In addition, Reicofil customers can reduce the use of fossil raw materials on request by processing biobased raw materials as an ecological alternative - for example for diapers. The topsheet material, made of bulky, soft, and industrially compostable high-loft nonwovens, meets maximum hygiene requirements at the same time.

Reifenhäuser Reicofil will exhibit at the world's leading nonwovens trade show INDEX in Geneva from October 19 to 22, 2021. Under the slogan "Living Nonwovens", the nonwoven line specialist will showcase solutions for the production of sustainable nonwovens for a wide range of applications.

Sustainable nonwoven production starts with the amount of material used - the less raw material needed, the better. The "Reicofil 5x" line series is specialized in this application and achieves fabric weights of 8 gsm (grams per square meter) or even less through efficient downgauging, even on 1000 m/min Composite lines containing 3 Spunbond beams.

In addition, Reicofil customers can reduce the use of fossil raw materials on request by processing biobased raw materials as an ecological alternative - for example for diapers. The topsheet material, made of bulky, soft, and industrially compostable high-loft nonwovens, meets maximum hygiene requirements at the same time.

For industrial applications, high-strength nonwovens can be processed even from up to 90% PET flakes from post-consumer waste. This is how Reicofil shows ways to combine sustainability and high-performance nonwovens.

In the medical sector, the line manufacturer will also be exhibiting its leading solutions for high-barrier medical protective clothing. In addition, meltblown nonwovens for face masks - still in great demand in many regions due to Covid - provide reliable safety and are helping to combat the pandemic worldwide. Reicofil technology therefore guarantees maximum safety, with filtration efficiencies of up to 99% (N99 / FFP3 standard), minimum quality fluctuations, and extremely high line availability at the same time.

With the current RF5 machine generation, Reicofil also sets benchmarks in terms of quality, performance, availability, efficiency, and machine intelligence - for challenging applications in hygiene, medical, and industrial sectors.

More information:
INDEX Reifenhäuser
Source:

Reifenhäuser GmbH & Co. KG

(c) INDA, the Association of the Nonwoven Fabrics Industry
07.09.2021

INDA Announces the 2021 RISE® Innovation Award Finalists

  • Innovations in Protection, Efficiency and Engineered Fabrics

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the prestigious RISE® Innovation Award during the 11th edition of the Research, Innovation & Science for Engineered Fabrics Conference, (RISE®) to be held virtually September 28-30, 2021.  The award recognizes novel innovations in the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics. These three finalists will present their innovative material science solutions as they compete for the RISE® Innovation Award.

  • Innovations in Protection, Efficiency and Engineered Fabrics

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the prestigious RISE® Innovation Award during the 11th edition of the Research, Innovation & Science for Engineered Fabrics Conference, (RISE®) to be held virtually September 28-30, 2021.  The award recognizes novel innovations in the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics. These three finalists will present their innovative material science solutions as they compete for the RISE® Innovation Award.

Canopy Respirator
Canopy is an innovative respirator that is fully mechanical, non-electrostatic, with a filter designed for superior breathability while offering the wearer facial transparency. The breakthrough respirator features 5.5mm water column resistance at 85 liters (3 cubic feet) per minute, 2-way filtration, and a pleated filter that contains over 500 square centimeters of surface area. The patented Canopy respirator resists fluids, and eliminates fogging of eyeglasses.  

Evalith® 1000 Series
Johns Manville’s innovative Alpha Binder is a formaldehyde-free, high bio-carbon content, toxic-free binder formulation ideal for carpet mat applications. Alpha Binder eliminates monomer and polymer synthesis, uses a bio-degradable catalyst, and requires 70% less water in manufacturing. The resulting glass mats made of Alpha Binder are named “Evalith 1000” and reduces energy consumption during manufacturing by over 70% compared to alternative petroleum-based binders. Evalith 1000 was commercialized in North America in 2020.

Fiber Coated, Heat Sealable, Breathable, Hybrid Membrane, Fabric Protection
TiGUARD protective fabric is a construction of monolithic or hybrid imperious/moisture eliminating membranes with a surface covered with micro-fiber. This nonwoven product is a multi-layer all polyester fabric specifically for chemical and microbial protective fabrics, products, and garments. It is constructed of compatible heat seal-able materials which lend themselves to high-speed heat seal-able production and ultimately automated manufacture of garments without sewing. It is a combination of a densely flocked polyester fiber surface on polyester membrane supported by polyester scrim.
Virtual RISE™ conference attendees include technology scouts and product developers in the nonwoven/engineered fabrics industry seeking new developments to advance their businesses. These attendees will electronically vote for the recipient of the 2021 RISE® Innovation Award, on Wed. Sept. 29th. The winner will be announced Thurs., Sept. 30th.

The conference program will cover timely and relevant industry topics including: Material Science Developments for Sustainable Nonwovens; Increasing Circularity in Nonwovens; Market Intelligence & Economic Insights; Promising Innovations in Nonwovens; Process Innovations in Nonwovens; Material Innovations in Nonwovens;  the full program can be viewed on the link: https://www.riseconf.net/conference.php

More information:
INDA nonwovens
Source:

INDA, the Association of the Nonwoven Fabrics Industry

02.08.2021

EDANA and INDA: 2021 NONWOVENS STANDARD PROCEDURES

  • Harmonized Language Increases Efficiency to Communicate Globally Consistent Descriptions, Production and Testing

EDANA and INDA, the leading global nonwovens associations, jointly announce the launch of the 2021 edition of standard procedures for the nonwovens and related industries.

These Nonwovens Standard Procedures help technically define the nonwovens industry, with specifiers for the properties, composition, and specifications of its products. Offering harmonized language for the industry across the USA and Europe, and recognized by many other individual markets, the procedures offer a way for the nonwovens industry to communicate both across the globe, and within the supply chain to ensure that product properties can be consistently described, produced, and tested.

  • Harmonized Language Increases Efficiency to Communicate Globally Consistent Descriptions, Production and Testing

EDANA and INDA, the leading global nonwovens associations, jointly announce the launch of the 2021 edition of standard procedures for the nonwovens and related industries.

These Nonwovens Standard Procedures help technically define the nonwovens industry, with specifiers for the properties, composition, and specifications of its products. Offering harmonized language for the industry across the USA and Europe, and recognized by many other individual markets, the procedures offer a way for the nonwovens industry to communicate both across the globe, and within the supply chain to ensure that product properties can be consistently described, produced, and tested.

The harmonized methods contained in the Nonwovens Standard Procedures (NWSP) edition include 107 individual test procedures and guidance documents to support applications across the nonwovens and related industries, and are available on both www.inda.org and www.edana.org.

The 2021 edition includes updated or modified procedures with a numbering structure that makes the document intuitive to search and use. Additionally, each method also includes a page to summarize and track relevant changes made to the document. In an effort to make all methods more consistent, each one is now presented in a format building on the International Standards Organisation (ISO) template, facilitating any future possible submission to ISO in an effort to become a recognized international standard or technical specification.

As in previous editions, the table of contents for the Nonwoven Standard Procedures document includes references to existing related ISO standards, which makes it easier for technicians to choose the most relevant procedure or methods to apply to their product.

Source:

INDA / EDANA

PCMC’s Fusion C now equipped to run Gelflex-EB® inks (c) PCMC, Barry-Wehmiller
16.06.2021

PCMC’s Fusion C now equipped to run Gelflex-EB® inks

Paper Converting Machine Company (PCMC) has announced that its Fusion C is now capable of running Gelflex-EB® CI flexo printing inks at 400 meters per minute.

The marketplace for high-speed CI flexo printing continues to grow, with flexible packaging printers requesting higher-speed presses with greater efficiency. Gelflex-EB® CI flexo inks and Energy Sciences Inc.’s (ESI) EZCure® Electron Beam (EB) are now able to meet customers’ demands on PCMC’s Fusion C, which is part of a series of flexographic printers that significantly reduce energy requirements by utilizing low-power consumption components, designs and operations.

Gelflex-EB® ink technology offers printers a cost-effective path to gain high-resolution print quality that removes more than 90 percent of solvents. It is safe for food packaging and can be used in both traditional reverse-print laminations or as a surface-print ink on multi-layer monomaterial recyclable structures.

Paper Converting Machine Company (PCMC) has announced that its Fusion C is now capable of running Gelflex-EB® CI flexo printing inks at 400 meters per minute.

The marketplace for high-speed CI flexo printing continues to grow, with flexible packaging printers requesting higher-speed presses with greater efficiency. Gelflex-EB® CI flexo inks and Energy Sciences Inc.’s (ESI) EZCure® Electron Beam (EB) are now able to meet customers’ demands on PCMC’s Fusion C, which is part of a series of flexographic printers that significantly reduce energy requirements by utilizing low-power consumption components, designs and operations.

Gelflex-EB® ink technology offers printers a cost-effective path to gain high-resolution print quality that removes more than 90 percent of solvents. It is safe for food packaging and can be used in both traditional reverse-print laminations or as a surface-print ink on multi-layer monomaterial recyclable structures.

02.06.2021

Teijin: Tenax™ Carbon Fiber Prepreg Adopted for Next-Generation Aircraft Engine Nacelle

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin is intensively accelerating its development of mid- to downstream applications for aircraft, one of the strategic focuses of its medium-term management plan for 2020-2022. Going forward, Teijin intends to further strengthen its carbon fiber and intermediate material businesses to contribute to increasing global sustainability, aiming to become a company that supports the society of the future.

Source:

Teijin

ITA
04.05.2021

2021 Aachen Reinforced! Symposium free of charge for all attendees

Institut für Textiltechnik of RWTH Aachen University has changed the format of the 2021 Aachen Reinforced! Symposium to an online only format. The programme was shortened to suit the new format, with presentations taking place on Monday 10th May and Tuesday 11th May.

Institut für Textiltechnik of RWTH Aachen University has changed the format of the 2021 Aachen Reinforced! Symposium to an online only format. The programme was shortened to suit the new format, with presentations taking place on Monday 10th May and Tuesday 11th May.

The conference program for Monday, 10th May:
The programme will begin with exciting presentations on glass chemistry and fibres. A talk by Dr Anne Berthereau (Owens Corning Composites) on the race for always higher modulus glass fibres will be followed by a talk from Dr Hong Li (Nippon Electric Glass) on the potential of new high-strength and high-modulus glass fibres.
After two further presentations on high modulus and bioactive glass fibres from Muawia Dafir and Julia Eichhorn (TU Bergakademie Freiberg), we will learn about furnace efficiency as well as process monitoring and digitalisation in glass fibre production from René Meulemann (CelSian), Hans Gedon (Gedonsoft) and Julius Golovatchev (Incotelogy) respectively.
A presentation by Felix Quintero Martínez (Universidade de Vigo) will explore a novel method to produce ultra-flexible glass nanofibers.
The afternoon will continue with two presentations by Dr Christina Scheffler (Leibniz-Institut für Polymerforschung Dresden e.V. (IPF)) and Professor James Thomason (University of Strathclyde) in the field of glass fibre sizings and fibre-matrix interfaces. Finally, a closing presentation by Steve Bassetti (Michelman) will conclude the first day of the Symposium.

The entire conference programme is available on the website https://aachen-fibres.com/aachen-reinforced/general-information.
To register for the Symposium, use the following link: https://aachen-fibres.com/aachen-reinforced/registration

Kornit Digital Announces MAX Technology (c) Kornit Digital
26.04.2021

Kornit Digital Announces MAX Technology

Kornit Digital announced the release of its new MAX technology, establishing a new standard for on-demand fashion and apparel production.

A key feature of Kornit’s MAX technology is XDi, which delivers revolutionary 3D capabilities for new, high-density graphic decoration that can simulate embroidery, vinyl, and heat transfer in a single, waste-free digital process. The new XDi, which is based on Kornit’s patents, allows fulfillers and brands to expand their offerings to include new-to-market, innovative decorations without the inefficiencies and cost of operating analog technologies.

Kornit Digital announced the release of its new MAX technology, establishing a new standard for on-demand fashion and apparel production.

A key feature of Kornit’s MAX technology is XDi, which delivers revolutionary 3D capabilities for new, high-density graphic decoration that can simulate embroidery, vinyl, and heat transfer in a single, waste-free digital process. The new XDi, which is based on Kornit’s patents, allows fulfillers and brands to expand their offerings to include new-to-market, innovative decorations without the inefficiencies and cost of operating analog technologies.

Introducing Kornit Atlas MAX and ActiveLoad Automation
Kornit also debuted the ActiveLoad Automation technology, a new robotic system to significantly ease the burden of manual and labor-intensive media handling in the textile decoration industry. This increases total output per shift while ensuring minimal downtime and exceptional reliability. The new patent pending ActiveLoad Automation technology ensures continuous production and consistency, while decreasing human error and fatigue, regardless of employee experience and training, for ultimate results and best operational efficiency.

The first product with MAX technology is now commercially available in the Kornit Atlas MAX, a carbon-neutral, industrial-scale DTG production system, providing unsurpassed retail quality, exceptional color-matching capabilities, and a wide, vivid color gamut, with exceptional durability. The Atlas MAX is delivered with the new XDi technology built in, for 3D printing capabilities.

Swiss weaving machinery manufacturers are in the forefront of novel application development ©Stäubli
Multilayer Aramid
17.03.2021

Swiss weaving: Fabrics of the future

  • Swiss weaving machinery manufacturers are in the forefront of novel application development

Shoes and electronic calculators are probably not the first products people would associate with the textile weaving process. But they certainly signpost the future for woven fabrics, as two examples of the ever-wider possibilities of latest technology in the field. Fashion and function already combine in the increasing popularity of woven fabrics for shoes, and this is a present and future trend. Calculators in fabrics? That’s another story of ingenious development, using so-called ‘meander fields’ on the back and keys printed on the front of the material.

  • Swiss weaving machinery manufacturers are in the forefront of novel application development

Shoes and electronic calculators are probably not the first products people would associate with the textile weaving process. But they certainly signpost the future for woven fabrics, as two examples of the ever-wider possibilities of latest technology in the field. Fashion and function already combine in the increasing popularity of woven fabrics for shoes, and this is a present and future trend. Calculators in fabrics? That’s another story of ingenious development, using so-called ‘meander fields’ on the back and keys printed on the front of the material.

These glimpses of the outlook for modern weavers are among the highlights of developments now being pioneered by Swiss textile machinery companies. All weaving markets require innovation, as well as speed, efficiency, quality and sustainability. Member firms of the Swiss Textile Machinery Association respond to these needs at every point in the process – from tightening the first thread in the warp to winding the last inch for fabric delivery. They also share a common advantage, with a leading position in the traditional weaving industry as well as the expertise to foster new and exciting applications.

Technology and research cooperation
The concept of a ‘textile calculator’ was developed by Jakob Müller Group, in cooperation with the textile research institute Thuringen-Vogtland. Müller’s patented MDW® multi-directional weaving technology is able to create the meander fields which allow calculator functions to be accessed at a touch. A novel and useful facility, which suggests limitless expansion.

Today, the latest woven shoes are appreciated for their precise and comfortable fit. They score through their durability, strength and stability, meeting the requirements of individual athletes across many sports, as well as leisurewear. Stäubli is well known as a leading global specialist in weaving preparation, shedding systems and high-speed textile machinery. Its jacquard machines offer great flexibility across a wide range of formats, weaving all types of technical textiles, lightweight reinforcement fabrics – and shoes.

It’s possible to weave new materials such as ceramics, mix fibers such as aramid, carbon and other, and produce innovative multi-layers with variable thicknesses. Such applications put special demands on weaving machines which are fulfilled by Stäubli high-performance TF weaving systems.

Great weaving results are impossible without perfect warp tension, now available thanks to the world-leading electronic warp feeding systems of Crealet. Some market segments in weaving industry today demand warp let-off systems which meet individual customer requirements. For example, the company has recognized expertise to understand that geotextile products often need special treatment, as provided by its intelligent warp tension control system. Individual and connective solutions are designed to allow external support via remote link. Crealet’s warp let-off systems are widely used in both ribbon and broadloom weaving, for technical textiles applied on single or multiple warp beams and creels.

Functional, sustainable, automated
Trends in the field of woven narrow fabrics are clearly focused on functionality and sustainability. The Jakob Müller Group has already embraced these principles – for example using natural fibers for 100% recyclable labels with a soft-feel selvedge. It also focuses as much as possible on the processing of recycled, synthetic materials. Both PET bottles and polyester waste from production are recycled and processed into elastic and rigid tapes for the apparel industry.

For efficient fabric production environments, it is now recognized that automated quality solutions are essential. Quality standards are increasing everywhere and zero-defect levels are mandatory for sensitive applications such as airbags and protective apparel.

Uster’s latest generation of on-loom monitoring and inspection systems offers real operational improvements for weavers. The fabric quality monitoring prevents waste, while the quality assurance system significantly improves first-quality yield for all applications. Protecting fabric makers from costly claims and damaged reputations, automated fabric inspection also removes the need for slow, costly and unreliable manual inspection, freeing operators to focus on higher-skilled jobs.

Smart and collaborative robotics (cobots) offer many automation possibilities in weaving rooms. Stäubli’s future oriented robotics division is a driver in this segment with first effective installations in warp and creel preparation.

Control and productivity
Willy Grob’s specialized solutions for woven fabric winding focus on reliable control of tension, keeping it constant from the start of the process right through to the full cloth roll. Continuous digital control is especially important for sensitive fabrics, while performance and productivity are also critical advantages. In this regard, the company’s large-scale batching units can provide ten times the winding capacity of a regular winder integrated in the weaving machine.

The customized concept by Grob as well as design and implementation result in great flexibility and functionality of the fabric winding equipment – yet another example of Swiss ingenuity in textile machinery.  
There is even more innovation to come in weaving – and in other segments – from members of the Swiss Textile Machinery Association in future! This confident assertion is founded on an impressive statistic: the 4077 years of experience behind the creative power of the association’s member firms. It’s proof positive that their developments grow out of profound knowledge and continuous research.

B.I.G. Yarns launches EqoCycle Yarns designed for the carpet industry (c) Beaulieu International Group
08.03.2021

B.I.G. Yarns launches EqoCycle Yarns designed for the carpet industry

  • 75% recycled content yarn with no performance compromise
  • A circular, endlessly recyclable solution for contract, automotive and residential carpets
  • Significant resource efficiency in EqoCycle production compared to virgin-based PA6 yarn: 58% reduction in fossil fuel use; 27% less energy consumption; 37% CO₂ emission reduction

B.I.G. Yarns announces its latest development, EqoCycle, a fully recyclable PA6 yarn with 75% recycled content, offering the same high-quality performance of virgin PA6 yarn. The new recycled yarn mainly based on post-industrial waste supports contract, automotive and residential carpet manufacturers with a drop-in circular solution to reduce the ecological footprint of their end products.

  • 75% recycled content yarn with no performance compromise
  • A circular, endlessly recyclable solution for contract, automotive and residential carpets
  • Significant resource efficiency in EqoCycle production compared to virgin-based PA6 yarn: 58% reduction in fossil fuel use; 27% less energy consumption; 37% CO₂ emission reduction

B.I.G. Yarns announces its latest development, EqoCycle, a fully recyclable PA6 yarn with 75% recycled content, offering the same high-quality performance of virgin PA6 yarn. The new recycled yarn mainly based on post-industrial waste supports contract, automotive and residential carpet manufacturers with a drop-in circular solution to reduce the ecological footprint of their end products.

EqoCycle is made with recycled granulates derived from pre-consumer recycled and regenerated PA6, certified by Control Union for Global Recycled Standard (GRS) Certification. The use of less virgin materials implicates a decrease of fossil fuels by 58% and a 27% decrease in energy consumption. On top, EqoCycle yarns allow a reduction of 37% of CO₂ eq./kg compared to the fossil based yarns. The environmental impacts of EqoCycle with 75% recycled content were calculated through an LCA analysis, verified according to ISO 14025 and EN 15804+A1 and published in an Environmental Product Declaration (EPD registration number S-P-02415).

Customers have the assurance that for every 1.000 tons of EqoCycle yarn, 13,562 barrels of oil are saved and 2.700 tons of CO₂ emission are reduced, compared to PA6 traditionally made from virgin materials.

Emmanuel Colchen, General Manager Yarns Division, comments: “EqoCycle is a perfect example of how higher resource efficiency in our industry can promote greater circularity in our customers’ industries. Minimizing waste, re-using materials, and saving energy and carbon emissions in production, it provides our customers and carpet brands with a new sustainable alternative that won’t compromise their end-product performance but will support their increasing focus on CO₂ reduction and global warming potential. All part of our wider commitment to encourage decoupling from the need for only virgin feedstocks and moving towards a circular economy for yarns and soft flooring industries.”

EqoCycle is the latest circular solution in B.I.G. Yarns’ PA6 portfolio, joining EqoBalance PA6, based on biomass balance renewable resources, which offers up to 75% CO₂ reduction. Both exemplify the company’s on-going investment in developing new products that better serve customers’ needs in a sustainable way. B.I.G. Yarns fully pursues opportunities to support and solve the global environmental challenges through innovation, investment and collaboration, as part of its sincere belief in, and broader commitment to, Social Responsibility.

The innovation of EqoCycle and EqoBalance PA6 aligns with the company’s active integration of the UN Sustainable Development Goals (SDGs) into its business activities, creating value for customers and engaging employees and value chain partners.

MaruHachi/AMAC: High-temperature thermoplastic tapes and laminates (c) MaruHachi
16.02.2021

MaruHachi/AMAC: High-temperature thermoplastic tapes and laminates

With their recently installed high-temperature unidirectional tape line, Japan-based composites manufacturer MaruHachi enables new opportunities for high-end applications in demanding market segments like aerospace, automotive or others outperforming traditional materials based on PP and PA which are already widely available.

In the first phase, MaruHachi will produce up to 40 tons/year and focuses now specifically on high-temperature thermoplastic uni-directional (UD) tapes and multi-layer sheet laminates. The material is based on high-performance fibers like carbon, aramid, glass or natural fibers and the matrix can be high-performance polymers like PPS, PEEK or other higher temperature polymers, which are much tougher than epoxies and easy to recycle. With a width of 500 mm, a specific weight from 60 to 350 g/m2, depending on the chosen material, the lines can operate under temperatures up to 420 degrees Celsius. Working under these extremely high temperatures allows for better material properties of the final application, higher performance, increased resistance and integrated high-performance functionalities e.g. by overmoulding.

With their recently installed high-temperature unidirectional tape line, Japan-based composites manufacturer MaruHachi enables new opportunities for high-end applications in demanding market segments like aerospace, automotive or others outperforming traditional materials based on PP and PA which are already widely available.

In the first phase, MaruHachi will produce up to 40 tons/year and focuses now specifically on high-temperature thermoplastic uni-directional (UD) tapes and multi-layer sheet laminates. The material is based on high-performance fibers like carbon, aramid, glass or natural fibers and the matrix can be high-performance polymers like PPS, PEEK or other higher temperature polymers, which are much tougher than epoxies and easy to recycle. With a width of 500 mm, a specific weight from 60 to 350 g/m2, depending on the chosen material, the lines can operate under temperatures up to 420 degrees Celsius. Working under these extremely high temperatures allows for better material properties of the final application, higher performance, increased resistance and integrated high-performance functionalities e.g. by overmoulding.

Since 2017, MaruHachi Group is active in the European market in cooperation with Dr. Michael Effing,the CEO of AMAC GmbH, who advises and supports the company strategically. The established, family-owned MaruHachi Group has a strong history in automotive and medical textiles and has been active in the innovative composites market for more than 15 years.

Toshi Sugahara, CEO of MaruHachi: “For many years, we have already been cooperating with domestic and international partners on high-demand applications and therefore, MaruHachi decided now to invest over 1 million EUR in this new line in phase 1, including a funding participation from the Japanese government NEDO. New developments in phase 2 will be be undertaken by end of 2021 on the downstream technologies like the automated preforming and consolidation. With our new products, we want to contribute to significant weight reductions of the final products, thus improve energy efficiency while offering a cost-efficient and high-quality solution.”

Dr. Effing, CEO of AMAC GmbH confirms: „The focus on the niche of high-temperature products based on PPS and PEEK allows MaruHachi on very demanding high-end applications such as structural frames on space and aircrafts, aircraft seats or engine components etc. The tapes are fully recyclable and can be processed e.g. with high-speed with laser-based tape placement machines and robots.”

Source:

AMAC GmbH

15.02.2021

Hexcel’s HexPly® XF Surface Technology for Blade Surface Finishing Process

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Easy to handle and supplied in a ready to use roll form, HexPly XF can be quickly applied by hand or with semi-automated layup equipment. It features one self-adhesive, surface finishing side - indicated by a removable protective foil. This side of the prepreg is placed against a release agent treated mold surface. Once the material has been positioned, the lay-up of the blade shell structure can start immediately, and the laminate can be infused. After curing, the blade is de-molded with the manufacturer benefitting from a pinhole-free surface that needs minimal preparation before painting.

HexPly XF material is less than half the weight of a typical gel coat per square meter, reducing the overall weight of the blade. Additionally, the consistent areal weight and thickness of the prepreg film provide a completely uniform surface coating, ensuring blade weight distribution and balance are maintained, which is critical as rotor diameters continue to increase. With no need to handle or mix liquid chemicals as in the gel coat process, HexPly® XF also improves the health and safety working conditions on the shop floor.

The material has a shelf life of six weeks at ambient temperature, which also minimizes cold storage requirements and helps to reduce scrap.

Source:

100% Marketing

12.01.2021

Kelheim Fibres first viscose manufacturer worldwide with environmental management system validated to EMAS

  • The Bavarian Kelheim Fibres GmbH has become the first viscose fibre manufacturer worldwide to receive EMAS certification.

“Our aspiration is that our fibres offer an eco-friendly and high-performance alternative to synthetic materials”, says Craig Barker, CEO at Kelheim Fibres. “So, it’s not enough that our fibres are made from renewable resources and that they are fully biodegradable – our environmental awareness must include the whole production process and all that goes with it if we want to safeguard our credibility.

The EMAS certification proves that we take this responsibility seriously.” EMAS stands for “Eco Management and Audit Scheme” and is a standardised eco management certification system developed by the European Union. EMAS includes the globally applicable ISO 14001 standard and goes beyond its requirements by demanding more transparency and continuous improvement: Certified companies report in their annual EMAS Environmental Statement on their environmental goals and their progress in meeting them.

  • The Bavarian Kelheim Fibres GmbH has become the first viscose fibre manufacturer worldwide to receive EMAS certification.

“Our aspiration is that our fibres offer an eco-friendly and high-performance alternative to synthetic materials”, says Craig Barker, CEO at Kelheim Fibres. “So, it’s not enough that our fibres are made from renewable resources and that they are fully biodegradable – our environmental awareness must include the whole production process and all that goes with it if we want to safeguard our credibility.

The EMAS certification proves that we take this responsibility seriously.” EMAS stands for “Eco Management and Audit Scheme” and is a standardised eco management certification system developed by the European Union. EMAS includes the globally applicable ISO 14001 standard and goes beyond its requirements by demanding more transparency and continuous improvement: Certified companies report in their annual EMAS Environmental Statement on their environmental goals and their progress in meeting them.

During the audit preceding the certification, the independent environmental auditor thoroughly investigated all departments of the company, from the production itself to the company canteen. He found no non-conformances and was impressed by the competence and the high sense of responsibility among Kelheim’s employees. In contrast to the EU Ecolabel and similar certifications, EMAS does not apply to individual products or services, but certifies the complete environmental performance of the company. This benefits not only the protection of the environment and climate, but also the improvement of a company’s ecoefficiency.

Craig Barker: “An efficient environmental management system ensures that economy and ecology go hand in hand – that gives us a decisive competitive edge.”

Source:

Kelheim Fibres GmbH

(c) BB Engineering GmbH
26.11.2020

BBE's VacuFil recycling line for PET

Polyester and its applications are omnipresent in our everyday lives. Whether as beverage bottles, film packaging, high-tech sports shirts or safety belts, polyester excels with its excellent mechanical properties and inexpensive production. However, the constantly rising demand requires responsible handling of global resources. For this reason, it is not only ‘virgin polyester’ generated from crude oil that is exclusively the raw material for manufacturing, so too is polyester recycled from post-production and post-consumer waste. Processing production waste also helps cut raw material, disposal and transport costs, hence increasing efficiency.

Polyester and its applications are omnipresent in our everyday lives. Whether as beverage bottles, film packaging, high-tech sports shirts or safety belts, polyester excels with its excellent mechanical properties and inexpensive production. However, the constantly rising demand requires responsible handling of global resources. For this reason, it is not only ‘virgin polyester’ generated from crude oil that is exclusively the raw material for manufacturing, so too is polyester recycled from post-production and post-consumer waste. Processing production waste also helps cut raw material, disposal and transport costs, hence increasing efficiency.

BB Engineering has developed an innovative solution for the recycling of post-production polyester fibre waste, called VacuFil. Decades of experience in the areas of extrusion, filtration and spinning systems have been bundled into a new, innovative core component – the vacuum filter. It unites gentle large-scale filtration and controlled intrinsic-viscosity build-up for consistently outstanding melt quality. The attached vacuum swiftly and reliably removes volatile contamination and ensures a controlled IV-increase. Comprising an inline viscosity measuring unit connected with the vacuum unit the IV can be controlled continuously and reliably. Hence, producers are able to generate that specific kind of recycled polyester they need for their application.

Source:

BB Engineering GmbH

Monforts (c) Monforts
19.11.2020

İlay puts a premium on energy with new Monforts installation

The company, founded in 1993, has established a reputation for leadership in new printing techniques and technologies with customers across Europe, as well as with many of the leading Turkish brands.

Mission
On its mission to achieving continuous progress in error-free and resource-efficient manufacturing, İlay has just taken delivery of a new Monforts Montex stenter range, with a working width of two metres and eight TwinAir chambers.

“This installation provides us with much improved control options for all process parameters and compared to the old stenter it is replacing, we are particularly impressed with the energy savings we are making,” Mr Savaş says.

Achieving energy savings on Montex stenters has been a key focus for Monforts designers and engineers in Germany for many years.

The company, founded in 1993, has established a reputation for leadership in new printing techniques and technologies with customers across Europe, as well as with many of the leading Turkish brands.

Mission
On its mission to achieving continuous progress in error-free and resource-efficient manufacturing, İlay has just taken delivery of a new Monforts Montex stenter range, with a working width of two metres and eight TwinAir chambers.

“This installation provides us with much improved control options for all process parameters and compared to the old stenter it is replacing, we are particularly impressed with the energy savings we are making,” Mr Savaş says.

Achieving energy savings on Montex stenters has been a key focus for Monforts designers and engineers in Germany for many years.

With the TwinAir heating chamber system within a Montex stenter, top and bottom airflows can be regulated completely independently of each other, ensuring heat is only applied when and where it is required. The Optiscan balancing system ensures continuous automatic evaluation of the distance between the nozzles and the fabric for highly economical and contact-free drying.

The resulting constant evaporation rate within the stenter ensures optimum energy utilisation. In addition, TwinAir chambers feature special panelling for low heat radiation, careful sealing of all connecting positions and chamber access points, and air locks at both the entry and the exit.

“Monforts stenters set the benchmark in terms of energy efficiency and help conserve resources,” says Ahmet Kılıç, founder of Neotek, the representative for Monforts in Turkey. “Automatically setting the initial moisture content requirement for a specific process before drying to a minimum value helps reduce heat evaporation and consequently, energy consumption. The hermetic sealing of the stenter frame further prevents the loss of heated air as well as the ingress of excessive cold air – which has to be heated back up if it is not kept out in the first place.”

The new Montex line was completed at İlay Textile in August 2020, with no problems during either installation or commissioning.

 

Source:

AWOL Media

Oerlikon: Meltblown und Spunbond (c) Oerlikon
19.11.2020

Oerlikon: Meltblown and Spunbond technologies

Since the outbreak of the coronavirus pandemic, the worldwide demand for protective masks and apparel has resulted in a record number of new orders in the high double-digit millions of euros at Oerlikon Nonwoven. The meltblown technology from Neumünster is recognized by the market as being one of the technically most efficient methods for producing highly-separating filter media made from plastic fibers.

Since the outbreak of the coronavirus pandemic, the worldwide demand for protective masks and apparel has resulted in a record number of new orders in the high double-digit millions of euros at Oerlikon Nonwoven. The meltblown technology from Neumünster is recognized by the market as being one of the technically most efficient methods for producing highly-separating filter media made from plastic fibers.

Protective equipment demands high-end nonwoven products
The rising demand for protective masks and other medical protective equipment since the start of the coronavirus pandemic and the associated global ramping up of production capacities has also resulted in an increase in the demand for nonwovens for the production thereof. Initially, this resulted in bottlenecks in the provision of meltblown filter nonwovens. To this end, there had until this point be very few producers of medical filter nonwovens outside China. Meanwhile, the demand for spunbond systems is also rising. “Due to the structure of our group, we are in the fortunate position to swiftly reallocate and free up our production capacities. This means that we are able to relatively quickly deliver not only meltblown systems, but also spunbond equipment”, explains Dr. Ingo Mählmann, Head of Sales & Marketing at Oerlikon Nonwoven, talking about the positive situation at the company.

The capacities for respiratory masks available in Europe to date are predominantly manufactured on Oerlikon Nonwoven systems. “Our machines and systems for manufacturing manmade fiber and nonwovens solutions enjoy an outstanding reputation throughout the world. Ever more manufacturers in the most diverse countries are hoping to become independent of imports”, comments Dr. Mählmann. The Oerlikon Nonwoven meltblown systems are being delivered to Germany, China, Turkey, United Kingdom, South Korea, Italy, France, North America and – for the very first time – to Australia until well into 2021.

Quality and efficiency in demand
Depending on the purpose of the application, medical PPE (personal protection equipment) should be breathable and comfortable to wear, protect medical staff against viruses, bacteria and other harmful substances and form a barrier against liquids. For these reasons, they are often made of either pure spunbond or of spunbond-meltblown combinations. Here, the meltblown nonwoven core assumes the barrier or filter task, while the spunbond has to retain its shape, while being tear-resistant, abrasion-proof, absorbent, particularly flame-resistant and nevertheless extremely soft on the skin.

All masks are not created equal – thanks to the ecuTEC+
Protection against infections such as coronavirus can only be guaranteed with the right quality.

The nonwovens can be electrostatically-charged in order to further improve the filter performance without additionally increasing breathing resistance. Here, Oerlikon Nonwovenʼs patented ecuTEC+ electro-charging unit excels in terms of its extreme flexibility. Nonwovens manufacturers can freely choose between numerous variation options and set the optimal charging method and intensity for their specific applications. In this way, even the smallest particles are still attracted and reliable separated by a relatively open-pored nonwoven. Nevertheless, mask wearers are still able to easily breathe in and out due to the comparatively loose formation of the fibers. To this end, it comes as no surprise that all meltblown systems currently destined for the production of mask nonwovens are equipped with the ecuTEC+ unit.

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group (c) Composites United
Skeletal windshield design based on injection molding with carbon fiber profiles
16.11.2020

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

In the vehicle, the windshield is a connecting element between the roof frames and thus has an important stabilizing function. The carbon fiber profiles add the required stiffness and crash safety to the component. At the same time, they help to significantly reduce the weight of the roof and thus also support the driving dynamics. The injection molding process also enables particularly complex and material-efficient structures. In the BMW Group model, this innovative component concept will cut weight by 40 percent compared to conventional steel designs of the component while creating important space for cable ducts and sensors.

The production of the carbon fiber profiles themselves is also particularly geared to material and process efficiency in large-scale production. The profiles consist of several smaller fiber strands, the so-called rods, and are manufactured using the modern continuous pultrusion process. During product and process development it was one key objective to ensure that material loss during production is almost completely avoided.

"At SGL Carbon, we have been working on the development of thermoplastic carbon fiber profiles for use in injection molding for some time already. This development work is now beginning to pay off. Due to the many advantages and competitive costs, we see a great potential for the technology to be used in other automotive projects too," explains Sebastian Grasser, Head of the Automotive Segment in the Business Unit Composites - Fibers & Materials at SGL Carbon.

"Innovative lightweight construction with hybrid designs has developed into a strategically conclusive concept for Koller Group's OEM customers," confirms Max Koller, CEO of Koller Group. "SGL Carbon's high level of material expertise, combined with the process know-how of KOLLER Kunststofftechnik and KOLLER Formenbau, create the basis for a promising future in innovative lightweight construction technologies. With this order, the BMW Group has confirmed its confidence in the successful cooperation between SGL and Koller; we are particularly pleased about this", said Max Koller.
 
The Koller Group is a globally operating technology company with plants in Europe and China, as well as NAFTA. The Koller Group develops and manufactures lightweight construction, tools and serial components, primarily for the automotive industry.

Source:

SGL CARBON SE