From the Sector

Reset
499 results
21.02.2023

Polartec®: New technology reduces fiber fragmentation in laundering tests

  • Iconic 200 Series fleece to be the first fabric made from this new process.

Polartec®, a Milliken & Company brand, announces Polartec® Shed Less Fleece, a new milestone in its industry-leading efforts to reduce textile fiber fragment shedding. Shed Less is a process that combines yarn construction, knitting, chemistry, and manufacturing to reduce home laundry fiber fragment shedding by an average of 85%. The first fabric to receive this new technology is the brand’s iconic Polartec® 200 Series Fleece, the modern version of the original PolarFleece® launched in 1981, and in 1993, the first performance fleece knit from yarn made from recycled plastic bottles.

The Shed Less process works by engineering the lofted fibers that give fleece its soft hand the ability to resist breaking and rubbing off during home laundering, cited as one contributing factor to the spread of fibers fragments (commonly referred to as microfibers). Polartec® Shed Less Fleece achieves this while maintaining all of the attributes that continue to make Polartec fleece a staple of midlayer collections - lightweight, breathable and warm.

  • Iconic 200 Series fleece to be the first fabric made from this new process.

Polartec®, a Milliken & Company brand, announces Polartec® Shed Less Fleece, a new milestone in its industry-leading efforts to reduce textile fiber fragment shedding. Shed Less is a process that combines yarn construction, knitting, chemistry, and manufacturing to reduce home laundry fiber fragment shedding by an average of 85%. The first fabric to receive this new technology is the brand’s iconic Polartec® 200 Series Fleece, the modern version of the original PolarFleece® launched in 1981, and in 1993, the first performance fleece knit from yarn made from recycled plastic bottles.

The Shed Less process works by engineering the lofted fibers that give fleece its soft hand the ability to resist breaking and rubbing off during home laundering, cited as one contributing factor to the spread of fibers fragments (commonly referred to as microfibers). Polartec® Shed Less Fleece achieves this while maintaining all of the attributes that continue to make Polartec fleece a staple of midlayer collections - lightweight, breathable and warm.

The brand used the AATCC (American Association of Textile Chemists and Colorists) TM212-2021 test method for fiber fragment release during home laundering. This test was conducted with large sample sizes to account for variability. The testing concluded that Shed Less Fleece reduced fiber fragment shedding by an average of 85% compared to the baseline fabric.

“In 2016 we began looking into how we might test for fiber loss because there wasn’t a lot of research on the issue.” said Aimee LaValley, Polartec Textile Development, Dye and Chemistry Manager. “This led to new products like Polartec Power Air™, new manufacturing processes, as well as our participation in the TextileMission workgroup to study the issue on an interdisciplinary basis.”

TextileMission was a three year collaborative initiative of academia and industry to reduce the impact of textile microplastics funded by the German Federal Ministry of Education and Research. Founding partners include The Association of the German Sporting Goods Industry, Hochschule Niederrhein - University of Applied Science; TU Dresden - Institute of Water Chemistry; Vaude Sport; WWF Germany; Adidas AG; Henkel AG; Miele & CIE; and Polartec, LLC.

Polartec® Shed Less Fleece will be initially launched in the United States and will be available to customers beginning March 1, 2023. The brand plans to apply the Shed Less process to many other industry-leading fabric platforms and manufacturing facilities around the world.

(c) Freudenberg Performance Materials
17.02.2023

Freudenberg: Packaging textile for automotive and industrial parts

Freudenberg Performance Materials (Freudenberg) is widening its product range of technical packaging textiles. Evolon® ESD protects automotive and industrial parts with electronic components from electrostatic discharge. This includes trim lines, dashboards, mirrors, steering wheels, etc.

The ESD (ElectroStatic Discharge) feature of the new Evolon® technical packing textile provides permanent electrostatic discharging protection and the fabric’s surface resistivity can be customized. This eliminates ESD damage to electronic components during transport because electrostatic charging due to movement and friction is safely prevented. As this kind of damage cannot be detected with the naked eye, Evolon® ESD helps to avoid failures which can occur after the final product is assembled and released. Manufacturers benefit from fewer complaints and warranty costs, as well as better end customer satisfaction.

Freudenberg Performance Materials (Freudenberg) is widening its product range of technical packaging textiles. Evolon® ESD protects automotive and industrial parts with electronic components from electrostatic discharge. This includes trim lines, dashboards, mirrors, steering wheels, etc.

The ESD (ElectroStatic Discharge) feature of the new Evolon® technical packing textile provides permanent electrostatic discharging protection and the fabric’s surface resistivity can be customized. This eliminates ESD damage to electronic components during transport because electrostatic charging due to movement and friction is safely prevented. As this kind of damage cannot be detected with the naked eye, Evolon® ESD helps to avoid failures which can occur after the final product is assembled and released. Manufacturers benefit from fewer complaints and warranty costs, as well as better end customer satisfaction.

Further protection feature
Unlike conventional ESD packaging solutions, Evolon® ESD also protects parts surfaces by avoiding micro-scratches or lint contamination. By using Evolon® reusable packaging to transport parts with highly-sensitive surfaces, customers reduce the number of damaged parts and the reject rate.

Additional benefits
Evolon® microfilament textiles are also extremely strong and are available in different weights to meet a wide range of requirements – from lightweight to heavy-duty. They can be used to pack and transport very heavy parts without damage. In addition, Evolon® fabrics are durable, and contain up to 85% recycled PET.

Source:

Freudenberg Performance Materials

13.02.2023

CELLIANT cleared to market in 50+ countries

  • Registered in majority as a class 1 medical device  

CELLIANT -  a performance textile that converts body heat into infrared energy - is designated as a Class 1 Medical Device in Australia, Canada, the EU and European Economic Area (EEA), Japan, New Zealand, the United Arab Emirates, the United Kingdom and the United States. CELLIANT is cleared to market in China, India, Indonesia, Korea, Malaysia, Mexico, Peru, Philippines, Russia, Saudi Arabia, Singapore, South Africa, Taiwan, Thailand and Vietnam, with more countries and regions to follow.

  • Registered in majority as a class 1 medical device  

CELLIANT -  a performance textile that converts body heat into infrared energy - is designated as a Class 1 Medical Device in Australia, Canada, the EU and European Economic Area (EEA), Japan, New Zealand, the United Arab Emirates, the United Kingdom and the United States. CELLIANT is cleared to market in China, India, Indonesia, Korea, Malaysia, Mexico, Peru, Philippines, Russia, Saudi Arabia, Singapore, South Africa, Taiwan, Thailand and Vietnam, with more countries and regions to follow.

In 2017, the FDA determined that products containing CELLIANT are medical devices as defined in section 201(h) of the Federal Food, Drug and Cosmetic Act and are general wellness products because they are intended to temporarily increase blood flow and local circulation at the site of the application in healthy individuals.
 
At Hologenix®, whose CELLIANT® infrared technology is an ingredient in world-class brands across many categories, science matters. The company has a distinguished Science Advisory Board composed of experts in the fields of photobiology, nanotechnology, sleep medicine, diabetes and wound care. The Science Advisory Board has overseen nine peer-reviewed published studies that collectively demonstrate CELLIANT’s effectiveness and the benefits of infrared energy. This claim set provides the basis for products containing CELLIANT to be designated as a Class 1 Medical Device in 38 countries and cleared to market in 15, with more countries and regions to follow. This elevated status in 53 countries translates to CELLIANT being an ideal partner for global companies who are seeking innovation in textiles to distinguish their products.   

“We have laid the groundwork for our partner brands to capitalize on the benefits of our infrared technology and to enhance their ability to do business,” said Seth Casden, Hologenix co-founder and CEO.  “We firmly believe that regulatory status matters and that is why we have grown the number of countries we have such relationships with by over a third in the last three years. It is definitely a competitive advantage of our company and CELLIANT.”

“Globally, the awareness of the benefits of infrared textiles, which absorb body heat and reflect it back as therapeutic infrared energy, has grown exponentially over the last 10 years,” continued Casden. “And in the United States infrared is gaining a strong foothold.”

Source:

Hologenix

(c) Freudenberg Performance Materials Holding SE & Co. KG
13.02.2023

Freudenberg Performance Materials presents range of solutions for the composites industry at JEC 2023

Freudenberg Performance Materials (Freudenberg) will present surfacing veils and core materials for lightweight fiber reinforced plastic (FRP) parts at JEC in Paris, France. Freudenberg will also be showcasing Enka® Solutions flow media and spacers for efficient vacuum infusion, resin transfer and foam injection molding processes for applications in the composites industry, etc. at the international composites show.
 
Freudenberg’s solutions for the FRP industry include a variety of glass, PAN and PET nonwovens, as well as core materials for the production of lightweight fiber reinforced plastic parts. These products are designed for anti-corrosion coatings in piping and tank construction, smooth UV resistant surfaces for facade panels, and other applications for a diverse range of end products. Products made from fiber reinforced plastics must be equipped with surfacing veils to provide abrasion resistance, corrosion resistance, smooth surfaces and mechanical strength. Freudenberg offers high-tech nonwovens that can meet these challenges.
 

Freudenberg Performance Materials (Freudenberg) will present surfacing veils and core materials for lightweight fiber reinforced plastic (FRP) parts at JEC in Paris, France. Freudenberg will also be showcasing Enka® Solutions flow media and spacers for efficient vacuum infusion, resin transfer and foam injection molding processes for applications in the composites industry, etc. at the international composites show.
 
Freudenberg’s solutions for the FRP industry include a variety of glass, PAN and PET nonwovens, as well as core materials for the production of lightweight fiber reinforced plastic parts. These products are designed for anti-corrosion coatings in piping and tank construction, smooth UV resistant surfaces for facade panels, and other applications for a diverse range of end products. Products made from fiber reinforced plastics must be equipped with surfacing veils to provide abrasion resistance, corrosion resistance, smooth surfaces and mechanical strength. Freudenberg offers high-tech nonwovens that can meet these challenges.
 
Enka® Solutions products are characterized by their typical 3D entangled polymeric filament structures. Thanks to this structure, they are exceptionally suitable as flow media and spacers when producing composite materials.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

(c) Baldwin Technology Company Inc.
08.02.2023

Majocchi uses Baldwin’s Corona Treatment Technology

Majocchi, an Italian textile manufacturer, reports that it has achieved functional and visual appeal with its key fabrics since installing Baldwin Technology Co. Inc.’s corona surface treatment technology.  

Based in Tavernerio (Como), Majocchi has a history of being a technological innovator in the textile industry. Within a decade of its conception in 1941, Majocchi became a global supplier of waterproof cotton for rainwear manufacturers. In the 1960s, the company began producing nylon and technical fabrics, which paved the way for it to become a leading provider of textiles for urban fashion, technical workwear and the military today.

Majocchi has partnered with U.S -based Baldwin Technology Co. to utilize its unrivaled corona surface-treatment technology to produce superior wettability and adhesion.  

Majocchi, an Italian textile manufacturer, reports that it has achieved functional and visual appeal with its key fabrics since installing Baldwin Technology Co. Inc.’s corona surface treatment technology.  

Based in Tavernerio (Como), Majocchi has a history of being a technological innovator in the textile industry. Within a decade of its conception in 1941, Majocchi became a global supplier of waterproof cotton for rainwear manufacturers. In the 1960s, the company began producing nylon and technical fabrics, which paved the way for it to become a leading provider of textiles for urban fashion, technical workwear and the military today.

Majocchi has partnered with U.S -based Baldwin Technology Co. to utilize its unrivaled corona surface-treatment technology to produce superior wettability and adhesion.  

Corona treatment is a technique that temporarily modifies a substrate’s surface tension  properties. The corona oxidation process improves the penetration and absorption of liquids on cellulosic and synthetic fabrics. Utilizing corona treatment before resin application on fabrics such as lycra and nylon facilitates superior adhesion and resin distribution. As a result, corona-treated fabrics provide exceptional color and tonal quality.  

Majocchi uses Baldwin’s Corona Pure Model to apply polyurethane and acrylic-based coatings to its fabrics. The system allows Majocchi to administer a controllable, uniform coating to achieve the desired functionality and aesthetics.

The system is 2,000 millimeters wide with a discharging station and four ceramic electrodes designed for textile applications with the flexibility of customizing plasma dosage for a given fabric structure, width and process speed. The Corona Pure model allows for fabric treatment up to 300 gr/m² in thickness. The system is customizable, with single-sided and dual-sided treatment capabilities. The “Easy Change” feature allows for a seamless replacing of electrodes and rapid cleaning and removal of fiber and dust residue, maintaining optimal exhaust air flow. The treatment system is built with a swiveling housing mechanism, which provides clearance for changes in textile thickness and protects the ceramic electrodes.

More information:
Baldwin Majocchi Coatings Covid-19
Source:

Baldwin Technology Company Inc.

(c) Messe Frankfurt (HK) Ltd
08.02.2023

Cinte Techtextil China 2023 set for September

With China easing its pandemic restrictions, foreign exhibitors and buyers can look forward to quarantine-free travel when participating at this year’s industry showcase in Shanghai. The technical textile and nonwovens fair is scheduled to take place from 19 – 21 September 2023 at the Shanghai New International Expo Centre, amid positive market forecasts for both sectors. The organisers are anticipating a strong showing and the conclusion of an inconsistent period for in-person textile business.

“The industry has demonstrated incredible patience and resilience over the course of the pandemic,” said Ms Wilmet Shea, General Manager of Messe Frankfurt (HK) Ltd. “With both markets growing and China opening its borders, we are excited at the prospect of providing participants with an international, business-friendly platform and expect to welcome a healthy number of exhibitors later this year.”

With China easing its pandemic restrictions, foreign exhibitors and buyers can look forward to quarantine-free travel when participating at this year’s industry showcase in Shanghai. The technical textile and nonwovens fair is scheduled to take place from 19 – 21 September 2023 at the Shanghai New International Expo Centre, amid positive market forecasts for both sectors. The organisers are anticipating a strong showing and the conclusion of an inconsistent period for in-person textile business.

“The industry has demonstrated incredible patience and resilience over the course of the pandemic,” said Ms Wilmet Shea, General Manager of Messe Frankfurt (HK) Ltd. “With both markets growing and China opening its borders, we are excited at the prospect of providing participants with an international, business-friendly platform and expect to welcome a healthy number of exhibitors later this year.”

The global technical textile and nonwovens markets are both set to perform strongly over the next few years. According to Grand View Research, the technical textile market is forecast to expand at a CAGR of 4.7% from 2022 to 2030[1]. The nonwoven fabrics market is anticipated to display an even stronger CAGR of 5.6% during the same period[2], with Asia-Pacific to maintain its position as the biggest regional market.

As one of Asia’s leading trade fairs for the abovementioned sectors, Cinte Techtextil China is the preferred platform for multiple industry players. Speaking at the previous edition in 2021, Mr Seven Shen, Sales Manager at Libero Trading (Shanghai) Co Ltd, China, said: “We have been exhibiting at this fair for years, and know we will meet our target customers at every edition. The buyers here are all highly specialised.”

During his interview at the same edition, Mr Eric Ni, Senior Manager, China Supply Chain Marketing for Cotton Council International, USA, commented: “We hope to use this platform to meet more companies and brands in the nonwovens industry who are interested in US cotton, and to meet up with old friends to discuss the current situation and industry trends. The fair’s buyers are quality, and we have found some new potential clients at this edition.”

Many buyers at the previous edition also gave positive appraisals. “As a professional trade fair for technical textile and nonwoven products, Cinte Techtextil China is not only a platform to gather qualified industry players, but also the best place to showcase new products and innovations,” said Mr Lin Bin, Technical Director at Zhejiang Xinna Medical Device Technology Co Ltd, China. “Specific and high quality products enhance sourcing efficiency for buyers, and exposure to new trends and market developments ensures my company visits here regularly.”

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

[1] “Technical Textile Market Size, Share & Trends Analysis Report 2022-2030”, 2022, Grand View Research, https://bit.ly/3IAxQIK, (Retrieved: January 2023)
[2] “Nonwoven Fabrics Market Size”, 7 September 2022, GlobeNewswire, https://bit.ly/3CxPE3u, (Retrieved: January 2023)

Source:

Messe Frankfurt (HK) Ltd

27.01.2023

SMCCREATE 2023: Call for Speakers

The AVK Working Group SMC/BMC and the European Alliance for SMC BMC are jointly organising SMCCreate 2023 - a conference on designing with SMC and BMC composites. The event, which offers insights into the entire product design process from idea to part manufacture, is aimed at both experienced designers and those new to the use of these materials.

Around 60 participants from all over Europe attended the first SMCCreate design conference, which took place in Antwerp in June 2022. SMCCREATE 2023 will take place in Prague (Czech Republic) on 7-8 November 2023 at the Vienna House by Wyndham Diplomat Prague; conference language is English. After a successful launch, AVK and the European Alliance for SMC BMC are looking forward to the second edition of the event and invite speakers to apply with their presentation proposals by 27 February. (Mail address: info@avk-tv.de).

The AVK Working Group SMC/BMC and the European Alliance for SMC BMC are jointly organising SMCCreate 2023 - a conference on designing with SMC and BMC composites. The event, which offers insights into the entire product design process from idea to part manufacture, is aimed at both experienced designers and those new to the use of these materials.

Around 60 participants from all over Europe attended the first SMCCreate design conference, which took place in Antwerp in June 2022. SMCCREATE 2023 will take place in Prague (Czech Republic) on 7-8 November 2023 at the Vienna House by Wyndham Diplomat Prague; conference language is English. After a successful launch, AVK and the European Alliance for SMC BMC are looking forward to the second edition of the event and invite speakers to apply with their presentation proposals by 27 February. (Mail address: info@avk-tv.de).

The aim of the conference is to help designers and engineers choose the best material solution for their applications. Presentations will focus on best practices and industrial solutions, SMC and BMC component manufacturing, material selection and product development throughout the product life cycle, from design to sustainability.

(Mail address: info@avk-tv.de).

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

24.01.2023

Ministry of Textiles again supports Techtextil India

Techtextil India is scheduled to take place between 12 – 14 September, 2023 in Mumbai. The continued support from the Ministry of Textiles demonstrates the huge emphasis laid for this key sector in boosting the economy of the country given the enormous scope to grow rapidly apart from the remarkable opportunities present to do business in India.
 
Techtextil India is the country’s leading trade fair on technical textiles, non-wovens, fibres, yarns and machinery. With almost eight months to go, the three-day business event has received an overwhelming response from various companies who will be seen showcasing their latest solutions and products for key application areas.
 

Techtextil India is scheduled to take place between 12 – 14 September, 2023 in Mumbai. The continued support from the Ministry of Textiles demonstrates the huge emphasis laid for this key sector in boosting the economy of the country given the enormous scope to grow rapidly apart from the remarkable opportunities present to do business in India.
 
Techtextil India is the country’s leading trade fair on technical textiles, non-wovens, fibres, yarns and machinery. With almost eight months to go, the three-day business event has received an overwhelming response from various companies who will be seen showcasing their latest solutions and products for key application areas.
 
Commenting on the developments, Mr Raj Manek, Executive Director and Board Member, Messe Frankfurt Asia Holdings Ltd, shared: “We are elated to have received the support from the Ministry of Textiles, Government of India and believe that it will bring in strong value to the technical textiles segment of our trade fair while opening doors to lucrative business engagements for the industry. We are optimistic that it will gain for us a wider reach and increase our credibility among the industry.”
 
The last edition of Techtextil India in November 2021 emerged as a crucial meeting place for the technical textile players. Even though the show happened to be the first post lockdown edition it garnered an attendance of 4,087 visitors due to live demonstration of latest products and technologies from over 150 technical textile brands.

Source:

Messe Frankfurt (HK) Limited

Graphik Freudenberg Performance Materials
10.01.2023

Freudenberg: Technical packaging textiles with less CO2 emissions

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

Evolon® microfilament textiles have a small carbon footprint because their manufacturing process uses low CO2 energy sources. The fabrics are lightweight and can be reused throughout entire production programs, e.g. of a car model when it is about the automotive industry. Furthermore, the new Evolon® RE fabrics contain up to 85% of recycled PET which is produced in-house out of post-consumer PET bottles.

Evolon® textiles are suitable for reusable technical packaging, which eliminate the use of thousands of disposable packaging materials. Evolon® fabrics offer scratch-free, lint-free, high-end surface protection for molded plastic parts, painted parts and other sensitive industrial and automotive parts during transport. This contributes to lower the scrap rate of parts and provide both financial and ecological benefits. By using Evolon® reusable packaging to transport highly-sensitive parts, customers can increase their efficiency and save resources.

Source:

Freudenberg Performance Materials

09.01.2023

Autoneum takes over automotive business of Borgers Group

January, 6 Autoneum signed an agreement to acquire the automotive business of Borgers. The transaction is expected to close in April 2023 following antitrust clearance. The enterprise value paid amounts to EUR 117 million.

Borgers specializes in textile acoustics protection, insulation and trim for automobiles. The product and customer range of Borgers is to a great extent complementary to the product and customer portfolio of Autoneum. Borgers’ wheel arch liner and trunk liner product lines as well as their truck business optimally complement the product range of Autoneum. Especially in the field of textile wheel arch liners, Borgers is the market leader in Europe. In addition, Borgers’ product range is distinguished by sustainable and fully recyclable products. In fiscal year 2021, the Borgers Automo-tive Group generated revenue of EUR 610 million with around 4 700 employees. Thanks to Autoneum’s global presence, the Borgers product portfolio adds to the sales potential for profitable growth in the medium term outside Europe.

January, 6 Autoneum signed an agreement to acquire the automotive business of Borgers. The transaction is expected to close in April 2023 following antitrust clearance. The enterprise value paid amounts to EUR 117 million.

Borgers specializes in textile acoustics protection, insulation and trim for automobiles. The product and customer range of Borgers is to a great extent complementary to the product and customer portfolio of Autoneum. Borgers’ wheel arch liner and trunk liner product lines as well as their truck business optimally complement the product range of Autoneum. Especially in the field of textile wheel arch liners, Borgers is the market leader in Europe. In addition, Borgers’ product range is distinguished by sustainable and fully recyclable products. In fiscal year 2021, the Borgers Automo-tive Group generated revenue of EUR 610 million with around 4 700 employees. Thanks to Autoneum’s global presence, the Borgers product portfolio adds to the sales potential for profitable growth in the medium term outside Europe.

Autoneum is acquiring Borgers from insolvency and has agreed new pricing and delivery terms with its customers. These will ensure sustained profitability and the further development of product and process technologies in both the short and long term.

The transaction will initially be financed through a new credit facility which is available in addition to the syndicated loan of CHF 350 million renewed in October 2022. A capital increase in the amount of approximately CHF 100 million is planned for the long-term refinancing of the acquisition. Autoneum’s two largest shareholders, Artemis Beteiligungen I AG and PCS Holding AG, have agreed to participate in the capital increase in proportion to their current shareholdings. Even taking into account the aforementioned capital increase, the transaction will generate a positive earn-ings per share contribution from the outset.

Source:

Autoneum Management AG

(c) Fraunhofer ICT
06.01.2023

Fraunhofer CPM develop programmable material for ergonomic lying position

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Materials and microstructuring
Materials for applications requiring specific changes to stiffness or shape are being developed by researchers from Fraunhofer CPM, which is formed of six core institutes with the aim of designing and producing programmable materials. So, how can we program materials? “Essentially, there are two key areas where adjustments can be made: the base material – thermoplastic polymers in the case of mattresses and metallic alloys for other applications, including shape memory alloys – and, more specifically, the microstructure,” explains Dr. Heiko Andrä, spokesperson on the topic at the Fraunhofer Institute for Industrial Mathematics ITWM, one of the Fraunhofer CPM core institutes. “The microstructure of these metamaterials is made up of unit cells that consist of structural elements such as small beams and thin shells.” While the size of each unit cell and its structural elements in conventional cellular materials, like foams, vary randomly, the cells in the programmable materials are also variable – but can be precisely defined, i.e., programmed. This programming can be made, for example, in such a way that pressure on a particular position will result in specific changes at other regions of the mattress, i.e., increase the size of the contact surface and provide optimal support to certain areas of the body.

Materials can also react to temperature or humidity
The change in shape that the material should exhibit and the stimuli to which it reacts - mechanical stress, heat, moisture or even an electric or magnetic field - can be determined by the choice of material and its microstructure.

The journey to application
A single piece of material can take the place of entire systems of sensors, regulators and actuators. The goal of Fraunhofer CPM is to reduce the complexity of systems by integrating their functionalities into the material and reducing material diversity. We always have industrial products in mind when developing the programmable materials. As such, we take mass production processes and material fatigue into account, among other things,” says Franziska Wenz, deputy spokesperson on the topic at the Fraunhofer Institute for Mechanics of Materials IWM, another core institute of Fraunhofer CPM. The initial pilot projects with industry partners are also already underway. The research team expects that initially, programmable materials will act as replacements for components in existing systems or be used in special applications such as medical mattresses, comfortable chairs, variable damping shoe soles and protective clothing. “Gradually, the proportion of programmable materials used will increase,” says Andrä. Ultimately, they can be used everywhere – from medicine and sporting goods to soft robotics and even space research.

Source:

Fraunhofer ITWM

30.12.2022

Toray creates Fiber that adsorbs Pathogenic Proteins in Blood

Toray Industries, Inc., announced that it has combined nanotechnology and fiber technology to create a cross-shaped polymethyl methacrylate (PMMA) nanopore fiber that efficiently adsorbs pathogenic proteins in the blood.

The company developed this fiber by employing its PMMA hollow fiber membrane spinning technology. Changing the nanopore size on the surface and inside the fiber makes it possible to control the types of protein that this material adsorbs. This could become a fundamental blood purification technology for a range of protein adsorption columns that cause diseases.

The fiber’s cross-shaped cross section has a larger surface area than fibers with round ones. This provides much better contact between the blood and fiber and significantly enhances protein adsorption efficiency.

Toray Industries, Inc., announced that it has combined nanotechnology and fiber technology to create a cross-shaped polymethyl methacrylate (PMMA) nanopore fiber that efficiently adsorbs pathogenic proteins in the blood.

The company developed this fiber by employing its PMMA hollow fiber membrane spinning technology. Changing the nanopore size on the surface and inside the fiber makes it possible to control the types of protein that this material adsorbs. This could become a fundamental blood purification technology for a range of protein adsorption columns that cause diseases.

The fiber’s cross-shaped cross section has a larger surface area than fibers with round ones. This provides much better contact between the blood and fiber and significantly enhances protein adsorption efficiency.

Toray is the only company to have commercialized a PMMA hollow-fiber membrane artificial kidney for dialysis treatment. Its new nanopore fiber benefits from PMMA’s good protein adsorption and biocompatibility. Using the structural formation of a stereocomplex from two PMMA types entangled spirally during the spinning process to form the fiber shape, Toray made it possible for the fiber itself to develop pores of several to dozens of nanometers. Depending on the pore size, large proteins cannot go inside the pores. If they are too small, they are not trapped. This enables selective adsorption of moderately sized proteins trapped in pores.

The fiber pore sizes are adjustable to the diameters of target proteins for a range of diseases. These include inflammatory proteins in sepsis, autoantibodies in autoimmune diseases, and causative proteins in chronic illnesses. Toray’s technology is thus fundamental to developing disease-causing protein adsorption columns to purify blood.

Toray’s cross-shaped cross section suppresses inter-fiber adhesion, increasing the surface area per volume and enabling highly efficient protein adsorption. For blood purification applications, higher capacity adsorption columns increase blood removal amounts from the body, which can be especially stressful for the elderly and children. The new fiber’s highly efficient protein adsorption should contribute to compact, high-performance protein adsorption columns.

Source:

Toray Industries, Inc.,

Photo: Messe Düsseldorf, Constanze Tillmann
21.12.2022

WearRAcon Europe Conference to be held at A+A 2023

Under the motto “People Matter” A+A 2023, a Trade Fair for Safety, Security and Health at Work, will revolve around the most important trends of our time: sustainability and digitalisation. Here, exoskeletons also play a prominent role as tomorrow’s ergonomic tools. An important conference in this field is WearRAcon Europe which will be held at A+A from 25 – 26 October 2023 for the first time.

The Conference will be organised by the Fraunhofer Institute IPA in cooperation with the Stuttgart University and the Wearable Robotics Association (WearRA). The 38th A+A Congress, which is held by Bundesarbeitsgemeinschaft für Sicherheit und Gesundheit bei der Arbeit (German Federal Association for Occupational Safety and Health - Basi) will be closely dovetailed thematically and in terms of content with it.

Under the motto “People Matter” A+A 2023, a Trade Fair for Safety, Security and Health at Work, will revolve around the most important trends of our time: sustainability and digitalisation. Here, exoskeletons also play a prominent role as tomorrow’s ergonomic tools. An important conference in this field is WearRAcon Europe which will be held at A+A from 25 – 26 October 2023 for the first time.

The Conference will be organised by the Fraunhofer Institute IPA in cooperation with the Stuttgart University and the Wearable Robotics Association (WearRA). The 38th A+A Congress, which is held by Bundesarbeitsgemeinschaft für Sicherheit und Gesundheit bei der Arbeit (German Federal Association for Occupational Safety and Health - Basi) will be closely dovetailed thematically and in terms of content with it.

Being able to walk again despite a serious injury, handle heavy parts without outside help or simply do overhead work comfortably and for extended periods of time - the advantages of exoskeletons have already convinced numerous industries. Exoskeletons and wearables are now already being used successfully in industry and commerce, and major machine builders and automakers as well as the medical sector are continuing to experiment with man-machine connections. Currently, the global market volume for exoskeletons is valued by leading analysts at over US$20 billion by 2030.1

The WearRAcon Europe Conference 2023 will provide new insights into the promising world of exoskeleton systems from different perspectives and, in conjunction with the A+A Congress, set future-oriented impulses. Lectures by renowned exoskeleton pioneers combined with testimonials presented by users from a variety of industries and keynotes by experts will round off the programme. And, like at the previous A+A, a Self-Experience Space will again be set up so that the exoskeleton systems of various manufacturers can be tested in realistic work scenarios.

In parallel with the Self-Experience Space, the large live study Exoworkathlon will also take place again. Trainees from various mechatronic training courses have to complete a concourse and perform holding, lifting and assembling tasks, which have been specially developed with the industry. Data is prospectively collected with different measuring sensors to measure the effects of exoskeletons. In the Exoworkathlon, the IPA focuses especially on prevention for young employees in order to raise awareness of the issue and counteract ailments at an early stage.

1 (Interview Trans.INFO mit Armin G. Schmidt, CEO von German Bionic (01/2021).

Source:

Messe Düsseldorf GmbH

Photo Autoneum Management AG
19.12.2022

Autoneum: Optimized thermal management for electric vehicles thanks to cold chamber

A new cold chamber at its headquarters in Winterthur, Switzerland, enables Autoneum to optimize existing technologies as well as simulation and engineering services in vehicle thermal management and to adapt them to the changing thermal requirements of electric vehicles

The absence of heat from the internal combustion engine in electric vehicles as well as the impact of ambient temperature on the performance and lifetime of lithium-ion batteries are changing the requirements for vehicle thermal management. In addition, the energy from the battery is used not only to power the e-motor but also to thermally manage the battery itself and to warm and cool the car cabin by means of the heating, ventilation and air conditioning system. To increase the thermal comfort of the occupants and at the same time ensure optimum battery performance, save energy and thus increase the car’s range, manufacturers are placing increasing emphasis on efficient overall thermal management of the vehicle.

A new cold chamber at its headquarters in Winterthur, Switzerland, enables Autoneum to optimize existing technologies as well as simulation and engineering services in vehicle thermal management and to adapt them to the changing thermal requirements of electric vehicles

The absence of heat from the internal combustion engine in electric vehicles as well as the impact of ambient temperature on the performance and lifetime of lithium-ion batteries are changing the requirements for vehicle thermal management. In addition, the energy from the battery is used not only to power the e-motor but also to thermally manage the battery itself and to warm and cool the car cabin by means of the heating, ventilation and air conditioning system. To increase the thermal comfort of the occupants and at the same time ensure optimum battery performance, save energy and thus increase the car’s range, manufacturers are placing increasing emphasis on efficient overall thermal management of the vehicle.

The chamber enables to test both occupants’ subjective perception of thermal comfort and the performance of components and entire vehicles under controlled temperature conditions of up to minus 20 degrees Celsius. It is thus a valuable addition to the existing testing and bench-marking facilities at the Company’s global research and development centers. The tests conducted in the chamber show how existing insulating components such as under battery shields, carpets and interior trim need to be optimized to further enhance the thermal management of the vehicle battery and cabin. The tests also provide valuable insights regarding the development and optimization of heated surfaces such as floor mats and door trim panels to improve thermal performance and driver comfort of electric vehicles.

Source:

Autoneum Management AG

© ITM/TU Dresden
Woven hemisphere for usage in radome antennaes
15.12.2022

AVK Innovation Award 2022 to young engineers from ITM at TU Dresden

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

Continuous simulation aided engineering from CAD design to integrally woven 2D and 3D preforms by means of highly complex weave development for spatial constructions is a unique at the ITM, which was indispensable for the development of these promising woven high-tech structures. This technology is completely new and has never been carried out in this way before. The fabric structures are characterised by a high innovation level due to their geometric diversity and purposes. It can be used in numerous applications and further more contributes to the development of completely new fields of application. The technology can be implemented on all Jacquard weaving machines with only an additional device and the preform geometry is only determined by the control of the Jacquard machine. The preform geometry can be used in the full working width of the weaving machine.

Professor Chokri Cherif, Institute Director of the ITM, and his team are very pleased about these continuous research success in the constantly growing research field of 3D weaving technology, which are achieved at the ITM in close cooperation with industry and users. "This award is a special honour for our institute and confirms that the many years of our excellent research in the field of near-net-shape 3D weaving for the fibre-reinforced plastics sector plays a significant role and that we are making a significant contribution to the sustainable and resource-efficient production of lightweight structures with our development".

Source:

ITM/TU Dresden

(c) Carhartt
15.12.2022

Frauenpower im Handwerk mit Arbeitsbekleidung von Carhartt

Seit vielen Jahren stellt Carhartt robuste, funktionsfähige und stilvolle Kleidung für den Arbeitsalltag des Handwerks her. Mit einer Produktlinie für Damen will das Unternehmen dazu beitragen, dass sich Frauen noch wohler im Handwerk fühlen. In einer Kollaboration mit Dachdeckerin Sina (@dachdeckerin_sina auf Instagram) zeigt die Marke, wie die richtige Kleidung Handwerkerinnen zusätzlich formt und zu ihrem Erfolg beiträgt.

Sina ist Dachdecker-Gesellin und nimmt seit zwei Jahren ihre Follower*innen mit in ihren Berufsalltag. “Ich möchte zeigen, wie schön Handwerk sein kann und setze mich für Frauen im Handwerk ein.” Fast 30.000 Menschen verfolgen ihren Weg und begleiten sie seit dem Sommer auch mit zur Meisterschule. Die 22-Jährige plant irgendwann den Familienbetrieb zu übernehmen und setzt daher schon heute auf Qualität. “Die Zahl der Frauen im Handwerk ist zwar wachsend, dennoch gering. Deshalb ist das Marktangebot an Arbeitskleidung für Frauen sehr klein.” Eine vernünftig sitzende und bequeme Arbeitskleidung sei aber sehr wichtig für ihren Beruf. “Die Carhartt Produktlinie für Damen hat daher einen großen Stellenwert für mich”, so Sina.

Seit vielen Jahren stellt Carhartt robuste, funktionsfähige und stilvolle Kleidung für den Arbeitsalltag des Handwerks her. Mit einer Produktlinie für Damen will das Unternehmen dazu beitragen, dass sich Frauen noch wohler im Handwerk fühlen. In einer Kollaboration mit Dachdeckerin Sina (@dachdeckerin_sina auf Instagram) zeigt die Marke, wie die richtige Kleidung Handwerkerinnen zusätzlich formt und zu ihrem Erfolg beiträgt.

Sina ist Dachdecker-Gesellin und nimmt seit zwei Jahren ihre Follower*innen mit in ihren Berufsalltag. “Ich möchte zeigen, wie schön Handwerk sein kann und setze mich für Frauen im Handwerk ein.” Fast 30.000 Menschen verfolgen ihren Weg und begleiten sie seit dem Sommer auch mit zur Meisterschule. Die 22-Jährige plant irgendwann den Familienbetrieb zu übernehmen und setzt daher schon heute auf Qualität. “Die Zahl der Frauen im Handwerk ist zwar wachsend, dennoch gering. Deshalb ist das Marktangebot an Arbeitskleidung für Frauen sehr klein.” Eine vernünftig sitzende und bequeme Arbeitskleidung sei aber sehr wichtig für ihren Beruf. “Die Carhartt Produktlinie für Damen hat daher einen großen Stellenwert für mich”, so Sina.

Männer dominieren nach wie vor im Handwerk – aber die Frauen holen auf! Immer mehr entscheiden sich für eine Karriere in der Tischlerei, im Garten- oder Landschaftsbau oder im Kunsthandwerk. 2019 wurde beinahe jede 5. erfolgreiche Meisterprüfung laut dem Zentralverband des Deutschen Handwerks von einer Frau absolviert. Fast jede vierte Gründung im Handwerk erfolgt durch eine Frau und schon heute werden bereits 20 Prozent der Handwerksbetriebe durch eine weibliche Hand geführt.

Seit über 100 Jahren unterstützt Carhartt Frauen im Handwerk mit richtigen Passformen und einer umfassenden Auswahl. Die erste Werbung der Marke für Damenbekleidung erschien 1917 zu einem Overall, der als unkompliziertes Kleidungsstück für die Arbeit im Haus, auf dem Land und in der Fabrik vermarktet wurde. Vor allem während des Zweiten Weltkrieges wurden Overalls populär und fanden dank ihrer Robustheit und Langlebigkeit den Weg in viele Schränke hart arbeitender Frauen.

In den 90er-Jahren führte Carhartt dann die erste “Carhartt für Frauen”-Produktlinie ein und erweitert seitdem sein Sortiment stetig angepasst an die Gegebenheit und Moderne der Zeit.

More information:
Carhartt Handwerk Arbeitsbekleidung
Source:

Le Buzz Studio für Carhartt

12.12.2022

ANDRITZ recycling line for agricultural plastic waste nets

RecyOuest, France, has successfully started up the world's first recycling line for agricultural plastic waste nets at its mill in Argentan. The innovative recycling line featuring a unique dry-cleaning system was delivered, installed and commissioned by the international technology group ANDRITZ in August 2022.

RecyOuest, based in Argentan, France, is a green economy company that handles the recycling contaminated filamentary thermoplastics such as round bale nets and twines. With its recycling process, RecyOuest is part of a circular economy approach.

The ANDRITZ recycling line can process up to 8,000 tons of waste and produce recycling fibers for nonwoven applications and also for pellets made of waste from agricultural single-use plastic nets and twines. These pellets are then returned to the plastics industry by mixing both recycled and virgin raw materials, thus reducing the amount of virgin plastic used.

RecyOuest, France, has successfully started up the world's first recycling line for agricultural plastic waste nets at its mill in Argentan. The innovative recycling line featuring a unique dry-cleaning system was delivered, installed and commissioned by the international technology group ANDRITZ in August 2022.

RecyOuest, based in Argentan, France, is a green economy company that handles the recycling contaminated filamentary thermoplastics such as round bale nets and twines. With its recycling process, RecyOuest is part of a circular economy approach.

The ANDRITZ recycling line can process up to 8,000 tons of waste and produce recycling fibers for nonwoven applications and also for pellets made of waste from agricultural single-use plastic nets and twines. These pellets are then returned to the plastics industry by mixing both recycled and virgin raw materials, thus reducing the amount of virgin plastic used.

This line, inspired by the techniques from textile wastes recycling, is equipped with a unique mechanical dry-cleaning system that allows resource savings by avoiding the use of water and chemicals. This state-of-the-art ANDRITZ equipment allows RecyOuest to produce recycling fibers for nonwoven applications and also pellets for ever new eco-designed nets and twines for the agricultural sector, with the lowest possible environmental impact.

Source:

ANDRITZ AG

12.12.2022

CELC becomes Alliance for European Flax-Linen & Hemp

  • The European Confederation for Flax and Hemp (CELC) has unveiled its new visual identity and name: Alliance for European Flax-Linen & Hemp.
  • The European Flax-Linen and Hemp industries have announced they are organizing their development around a strengthened team with a clear mission: to expand the entire industry whilst making European Flax-Linen and Hemp the preferred sustainable premium fibers worldwide.
  • The Alliance for European Flax-Linen & Hemp will launch its new identity in the first semester of 2023 for all target groups including Natural Fiber Composite Applications.

CELC has announced its new name and visual identity. The organization, which is the only European agro-industrial organization that serves as a global reference, will now be known as the Alliance for European Flax-Linen & Hemp.

  • The European Confederation for Flax and Hemp (CELC) has unveiled its new visual identity and name: Alliance for European Flax-Linen & Hemp.
  • The European Flax-Linen and Hemp industries have announced they are organizing their development around a strengthened team with a clear mission: to expand the entire industry whilst making European Flax-Linen and Hemp the preferred sustainable premium fibers worldwide.
  • The Alliance for European Flax-Linen & Hemp will launch its new identity in the first semester of 2023 for all target groups including Natural Fiber Composite Applications.

CELC has announced its new name and visual identity. The organization, which is the only European agro-industrial organization that serves as a global reference, will now be known as the Alliance for European Flax-Linen & Hemp.

The new name - Alliance for European Flax-Linen & Hemp – reflects a newly restructured European industry which brings together the entire value chain around a common goal: to make European Flax-Linen and Hemp the preferred sustainable premium fibers worldwide for Fashion, Technical Textiles and Natural Fiber Composite Applications.

The new brand identity is accompanied by a new logo that connects the identity, values and strategic direction of the Alliance for European Flax-Linen & Hemp. In addition to visual changes, the Alliance has announced enhanced values and a clear strategic path to turn European Flax-Linen and Hemp into the preferred sustainable premium fibers worldwide.

The Alliance’s future development pathway will focus on three distinct strategic pillars.

  • Enhancing its work in publishing structured, reliable economic data and information on a regular basis, in order to be able to continuously deploy a set of specific decision-making support tools.
  • Transforming the Alliance for European Flax-Linen & Hemp into an innovative and sustainable international reference which continuously improves its environmental footprint through two essential elements: traceability and Life Cycle Analysis.
  • Guaranteeing quality and better describing the quality of its fibers by using technological innovations to create a reference for describing long fibers. A description of European Flax® fibers through optical imaging will soon complement the organoleptic method.

“Europe is the top global producer of Flax fiber. In an international context of growth and reindustrialization, Flax, which accounts for just 0.4% of global textile fibers, is a globalized fiber with remarkable technical and environmental properties. At the same time, the European textile Hemp industry is organizing itself to boost growth. Today, the European Flax-Linen and Hemp ecosystem thus embodies an innovative and sustainable European textile dynamic that meets the needs of consumers and brands.” Bart Depourcq, President, Alliance for European Flax-Linen & Hemp.

Source:

Alliance for European Flax-Linen & Hemp

24.11.2022

EURATEX: A price cap at 275€/MWh would be meaningless

The plan of the European Commission to propose a price cap on wholesale gas price at 275€/MWh would be a bitter disappointment for the European textiles and clothing manufacturers, said EURATEX.

November 22nd, EURATEX stated in a letter to EC President, Ursula von der Leyen, that any price cap above the level of 80€euro/MWh would not help the EU industry – the textile sector in particular – to survive the current crisis. Indeed as early as July 2021, the wholesale gas price in the EU was below 30€/MWh. Now, the EU industry is facing gas and energy prices that have exceeded any coping capacity: from the record-high 320€/MWh last August, the price has reached to 127€/MWh today. Still, it is more than 300% than the business as usual prices.

The plan of the European Commission to propose a price cap on wholesale gas price at 275€/MWh would be a bitter disappointment for the European textiles and clothing manufacturers, said EURATEX.

November 22nd, EURATEX stated in a letter to EC President, Ursula von der Leyen, that any price cap above the level of 80€euro/MWh would not help the EU industry – the textile sector in particular – to survive the current crisis. Indeed as early as July 2021, the wholesale gas price in the EU was below 30€/MWh. Now, the EU industry is facing gas and energy prices that have exceeded any coping capacity: from the record-high 320€/MWh last August, the price has reached to 127€/MWh today. Still, it is more than 300% than the business as usual prices.

The very existence of the European industry is at stake and with it the European sustainability agenda – and Europe’s capacity to implement it. Furthermore, Europe will lose its strategic autonomy, which guarantees essential goods and services are made available on the European Internal Market. If we continue on this path, the EU will soon become totally dependent on foreign imports with no leverage to implement its sustainability agenda, let alone lead the transition to a circular economy on the international stage.

At present, the EU industry is facing a dire international competition with the industry in China, India and the US working at energy prices of around 10$/MWh. In addition, these competitors are benefitting of sky-high subsidies from their own governments: the rollout of the US $369bln industrial subsidy scheme is just the latest example.

EURATEX Director General, Dirk Vantyghem, believes that “while the EU Industry is under immense, unprecedented pressure, a price cap at 275€/MWh would be meaningless: the European industry will be permanently pushed out on the market. The industry is at the heart of the European way of life and the fundament of our social market economy. The EU must save its industry to save Europe. The moment to act is now.”

More information:
price gap energy crisis Euratex
Source:

EURATEX

Photo: OCSiAl
24.11.2022

OCSiAl: Graphene nanotubes expand textiles’ functionality

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 
In applications where multifunctionality of textile is required, graphene nanotubes overcome the limitations of other conductive materials such as unstable anti-static properties; degradation of strength, or chemical or fire resistance; complicated manufacturing processes; dusty production; carbon contamination on the material’s surface; or limited color options. Recent developments show that graphene nanotubes provide ESD protection to textiles in full compliance with safety standards and without degrading the textile’s resistance to harsh environments, greatly enhancing the value of textiles.
 
One such example is textiles coated with fluoroelastomer (a polymer that is highly resistant to chemicals) augmented with graphene nanotubes from OCSiAl. Nanotubes provide the material with surface resistivity of 10^6–10^8 Ω/sq compliant with EN, ISO, and ATEX standards for personal protective equipment. This new technology opens the door for the fabric to be used in high-level protective suits, combining exceptional protection from chemicals with electrostatic discharge protection.
 
Another example is how graphene nanotube technology is being acknowledged as a replacement for metal yarns in fireproof and anti-static textiles, protecting against sparks, splashes of molten metal, high temperatures, and the risk of sudden electrostatic discharge. While metal yarns require a specific knitting process and storage conditions, incorporating nanotubes in a fabric does not require any changes in the manufacturing process as the water-based dispersion is introduced into the fabric at the fluoro-organic treatment stage. The fabric with OCSiAl’s graphene nanotubes has been proven to maintain the pre-set level of ESD protection (surface resistance of 10^7 Ω) after numerous washes.
 
Permanent and stable electrical conductivity, facilitated by graphene nanotubes, is not only a matter of safety but brings additional value in augmenting dust-repellent properties and touchscreen compatibility for comfort and time savings. At the same time, the ultralow nanotube concentrations result in maintained manufacturing processes and mechanical properties, and improve product aesthetics by making it possible to use a wide range of colors. Altogether, these benefits allow textile manufacturers to create next-generation special textiles with expanded functionality.