From the Sector

Reset
98 results
Die Forschenden stellen einen neuen Reaktor vor, der Kohlendioxid (CO2) unter Verwendung von unter Druck stehendem CO2 und reinem Wasser effizient in wertvolle Chemikalien umwandelt. © Fraunhofer UMSICHT/Mike Henning
Die Forschenden stellen einen neuen Reaktor vor, der Kohlendioxid (CO2) unter Verwendung von unter Druck stehendem CO2 und reinem Wasser effizient in wertvolle Chemikalien umwandelt.
21.05.2025

Elektrochemische CO2-Reduktion mit industriellen Prozessen verbinden

Mit Hilfe der elektrochemischen CO2-Reduktion lässt sich der Kohlenstoffkreislauf schließen: Unvermeidbare Emissionen aus Betonproduktion oder Abfallverbrennung werden zu CO – und somit zum Ausgangspunkt für Chemikalien oder Kraftstoffe. Bei der industriellen Anwendung dieser Technologie lauert allerdings eine Hürde: Sie ist (bislang) nicht kompatibel mit der bestehenden Infrastruktur. Eine mögliche Lösung haben Forschende von Fraunhofer UMSICHT und Ruhr-Universität Bochum entwickelt: ein neuer Reaktor, der CO2 unter Verwendung von unter Druck stehendem CO2 und reinem Wasser effizient umwandelt.

Mit Hilfe der elektrochemischen CO2-Reduktion lässt sich der Kohlenstoffkreislauf schließen: Unvermeidbare Emissionen aus Betonproduktion oder Abfallverbrennung werden zu CO – und somit zum Ausgangspunkt für Chemikalien oder Kraftstoffe. Bei der industriellen Anwendung dieser Technologie lauert allerdings eine Hürde: Sie ist (bislang) nicht kompatibel mit der bestehenden Infrastruktur. Eine mögliche Lösung haben Forschende von Fraunhofer UMSICHT und Ruhr-Universität Bochum entwickelt: ein neuer Reaktor, der CO2 unter Verwendung von unter Druck stehendem CO2 und reinem Wasser effizient umwandelt.

„CO2 ist bereits fester Teil vieler industrieller Prozesse wie der Erdgasreformierung, der Ethylenoxid-Produktion und der Oxyfuel-Verbrennung“, erklärt Prof. Ulf-Peter Apfel, Leiter der Abteilung Elektrosynthese bei Fraunhofer UMSICHT und der Forschungsgruppe Anorganische Chemie an der Ruhr-Universität Bochum. „In diesen Prozessen steht das CO₂ entweder direkt im Anschluss unter Druck oder wird für die Speicherung und den Transport auf höhere Drücke komprimiert. Die Druckentlastung dieser CO2-Ströme für die Verwendung in der CO2-Elektrolyse erschwert die Integration elektrolytischer Technologien und führt zu weiteren energetischen Einbußen.“

Um diesen Schritt zu umgehen, haben die Forschenden einen Zero-Gap-Reaktor für die CO₂-Elektrolyse entwickelt, welcher mit einem Differenzdruck von bis zu 40 bar betrieben werden kann. Er beruht auf einem neuen Design und umfasst u.a. eine neue mechanisch stabile Protonenaustauschmembran mit einer dünnen anionischen Deckschicht. Dieses neue System ermöglicht die Erzeugung von Kohlenstoffbausteinen bei Differenzdrücken von 40 bar(g) und vereinfacht gleichzeitig die Konstruktion des Elektrolyseurs, da an der Anode nur reines Wasser zum Einsatz kommt. Weitere Highlights:

  • Der Differenzdruck erhöht die Produktselektivität von CO auf 81 Prozent bei einer Stromdichte von 500 mA cm-2.
  • Der Reaktor kann mit einem sehr niedrigen CO₂-Überschuss betrieben werden, sodass aktuell bis zu 25 Prozent des eingesetzten CO₂ in einem Durchlauf zu CO reduziert werden können.
  • Hohe Produktselektivität von CO bei dem Betrieb mit der modifizierten Protonen-austauschmembran und reinem Wasser als Anolyt – auch bei hohen Stromdichten über 300 mA cm-2

„Durch den Betrieb bei Differenzdrücken verbessert das System die Umwandlungsraten und die Stabilität erheblich, wodurch der Prozess nachhaltiger und effektiver wird«, fasst Ulf-Peter Apfel zusammen. »Diese Fortschritte ermöglichen die Integration der CO2-Umwandlung in bestehende chemische Industrien und fördern weitere Innovationen in der Katalysator- und Reaktortechnologie, wodurch umweltfreundlichere Methoden der chemischen Produktion gefördert werden.“

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Experimenteller Aufbau zur Umsetzung der lokalen Hochleistungs-laserinduzierten Pyrolyse eines gewickelten Composite-Ringes und des gleichzeitigen Abziehens des matrixbefreiten Carbonfaser-Streifens. Im Prozess findet die Pyrolyse an der Stelle des Laserspots statt. © Fraunhofer EMI
Experimenteller Aufbau zur Umsetzung der lokalen Hochleistungs-laserinduzierten Pyrolyse eines gewickelten Composite-Ringes und des gleichzeitigen Abziehens des matrixbefreiten Carbonfaser-Streifens. Im Prozess findet die Pyrolyse an der Stelle des Laserspots statt.
25.04.2025

Innovatives Recyclingverfahren für Carbonfasern

Forschende des Fraunhofer-Instituts für Kurzzeitdynamik, Ernst-Mach-Institut, EMI haben eine Technologie entwickelt, die es ermöglicht, endlose Carbonfasern aus Verbundwerkstoffen zurückzugewinnen – ohne Einbußen bei der Materialqualität. Mittels Hochleistungslaser wird die Matrix der mehrlagigen faserverstärkten Kunststoffe gezielt zersetzt. Das Verfahren bietet nicht nur ökologische Vorteile, sondern auch erhebliches wirtschaftliches Potenzial.

Carbonfaser-Verbundwerkstoffe, sogenannte Composites, sind besonders fest und leicht, was sie zu bevorzugten Materialien in vielen Industrien macht. Doch die Herausforderung der Entsorgung und Wiederverwertung dieser leistungsfähigen Materialien ist hoch. Das Forschungsteam am Fraunhofer EMI hat nun einen Prozess entwickelt, in dem Fasern gebrauchter Composites effizient zur Wiederverwendung aufbereitet werden – ohne ihre mechanischen Eigenschaften zu beeinträchtigen. In bisherigen Recyclingverfahren werden die Faser-Kunststoff-Verbunde geschreddert, was zu verkürzten Fasern und somit zum Downcycling führt.

Forschende des Fraunhofer-Instituts für Kurzzeitdynamik, Ernst-Mach-Institut, EMI haben eine Technologie entwickelt, die es ermöglicht, endlose Carbonfasern aus Verbundwerkstoffen zurückzugewinnen – ohne Einbußen bei der Materialqualität. Mittels Hochleistungslaser wird die Matrix der mehrlagigen faserverstärkten Kunststoffe gezielt zersetzt. Das Verfahren bietet nicht nur ökologische Vorteile, sondern auch erhebliches wirtschaftliches Potenzial.

Carbonfaser-Verbundwerkstoffe, sogenannte Composites, sind besonders fest und leicht, was sie zu bevorzugten Materialien in vielen Industrien macht. Doch die Herausforderung der Entsorgung und Wiederverwertung dieser leistungsfähigen Materialien ist hoch. Das Forschungsteam am Fraunhofer EMI hat nun einen Prozess entwickelt, in dem Fasern gebrauchter Composites effizient zur Wiederverwendung aufbereitet werden – ohne ihre mechanischen Eigenschaften zu beeinträchtigen. In bisherigen Recyclingverfahren werden die Faser-Kunststoff-Verbunde geschreddert, was zu verkürzten Fasern und somit zum Downcycling führt.

Werkstoffkunde kompakt: Duroplastische vs. thermoplastische Composites
Ein Carbonfaser-Verbundwerkstoff besteht aus Faserbündeln, die in einem Polymer eingebettet sind. Dies erlaubt, die Fasern zusammenzuhalten, die Geometrie eines Bauteils festzulegen und die Fasern vor Umwelteinflüssen zu schützen. Man unterscheidet zwischen zwei Arten von Kunststoff, in denen die Fasern eingebettet werden können: Duroplastische Composites bestehen aus einer nicht schmelzbaren Matrix, das heißt sie können nicht erneut bearbeitet werden. Diese verhalten sich wie ein Klebstoff, der aushärtet und eine dauerhafte feste Verbindung bildet. Thermoplastische Composites hingegen können geschmolzen und wiederverarbeitet werden. Duroplaste sind allerdings einfacher zu verarbeiten und werden daher häufiger in der Industrie eingesetzt.

Peelingbasiertes Recycling von gewickelten Strukturen
Die Forschenden am Fraunhofer EMI tragen die Faserverstärkung der duroplastischen Composites kontrolliert mithilfe eines Hochleistungslasers ab. Dieses Verfahren ist besonders relevant für Wasserstoffdruckbehälter, bei denen ein Carbonfaser-Bündel endlos um eine Kunststoffhülle gewickelt wird, damit sie besonders stabil sind und hohen Betriebsdrücken von bis zu 700 bar standhalten.

Der Vorteil des innovativen Recyclingverfahrens liegt in der Möglichkeit, die duroplastische Matrix, die die Carbonfasern umgibt, effizient mittels einer lokalen Pyrolyse zu entfernen, während die Carbonfasern selbst nahezu unversehrt bleiben. »Die Besonderheit bei diesem Prozess ist, dass wir die Pyrolyse der Matrix und das Abwickeln der Fasern gleichzeitig, möglichst schnell und ohne Beschädigung der Carbonfasern umsetzen«, erklärt Projektleiter Dr. Mathieu Imbert.

Die Herausforderung besteht darin, das optimale Prozessfenster zu definieren: Die Matrix zersetzt sich bei 300 bis 600 Grad Celsius, während die Fasern ab circa 600 Grad Celsius beschädigt werden können. »Wir haben einen sehr guten Kompromiss zwischen Prozesseffizienz und Qualität des Rezyklats gefunden. Unsere Ergebnisse zeigen, dass die zurückgewonnenen endlosen Fasern die gleichen hohen Leistungsmerkmale wie neue Fasern aufweisen, was das Verfahren besonders attraktiv macht«, so Dr. Imbert.

Ökonomische plus ökologische Vorteile
Das innovative Verfahren bietet nicht nur ökologische Vorteile, sondern auch erhebliches wirtschaftliches Potenzial für Recyclingunternehmen. Der lokale Wärmeeintrag und das gleichzeitige Abziehen des endlosen Faserbündels ersparen die lange Pyrolysezeit und entsprechend hohe Prozesskosten, die die dickwandigen Wasserstoffbehälter üblicherweise verursachen. Die laserunterstützte Rückgewinnung benötigt außerdem nur circa ein Fünftel der Fertigungsenergie von neuen Fasern. In Zeiten steigender Energiekosten und wachsender Umweltanforderungen sind das wesentliche Vorteile.

Das Projekt läuft noch bis Ende 2025 und ist Teil des DigiTain-Projekts, das vom Bundesministerium für Wirtschaft und Klimaschutz gefördert wird. Die Forschenden arbeiten zurzeit daran, das Verfahren noch energieeffizienter zu machen und die Qualität der zurückgewonnenen Fasern weiter zu verbessern. Das Forscherteam sieht das äußerst positive Verhältnis von hohem Rezyklatwert zu niedrigen Prozesskosten als das entscheidende Argument für den geplanten Transfer des Verfahrens in die Recycling-Industrie.

Source:

Fraunhofer EMI

AZL Open Day © DF Fotografie – Dominik Fröls
23.04.2025

AZL Open Day: Insights into the Future of Lightweight Design

Technically and economically viable lightweight production based on fiber-reinforced plastics and multi-material systems requires an integrated approach. Due to the almost unlimited combination possibilities of different materials and the very complex interactions between materials, component design, manufacturing processes and the machine and system components, an optimal production process requires a direct link between materials science, process engineering and production technology.

Technically and economically viable lightweight production based on fiber-reinforced plastics and multi-material systems requires an integrated approach. Due to the almost unlimited combination possibilities of different materials and the very complex interactions between materials, component design, manufacturing processes and the machine and system components, an optimal production process requires a direct link between materials science, process engineering and production technology.

As the official center for “Composite-based Lightweight Production” of the RWTH Aachen Campus, AZL Aachen GmbH uses its strong network to provide these capacities and possibilities on an interdisciplinary basis. Within walking distance, researchers and students are working on the latest technologies for the cost-efficient development and production of lightweight components on one of the largest research landscapes in Europe - the RWTH Aachen Campus: Aachen Center for Integrative Lightweight Production of RWTH Aachen University, Fraunhofer Institute for Production Technology IPT, Fraunhofer Institute for Laser Technology ILT, Institute for Automotive Engineering (ika) of RWTH Aachen University, Institute for Plastic Processing in Industry and Craft at RWTH Aachen University, Institute of Structural Mechanics and Lightweight Design (SLA) of RWTH Aachen University, Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Production Engineering of E-Mobility Components (PEM) of RWTH Aachen University, Welding and Joining Institute (isf) of RWTH Aachen University.

Exklusive insights into the latest lightweight technologies

Once a year, the AZL Open Day offers an exclusive and unique insight into the R&D capacities of the institutes in the field of lightweight construction and sustainable mobility. This year, nine AZL partner institutes opened their machine halls and research laboratories on April 9, 2025 to provide interested industrial players with comprehensive insights into their current focus areas along the value chain. Among other things, the institutes presented high-precision laser processes for plastics processing, new joining processes for thermoplastic composites, 5-axis CNC machining with real-time quality management, large-format 3D printing and their own tape lines & tape integration. Design, prototyping and testing of products & solutions such as crash-optimized vehicle structures, thermoplastic pressure vessels, digital twins for structural-mechanical monitoring as well as prototyping and recycling approaches for battery systems were also demonstrated. The range of topics, key activities & infrastructure, seen at the Open Day, enables new technologies to be tested under real production conditions and efficiently brought to market maturity.

“The AZL Open Day is a great opportunity to discover the numerous technology centers, labs, prototyping and testing facilities that are available on the Aachen campus, that makes it unique in its kind. The AZL organization and teams located there are a true catalyst for new projects and development for the Composites industry: they are creating the link between Market analysis & technology scouting, academic research resources and business opportunities with their industrial partners. They are currently working on several topics that are at the forefront of Composites” reports Éric Pierrejean, CEO of the JEC Group. Apart from being there as an interested participant, he also gave the audience an insight into the key topics and trends in the composites industry as seen at this year's JEC World Show.

Efficient use of established infrastructures & know-how

As a one-stop shop for lightweight solutions, AZL offers an interface for successful cooperation between research and industry. In close coordination between scientific developments and specific customer requirements, solutions are developed in a targeted and tailor-made manner: as part of the AZL partnership, consortial projects or individual projects. In addition to the know-how of the institutes, cooperation with the AZL's industrial partner network also enables direct access to the necessary infrastructure of components, materials, tools and machine and system parts, which can be tested, developed or newly constructed in integrated process chains on a large scale.

Thanks to the close networking between science, industry and the AZL team of experts, companies can access an established infrastructure and utilize synergies for their projects.
The date for the next AZL Open Day will be announced in the second half of the year.

 

Source:

AZL Aachen GmbH

Die zerkleinerten, faserverstärkten Kunststoffe eines Rotorblatts werden gesichtet und für den Pyrolyse-Prozess vorbereitet. © Fraunhofer IGCV, Amann
Die zerkleinerten, faserverstärkten Kunststoffe eines Rotorblatts werden gesichtet und für den Pyrolyse-Prozess vorbereitet.
28.03.2025

Recycling-Potential von Windenergieanlagen

Die Windenergie ist essenzieller Bestandteil der Energiewende und damit Hoffnungsträger für Deutschlands Nachhaltigkeitsstrategie bis zum Jahr 2045. Doch rund ein Drittel der Windkrafträder in Deutschland haben ihre vorgesehene Nutzungsdauer bereits überschritten und stehen laut Fachagentur Wind und Energie kurz vor ihrem Abbau. Wir haben mit unserem Recycling-Experten für Verbundmaterialien – Fabian Rechsteiner – gesprochen, was mit den ausrangierten Anlagen passiert. Dabei gibt der Experte auch spannende Einblicke in die technischen und politischen Herausforderungen, die auf dem Weg zu einer Kreislaufwirtschaft im Bereich Windenergie noch zu überwinden sind.

Die Windenergie ist essenzieller Bestandteil der Energiewende und damit Hoffnungsträger für Deutschlands Nachhaltigkeitsstrategie bis zum Jahr 2045. Doch rund ein Drittel der Windkrafträder in Deutschland haben ihre vorgesehene Nutzungsdauer bereits überschritten und stehen laut Fachagentur Wind und Energie kurz vor ihrem Abbau. Wir haben mit unserem Recycling-Experten für Verbundmaterialien – Fabian Rechsteiner – gesprochen, was mit den ausrangierten Anlagen passiert. Dabei gibt der Experte auch spannende Einblicke in die technischen und politischen Herausforderungen, die auf dem Weg zu einer Kreislaufwirtschaft im Bereich Windenergie noch zu überwinden sind.

Warum werden in Deutschland viele Windenergieanlagen über ihre technische Lebensdauer von 20 bis 25 Jahren betrieben?
Wir als Endverbraucher kaufen den Strom immer zu dem Preis der teuersten Stromerzeugungstechnologie (Merit-Order) ein. Aktuell ist das Gas, das mit rund 11 Cent pro Kilowattstunde zu Buche schlägt. Windenergie kann hingegen unter optimalen Bedingungen sehr günstig produziert werden. Der Preis pro Kilowattstunde liegt derzeit bei rund 4 Cent. Darum ist es für Betreiber meist rentabler, ihre Anlagen 30 Jahre und länger zu betreiben. Sie sparen sich damit aufwendige Genehmigungs- und Planungsverfahren für den Bau neuer Anlagen. Das dauert in Deutschland leider oft zwischen sechs und acht Jahre. Auch die Logistik und der Transport neuer Anlagen sind komplex. Die Bauteile sind so groß, dass ihr Transport auf den Straßen und unter Brücken Millimeterarbeit ist. Nicht selten müssen dafür Bäume gefällt werden. Das stellt Betreiber vor eine Vielzahl von Herausforderungen und hohe Kosten. Die Alternative heißt dann oft Repowering. Dabei werden alte Anlagen mit Neueren ausgetauscht. Da der Standort bleibt, ist die Genehmigung dafür auch deutlich schneller zu bekommen.

Und was passiert mit den Anlagen, die nicht mehr weiterbetrieben werden können?
Die Anlagen werden abgebaut und recycelt. Der Turm aus Stahl wird wiederverwertet und das Fundament aus Zement wird zum Beispiel im Straßenbau genutzt. Das umfasst fast 90 Prozent der Anlage. Die größte Herausforderung stellt jedoch das Rotorblatt dar. Das besteht meist aus einem bunten Materialstrauß wie faserverstärkten Kunststoffen, Holz, Schaum, Metallen und vielem mehr. Leider machen sich Hersteller noch nicht allzu viele Gedanken darüber, was am Ende mit dem Material passiert. Auch politisch ist recyclinggerechtes Konstruieren noch nicht so stark eingefordert, wie es meiner Einschätzung nach sein sollte. Das macht das Recycling auch so schwer. Abhilfe könnte ein digitaler Produktpass schaffen. Durch ihn lassen sich die Materialien, die in Rotorblättern verbaut sind, besser nachzuvollziehen. Viele Windräder sind rund 30 Jahre alt und niemand weiß mehr genau, welche Materialien damals verwendet wurden. Aktuell gibt es noch keine standardisierte Dokumentation oder ein System, das diese Informationen langfristig speichert. Wenn man die Rotorblätter recyceln will, ist es aber wichtig zu wissen, welche Materialien verwendet wurden. Das wäre ein wichtiger Schritt, um das Recycling zu optimieren. Da das bislang noch nicht der Fall ist, arbeiten wir am Fraunhofer IGCV daran, Recyclingprozesse zu entwickeln, die diese Materialien besser verwertbar machen.

Wie sehen diese Recyclingprozesse konkret aus?
Wir verwenden einen Pyrolyse-Prozess, bei dem der zerkleinerte, faserverstärkte Kunststoff unter Ausschluss von Sauerstoff erhitzt wird. Das passiert unter Stickstoffatmosphäre, damit der Kunststoff nicht verbrennt, sondern sich thermisch zersetzt. Das Ziel des Prozesses ist es, die Fasern– meist Carbon- oder Glasfasern – vom Kunststoff zu trennen. Im Anschluss versuchen wir aus der Faser wieder ein Textil zu gewinnen. Die Fasern verarbeiten wir dann nicht mehr in ihrer ursprünglichen, endlosen Form, sondern als kürzere Varianten zu einem Vlies. Eine Herausforderung liegt für uns darin, die Fasern so gerichtet wie möglich in diesem Vlies anzuordnen. Denn je zielgerichteter und gleichmäßiger die Faser, desto besser sind die Eigenschaften des Vlieses in die gerichtete Richtung und desto ähnlicher sind sie neuen Materialien, was wiederum ihren Einsatz vereinfacht. Um das zu erreichen, entwickeln wir bei uns einerseits die Recyclingprozesse und andererseits die Anwendungsprozesse und Fertigungsprozesse aus den recycelten Fasern. Wir charakterisieren und analysieren die Eigenschaften der Recyclingmaterialien und vergleichen sie mit neuen Materialien.

Was unterscheidet denn das recycelte von neuem Material?
Die recycelte Carbonfaser hat größtenteils vergleichbare Eigenschaften. Das würde ihren Einsatz zum Beispiel sehr interessant für die Automobil- oder Sportindustrie machen. Ausnahme bilden Anwendungen mit sehr hohen Anforderungen an die Struktur. In einem neuen Rotorblatt oder in der tragenden Struktur eines Flugzeuges wird man das recycelte Material daher nicht finden. Aber das ist ja auch gar nicht der Anspruch.

Wie steht es um die Forschung zum Recycling von Rotorblättern?
Die Prozesse sind schon weit entwickelt, sodass wir jetzt in die industrielle Umsetzung gehen könnten. Es gibt bereits Unternehmen, die sich in Deutschland mit Rotorblatt-Recycling beschäftigen. Das größte Problem ist jedoch, dass es noch keine ausreichende Nachfrage nach recycelten Materialien gibt. Viele Unternehmen scheuen Investitionen, weil der Markt noch unklar und unsicher ist. Politische Maßnahmen wie eine Recyclingquote wären hier sehr hilfreich, um die Nachfrage nach recyceltem Material zu steigern und die Wirtschaftlichkeit zu verbessern.

Fabian, zum Abschluss – gäbe es einen Wiederverwendungszweck für recycelte Windkraftanlagen, über den du dich ganz persönlich freuen würdest?
Da ich ein begeisterter Radfahrer bin, fände ich es natürlich großartig, wenn das recycelte Material in meinem Fahrrad landen würde. So würde sich nicht nur wirtschaftlich, sondern auch für mich ganz persönlich der Kreislauf schließen.

Source:

Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV

Japanese and German scientists cooperating in the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center © Innovative Composite Center
Japanese and German scientists cooperating in the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center
26.02.2025

FIP-MIRAI@ICC: International cooperation sets course for the circular composite economy

With the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center FIP-MIRAI@ICC, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV and the Innovative Composite Center (ICC), Kanazawa Institute of Technology (KIT) in Kanazawa area are setting new standards in the circular economy. With a total budget of 2 million euros - half funded by the Fraunhofer-Society and half by the ICC - the platform aims to develop solutions to global challenges in the field of composite recycling. A Fraunhofer Innovation Platform (FIP) is a temporary research unit hosted and operated by a research institution abroad, which is set up in close cooperation with one or more Fraunhofer Institutes in Germany. With “Mirai”, the Japanese word for “future”, the FIP-MIRAI@ICC sends out a clear signal: Waste is seen as a valuable resource and reused through new technologies. The aim is to create a forward-looking circular economy that guarantees sustainability for future generations.

With the Fraunhofer Innovation Platform for Fibers, Processing and Recycling Solutions at Innovative Composite Center FIP-MIRAI@ICC, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV and the Innovative Composite Center (ICC), Kanazawa Institute of Technology (KIT) in Kanazawa area are setting new standards in the circular economy. With a total budget of 2 million euros - half funded by the Fraunhofer-Society and half by the ICC - the platform aims to develop solutions to global challenges in the field of composite recycling. A Fraunhofer Innovation Platform (FIP) is a temporary research unit hosted and operated by a research institution abroad, which is set up in close cooperation with one or more Fraunhofer Institutes in Germany. With “Mirai”, the Japanese word for “future”, the FIP-MIRAI@ICC sends out a clear signal: Waste is seen as a valuable resource and reused through new technologies. The aim is to create a forward-looking circular economy that guarantees sustainability for future generations. At the heart of the five-year cooperation (2025-2029) is a central location in Kanazawa area, which brings together researchers from the Fraunhofer IGCV and the ICC with companies, universities and customers.

Global challenges as an opportunity for innovation
The increasing use of composite materials in industries such as aerospace, wind energy and sports is leading to rising volumes of hard-to-recycle waste. As early as 2023, 75 kilotons of carbon fiber waste were produced worldwide, and 350 kilotons are expected by 2028 in aviation alone. The growing use of hydrogen technologies in mobility and transportation will further exacerbate this problem.

Technological innovations for sustainability
The German-Japanese collaboration pools technological expertise: the Fraunhofer IGCV contributes its expertise in fiber-matrix separation, quality assurance of recyclates and the wet-laid process, while the ICC contributes its pressing processes and continuous double-belt press technology. Together, this creates a unique “one-stop-shop” offering for companies looking for solutions for the recycling of composite materials.

Appearance at the JEC World 2025
A first insight into the work of FIP-MIRAI@ICC will be provided at JEC World 2025 in Paris, where the platform will be represented at the Japan Pavilion. Companies, researchers and industry experts are invited to visit the stand and discuss the latest developments.

A boost for the circular economy
FIP-MIRAI@ICC aims to act as a catalyst for sustainable technologies and transform waste streams into valuable resources. The close partnership between German and Japanese players paves the way for a sustainable and future-proof industry. With this initiative, science and industry are joining forces to turn global challenges into opportunities. With the vision of promoting ecological and economic sustainability, FIP-MIRAI@ICC is setting new standards in international cooperation.

Source:

Fraunhofer IGCV

© Fraunhofer-Gesellschaft | Markus Jürgens
20.02.2025

Forschungsnachwuchs erhält Auszeichnung für Plastikalternative

Am 19. Februar vergaben das Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) und die Fraunhofer-Gesellschaft den Hugo-Geiger-Preis für die besten Doktorarbeiten in der angewandten Forschung, die in enger Kooperation mit einem Fraunhofer-Institut entstanden.

Am 26. März 1949 fand unter der Schirmherrschaft des Staatssekretärs Hugo Geiger im Bayerischen Wirtschaftsministerium die Gründungsversammlung der Fraunhofer-Gesellschaft statt. Aus Anlass ihres 50-jährigen Bestehens rief das Bayerische Staatsministerium für Wirtschaft und Medien, Energie und Technologie den »Hugo-Geiger-Preis für wissenschaftlichen Nachwuchs« ins Leben. Der Preis wird jährlich an drei junge Forschende vergeben und würdigt hervorragende, anwendungsorientierte Promotionsarbeiten, die in enger Kooperation mit einem Fraunhofer-Institut angefertigt wurden. Die Einzelpreise sind mit 5000, 3000 und 2000 Euro dotiert. Die Einreichungen bewertet eine Jury mit Vertretern aus Forschung und Entwicklung sowie der Wirtschaft. Kriterien der Beurteilung sind wissenschaftliche Qualität, wirtschaftliche Relevanz, Neuartigkeit und Interdisziplinarität der Ansätze

Am 19. Februar vergaben das Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) und die Fraunhofer-Gesellschaft den Hugo-Geiger-Preis für die besten Doktorarbeiten in der angewandten Forschung, die in enger Kooperation mit einem Fraunhofer-Institut entstanden.

Am 26. März 1949 fand unter der Schirmherrschaft des Staatssekretärs Hugo Geiger im Bayerischen Wirtschaftsministerium die Gründungsversammlung der Fraunhofer-Gesellschaft statt. Aus Anlass ihres 50-jährigen Bestehens rief das Bayerische Staatsministerium für Wirtschaft und Medien, Energie und Technologie den »Hugo-Geiger-Preis für wissenschaftlichen Nachwuchs« ins Leben. Der Preis wird jährlich an drei junge Forschende vergeben und würdigt hervorragende, anwendungsorientierte Promotionsarbeiten, die in enger Kooperation mit einem Fraunhofer-Institut angefertigt wurden. Die Einzelpreise sind mit 5000, 3000 und 2000 Euro dotiert. Die Einreichungen bewertet eine Jury mit Vertretern aus Forschung und Entwicklung sowie der Wirtschaft. Kriterien der Beurteilung sind wissenschaftliche Qualität, wirtschaftliche Relevanz, Neuartigkeit und Interdisziplinarität der Ansätze

Erster Platz für thermisch verformbare Plastikalternative aus Cellulose
414 Millionen Tonnen Plastik wurden 2023 weltweit produziert – über 90 Prozent davon aus fossilen Rohstoffen. Kunststoff ist praktisch, flexibel verformbar und universell einsetzbar. Aber eben auch umweltschädlich, nicht abbaubar und abhängig vom endlichen Erdölnachschub. Dennoch machen biobasierte Kunststoffe aus Pflanzen wie Mais oder Holz bislang lediglich 0,7 Prozent der gesamten Plastikproduktion aus. Denn sie sind in ihren Eigenschaften längst nicht so flexibel. Bisherige chemische Ansätze, sie ähnlich verformbar zu machen, gehen mit dem Verlust der natürlichen Struktur der Cellulose und damit ihrer Eigenschaften wie der biologischen Abbaubarkeit einher. Zudem sind chemische Verfahren oft aufwändig und mit hohen Kosten verbunden.

Einen physikalischen Ansatz, um aus Pflanzen-Cellulose thermoplastisch verarbeitbaren Kunststoff zu gewinnen, hat Dr. Kerstin Müller vom Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV in ihrer Doktorarbeit gefunden. Sie nutzt kompatible Polymilchsäuremoleküle als Abstandshalter, um zwischen den engen langkettigen Cellulose-Molekülen aus Holz, Baumwolle oder anderen Pflanzen mehr Platz und Flexibilität zu schaffen. Dafür löst sie die Cellulose in einer ionischen Flüssigkeit, einem speziellen Lösemittel, und verbindet die Moleküle mit denen der Polymilchsäure. Das Resultat ist ein neuartiges und bioabbaubares Material, das auch thermisch verformt werden kann.

In ihrer Arbeit hat die Forscherin jedoch nicht nur die Thermoplastizität von Cellulose im Labormaßstab optimiert, sondern das Material auch in einen industriellen Prozess überführt. In einem herkömmlichen Extruder lässt sich die entwickelte Mischung im großen Maßstab herstellen und steht als Granulat für eine weitere Verarbeitung bereit. So kann das Material vielseitig verwendet werden, etwa im Agrarbereich für ökologisch abbaubare Baumwuchshüllen, Töpfe oder Clips für Pflanzen. Auch Möbel und andere Formteile sind für die Innenanwendung denkbar. Für ihre wegweisende, praxisnahe Doktorarbeit wird Dr. Kerstin Müller mit dem 1. Platz des Hugo-Geiger-Preises geehrt.

Source:

Fraunhofer IGCV

Prototypenentwicklung mit CCPE-Materialien und CCPE-Bauteilen © Fraunhofer UMSICHT/Christian Spiess
Prototypenentwicklung mit CCPE-Materialien und CCPE-Bauteilen
11.02.2025

Circular Valley Convention: Fraunhofer CCPE mit Innovationen für die zirkuläre Kunststoffwirtschaft

Von nachhaltigen Produktentwicklungen über spannende Masterclasses bis hin zu einem interaktiven "Miniatur-Wunderland" können Besuchende zirkuläre Ansätze entdecken, um die Zukunft der Kunststoffindustrie zu gestalten. Auf der Circular Valley Convention (CVC) 2025 in Düsseldorf vom 12. bis 13. März 2025 präsentiert das Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE innovative Lösungen für eine zirkuläre Kunststoffwirtschaft.

Von nachhaltigen Produktentwicklungen über spannende Masterclasses bis hin zu einem interaktiven "Miniatur-Wunderland" können Besuchende zirkuläre Ansätze entdecken, um die Zukunft der Kunststoffindustrie zu gestalten. Auf der Circular Valley Convention (CVC) 2025 in Düsseldorf vom 12. bis 13. März 2025 präsentiert das Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE innovative Lösungen für eine zirkuläre Kunststoffwirtschaft.

Das Motto der Circular Valley Convention 2025, "Vereinte Industrien für eine zirkuläre Zukunft", passt zum Fraunhofer CCPE, denn die erfolgreiche Transformation hin zu einer zirkulären Kunststoffwirtschaft erfordert kreative Ansätze entlang der gesamten Wertschöpfungskette. Die Besuchenden dürfen sich auf interessante Präsentationen freuen, die die neuesten Entwicklungen in den Bereichen Geschäftsmodelle, Produktentwicklung sowie hochwertige Materialentwicklung beleuchten wie zum Beispiel Geotextilien oder Dachplanen. Auch Themen wie die Geruchsvermeidung von Rezyklaten, Leichtbauwerkstoffe auf Basis von Polymilchsäure (PLA) und die Gestaltung von Logistiknetzwerken und Digitalisierung werden behandelt. In der Masterclass zum Thema "Environmental assessment of circular plastics" erfahren die Teilnehmenden, welche Methoden sich für die transparente und vergleichbare Bewertung von Recyclingtechnologien eignen. Die Teilnehmenden sind eingeladen, ihre Fragen mitzubringen und zu erfahren, worauf sie bei einer vergleichenden Umweltbewertung von Kunststoffen im Kreislauf achten müssen.

Miniatur-Wunderland zeigt zirkuläre Innovationen im Alltag
Ein besonderes Highlight am Stand des Fraunhofer CCPE ist das interaktive "Miniatur-Wunderland", das demonstriert, wie zirkuläre Innovationen im Alltag der Kunststoffwirtschaft umgesetzt werden können. Hier haben die Besuchenden die Möglichkeit, Dachbahnen aus biologisch abbaubaren Kunststoffen, innovative zirkuläre Logistiklösungen und einen neu gestalteten, modularen Kindersitz aus nachhaltigen Materialien zu entdecken. Dieser Kindersitz verkörpert die Prinzipien des Circular Design, ist reparierbar und setzt auf wiederverwendbare Bauteile. Zudem können Interessierte das Circular Readiness Level® (CRL®) Tool kennen lernen. Mit diesem Online-Tool werden Produkte einem ersten Zirkularitätscheck unterzogen. Das Resultat gibt wertvolle Einblicke sowie erste Informationen welche Produktionsprozesse optimiert werden können. Ein Publikumsmagnet ist zudem die Recyclingkaskade, an der für unterschiedliche Abfallströme die optimalen Recyclingpfade demonstriert werden.

Die Circular Valley Convention vom 12. Bis 13. März 2025 bietet eine Plattform für den Austausch über zirkuläre Lösungen, Strategien und Geschäftsmodelle. Organisiert von der Messe Düsseldorf in Kooperation mit der Circular Valley Stiftung und wissenschaftlich begleitet von Fraunhofer UMSICHT, bringt die Convention Entscheidungsträger aus Unternehmen, Start-ups, Forschung, Politik und Gesellschaft zusammen, um den Fortschritt in der Kreislaufwirtschaft voranzutreiben und Synergien zu fördern.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Abstimmungsprozess während des Planspiels zum Thema nachhaltige Verpackungswirtschaft © Forum Rezyklat/Atelier Ralf Bauer
Abstimmungsprozess während des Planspiels zum Thema nachhaltige Verpackungswirtschaft
30.01.2025

Fraunhofer: Planspiel zur Zukunft der Kreislaufwirtschaft von recyclebaren Verpackungen

Fraunhofer UMSICHT entwickelte im Auftrag des Forum Rezyklat ein Circular Economy Planspiel, um zusammen mit Unternehmen praxisnahe Lösungen für geschlossene Verpackungskreisläufe zu identifizieren, für die es bisher noch keine zirkulären Stoffströme gibt. Die Ergebnisse wurden veröffentlicht und stehen allen Interessierten kostenfrei zur Verfügung.

Fraunhofer UMSICHT entwickelte im Auftrag des Forum Rezyklat ein Circular Economy Planspiel, um zusammen mit Unternehmen praxisnahe Lösungen für geschlossene Verpackungskreisläufe zu identifizieren, für die es bisher noch keine zirkulären Stoffströme gibt. Die Ergebnisse wurden veröffentlicht und stehen allen Interessierten kostenfrei zur Verfügung.

Die Verwirklichung einer Circular Economy im Bereich Verpackungen erfordert eine enge Zusammenarbeit entlang der gesamten Wertschöpfungskette. Die im Forum Rezyklat mitwirkenden Stakeholder für einen nachhaltigen Verpackungskreislauf haben es sich zur Aufgabe gemacht, gemeinsam praxisnahe Lösungen für geschlossene Verpackungskreisläufe zu schaffen und allen Beteiligten zugänglich zu machen. Für die Stoffströme Papier, Pappe, Kartonage (PPK), Glas sowie den Kunststoff PET gibt es bereits etablierte Kreisläufe am Markt. Fraunhofer UMSICHT erhielt daher vom Forum Rezyklat den Auftrag, gemeinsam mit den Mitgliedsunternehmen aktuelle Herausforderungen für die Weiterentwicklung des Verpackungskreislaufs sowie konkrete Handlungsmöglichkeiten zu identifizieren. Das Forum Rezyklat hat dabei im Rahmen eines Planspiels Stoffströme in den Fokus gerückt, für die noch keine funktionierende Kreislaufwirtschaft vorliegt. Das Ergebnisdokument steht nun kostenfrei für alle Interessierten hier zur Verfügung.

Mitgliederbefragung und Backcasting: Kreislaufwirtschaft im Jahr 2035
Fraunhofer UMSICHT setzte bei der Durchführung auf Methoden, die den Austausch zwischen den Beteiligten förderten, kreative Lösungsansätze ermöglichten und die Entscheidungsfindung erleichterten. So wurden zunächst sämtliche Mitgliedsunternehmen des Forums über eine Befragung vorab in den Prozess des Planspiels eingebunden. Die repräsentative Befragung enthielt 19 qualitative und quantitative Fragen. Aus den gut 70 Mitgliedsunternehmen des Forum Rezyklat nahmen 50 Vertreter*innen teil. Das Lenkungsteam des Forums hatte anschließend zur Aufgabe, Handlungsfelder zu priorisieren und relevante Whitespots auszumachen, die zum Schließen der Kreisläufe im Zukunftsszenario erforderlich sind. Fraunhofer UMSICHT führte dazu mit dem Team das Planspiel als dreistündigen Präsenzworkshop durch. Methodischer Kern war die Backcasting-Methode, inhaltliche Basis die zuvor durchgeführte Mitgliederbefragung, ergänzt um Ergebnisse aus dem Strategieprozess des Forums. Die Daten sollten so aufbereitet und in das Spiel integriert werden, dass sie von den Teilnehmer*innen übersichtlich und schnell erfasst werden konnten, um eine effiziente, transparente und partizipative Arbeitsweise zu gewährleisten.

Das Lenkungsteam einigte sich zunächst in einer offenen Diskussion auf 2035 als kritisches Jahr für die Zielerreichung. Die „Packaging and Packaging Waste Regulation“ der EU, kurz PPWR, und die dort angedachten Zielzeiträume dienten hierfür als Grundlage. Die mit der Befragung vorbereitete und während des Planspiels erfolgte Analyse ergab in erster Linie die Priorisierung des Stoffstroms von Polypropylen-Flexmaterialien, kurz PP-flex. Das Material wird als besonders relevant für die Schließung von Kreisläufen angesehen. Ziel der weiteren Aktivitäten ist es jetzt, Parameter zu erarbeiten, die zur Schließung des Recyclingkreislaufs bei PP-flex notwendig sind.

Herausforderungen und Lösungen für zukunftsfähige Verpackungen
Das Forum sieht in einer Reihe von Maßnahmen Schlüsselansätze, um die Kreislaufführung von PP-flex zu verbessern. Dazu gehören die Entwicklung wirtschaftlicher Anreizsysteme, eine stärkere Fokussierung auf recyclinggerechtes Design sowie die Förderung von Monomaterialien. Gleichzeitig sollen bestehende Forschungslücken, etwa im Bereich der Trennbarkeit von Druckfarben, geschlossen werden. Eine engere Zusammenarbeit mit externen Fachleuten aus Wirtschaft und Wissenschaft wird ebenfalls als entscheidend für den Erfolg angesehen.

Im Rahmen des Planspiels identifizierten die beteiligten Expert*innen auch mehrere Herausforderungen, die bis 2035 gelöst werden müssen, um die angestrebte Kreislaufwirtschaft zu erreichen. Im technologischen Bereich ist insbesondere die weitere Verbesserung von Sortier- und Recyclingprozessen erforderlich, um qualitativ hochwertiges PP-flex-Rezyklat herzustellen. Marktseitig zeigt sich, dass verändertes Verbraucherbewusstsein und aktuelle wirtschaftliche Bedingungen die Nachfrage nach Rezyklaten begrenzen, während das Angebot steigt. Zudem wird erwartet, dass Rezyklate mittelfristig weiterhin teurer bleiben als Neumaterialien. Darüber hinaus betonten die Teilnehmer:innen die Notwendigkeit regulatorischer und wirtschaftlicher Anreize, um den Einsatz von Rezyklaten gezielt zu fördern. Gleichzeitig wiesen die Befragten in über 320 Freitextantworten auf konkrete Schwierigkeiten speziell bei der Kreislaufführung von Verpackungen im Food-Bereich und Unklarheiten beim Einsatz von Daten und Digitalisierung hin.

Die Einschätzungen der Mitgliedsunternehmen zu Herausforderungen und Abhängigkeiten deckten sich im Wesentlichen mit den Einschätzungen des Lenkungsteams. Den im Lenkungsteam ermittelten zukünftigen Handlungsfeldern stimmten wiederum Vertreter*innen der Mitgliedunternehmen bei einer Ergebnispräsentation durch Fraunhofer UMSICHT zu. Diese in sich konsistente Einschätzung zu bestehenden Lücken und notwendigen Aktivitäten wird als wichtige Voraussetzung für eine hohe unternehmensübergreifende Teilnahmebereitschaft angesehen, um weitere Schritte gemeinsam anzugehen.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Das biologisch abbaubare Geotextil ist aus nachwachsenden Rohstoffen und dient als temporärer Filter für die Ufersicherung. © Fraunhofer UMSICHT
Das biologisch abbaubare Geotextil ist aus nachwachsenden Rohstoffen und dient als temporärer Filter für die Ufersicherung.
15.01.2025

Biologisch abbaubare Geotextilien zur Ufersicherung

Ufer an Binnenwasserstraßen sind Belastungen durch die Schifffahrt und auch den Gezeiten ausgesetzt. Um Erosion zu vermeiden, werden diese meist technisch durch Steinschüttungen oder -mauern gesichert. Dies hat allerdings einen negativen Einfluss auf die Ökosysteme. Im Verbundforschungsprojekt »Bioshoreline« – gefördert vom Bundesministerium für Ernährung und Landwirtschaft - entwickelten die Forschenden unter der Leitung des Fraunhofer UMSICHT ein biologisch abbaubares Geotextil aus nachwachsenden Rohstoffen, das als temporärer Filter für die Ufersicherung an Binnenwasserstraßen dient.

Schiffsverkehr führt zu einer besonderen hydraulischen Belastung der Ufer. Um das Ökosystem und damit den Lebensraum für ufertypische Pflanzen und Tiere zu fördern, sollen vermehrt Pflanzen anstatt technisch gesicherter Ufer zum Einsatz kommen – was auch die Europäische Wasserrahmenrichtlinie (WRRL) fordert. Bis die Pflanzen allerdings ausreichend Wurzeln gebildet haben, sind zusätzliche Befestigungen am Ufer notwendig: z.B. temporäre Geotextilvliese.
Stabil und gleichzeitig abbaubar

Ufer an Binnenwasserstraßen sind Belastungen durch die Schifffahrt und auch den Gezeiten ausgesetzt. Um Erosion zu vermeiden, werden diese meist technisch durch Steinschüttungen oder -mauern gesichert. Dies hat allerdings einen negativen Einfluss auf die Ökosysteme. Im Verbundforschungsprojekt »Bioshoreline« – gefördert vom Bundesministerium für Ernährung und Landwirtschaft - entwickelten die Forschenden unter der Leitung des Fraunhofer UMSICHT ein biologisch abbaubares Geotextil aus nachwachsenden Rohstoffen, das als temporärer Filter für die Ufersicherung an Binnenwasserstraßen dient.

Schiffsverkehr führt zu einer besonderen hydraulischen Belastung der Ufer. Um das Ökosystem und damit den Lebensraum für ufertypische Pflanzen und Tiere zu fördern, sollen vermehrt Pflanzen anstatt technisch gesicherter Ufer zum Einsatz kommen – was auch die Europäische Wasserrahmenrichtlinie (WRRL) fordert. Bis die Pflanzen allerdings ausreichend Wurzeln gebildet haben, sind zusätzliche Befestigungen am Ufer notwendig: z.B. temporäre Geotextilvliese.
Stabil und gleichzeitig abbaubar

Ziel des Projekts war es, einen Geotextilfilter für biologische Befestigungssysteme von Ufern zu entwickeln. Dieser Filter soll vor der Uferbefestigung durch Pflanzen den Boden stabilisieren und sich dann vollständig abbauen, sobald die Pflanzenwurzeln diese Aufgabe übernehmen können.

Das neuartige Geotextil besteht aus einer Mischung schnell abbaubarer Naturfasern und biobasierter, langsam abbaubarer synthetischer Fasern. Diese Kombination gewährleistet die erforderliche Stabilität für mindestens drei Jahre bei gleichzeitiger vollständiger biologischer Abbaubarkeit. »Eine der Herausforderungen bei dem Projekt war es, ein stabiles Geotextil zu entwickeln, das gleichzeitig auch die Durchwurzelung der Pflanzen ermöglicht und sich nach einer gewissen Zeit vollständig abbaut. In vielen Optimierungsschritten ist es uns nun gelungen, einen geeigneten Prototyp herzustellen«, erklärt Projektleiterin Pia Borelbach des Fraunhofer UMSICHT.

Erste Prototypen im Einsatz
Im Januar 2020 erfolgte der Einbau erster Prototypen an einer Versuchsstrecke am Rhein bei Worms. Die generelle Durchwurzelbarkeit der hergestellten Geotextilfilter wurde mit Weidenspreitlagen als Bepflanzung sowohl in speziellen Versuchskästen als auch im Freiland nachgewiesen. Proben wurden nach ein, zwei und drei Jahren entnommen und geprüft. Die Ergebnisse zeigten, dass Abbauprozesse begonnen haben.

Basierend auf den Erkenntnissen aus Freiland- und Durchwurzelungsversuchen optimierten die Forschenden das Geotextil erneut, um die Durchwurzelbarkeit weiter zu verbessern. Dieser Prototyp ist nun seit März 2023 unter Steinmatratzen und seit April 2024 unter Weidenspreitlage und Saatgutmatten an der Versuchsstrecke im Einsatz.

Das Projekt eröffnet neue Möglichkeiten für den naturnahen Wasserbau und erschließt ein neues Anwendungsgebiet für biobasierte und biologisch abbaubare Kunststoffe.

Ergebnisse im Webinar am 11. Februar 2025
Am 11. Februar präsentieren Forschende die Ergebnisse des Projekts »Bioshoreline« von 13:30 bis 15:30 Uhr ganz konkret in einem Webinar. Die Online-Veranstaltung richtet sich an Hersteller von Geotextilien, Filamenten und technischen Textilien, Fachleute aus dem GALA-Bau und konstruktiven Ingenieurbau sowie ausschreibende Behörden und potenzielle Projektpartner, die an biologisch abbaubaren Projekten interessiert sind.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Myzelmaterial wurde zu einem Werkstoff verarbeitet. © Fraunhofer UMSICHT
Myzelmaterial wurde zu einem Werkstoff verarbeitet.
30.12.2024

Pilzwerkstoffe als biogene Materialquelle

Fraunhofer UMSICHT präsentiert auf der Messe BAU vom 13. bis zum 17. Januar 2025 seine Expertise im Bereich der Pilzwerkstoffe als biogene Materialquelle auf dem Gemeinschaftsstand der Fraunhofer-Allianz Bau Anwendungsbeispiele verdeutlichen, wo Werkstoffe aus Pilzmyzel einsetzbar sind. Unter dem Motto »FungiFacturingArt« stellen die Wissenschaftler*innen zudem im Inneren eines »Innovation Cubes« verschiedene künstlerische Exponate aus Myzelmaterial aus.

Die Fraunhofer-Allianz Bau präsentiert unter dem Motto »ZukunftsMissionBau – bezahlbar.nachhaltig.sicher« Innovationen zu diesen drei wichtigen Transformationsbereichen des Bauens: Nachhaltigkeit, Produktivität und Sicherheit/Resilienz. Die beteiligten Fraunhofer-Institute stellen vor, wie beispielsweise Produktionsgewinne mittels Digitalisierung oder KI zu erreichen sind, mit welchen CO2-negativen Verfahren und Baustoffen energiepositive Gebäude, Quartiere oder Städte entstehen können, oder welche Lösungen es bereits für mehr Resilienz gegen den Klimawandel durch kreislauffähige Produktdesigns gibt.

Fraunhofer UMSICHT präsentiert auf der Messe BAU vom 13. bis zum 17. Januar 2025 seine Expertise im Bereich der Pilzwerkstoffe als biogene Materialquelle auf dem Gemeinschaftsstand der Fraunhofer-Allianz Bau Anwendungsbeispiele verdeutlichen, wo Werkstoffe aus Pilzmyzel einsetzbar sind. Unter dem Motto »FungiFacturingArt« stellen die Wissenschaftler*innen zudem im Inneren eines »Innovation Cubes« verschiedene künstlerische Exponate aus Myzelmaterial aus.

Die Fraunhofer-Allianz Bau präsentiert unter dem Motto »ZukunftsMissionBau – bezahlbar.nachhaltig.sicher« Innovationen zu diesen drei wichtigen Transformationsbereichen des Bauens: Nachhaltigkeit, Produktivität und Sicherheit/Resilienz. Die beteiligten Fraunhofer-Institute stellen vor, wie beispielsweise Produktionsgewinne mittels Digitalisierung oder KI zu erreichen sind, mit welchen CO2-negativen Verfahren und Baustoffen energiepositive Gebäude, Quartiere oder Städte entstehen können, oder welche Lösungen es bereits für mehr Resilienz gegen den Klimawandel durch kreislauffähige Produktdesigns gibt.

Potenziale des Myzelmaterials
Pilzmaterialien haben das Potenzial, Ressourcen- und Klimaschutz in nachhaltigen Produkten umzusetzen. Das Institut bietet ein Myzeltechnikum mit leistungsstarker Infrastruktur für Materialhandling, Wachstum und Prototypenbau.

Auf der Messe BAU können die Besuchenden erste konkrete Anwendungsbeispiele kennen lernen - u.a. auch ein 1 mal 1,2 Meter großes Fassadenelement, das das Fraunhofer ISE und Fraunhofer UMSICHT im Projekt Bau-DNS entwickelten. Es ist ein vorgefertigtes Fassadenelement, das Integrierte Photovoltaik, Stromgewinnung, Wetterschutz und Wärmedämmung aus Pilzmaterial in sich vereint.

Darüber hinaus sind im Inneren eines »Innovation Cubes« verschiedene künstlerische Exponate aus Myzelmaterial zu sehen. Im Rahmen des Projekts FungiFacturingArt - gefördert vom Fraunhofer-Netzwerk Wissenschaft, Kunst und Design – bringen der Vortrag »Behind the artist« (14. Januar, 14:20 Uhr) und ein Mitmachworkshop »Meet the artist: Pilze als Baustoff – Myzel als Wegbereiter in eine nachhaltige Zukunft?« (14. Januar, 14:40 Uhr) das Thema den Messebesuchenden näher.

Source:

Fraunhofer UMSICHT

Durch den Einsatz neuartiger Additivsysteme soll der Lebenszyklus biobasierte Polyester verlängert werden. © Grafik: Fraunhofer LBF
Durch den Einsatz neuartiger Additivsysteme soll der Lebenszyklus biobasierte Polyester verlängert werden.
16.12.2024

Biobasierte Polyester für anspruchsvolle Langzeitanwendungen

Aktuelle biobasierte Kunststoffe sind oft nur für kurzlebige Anwendungen, wie Verpackungen geeignet, da sie unzureichende Langzeiteigenschaften aufweisen. Das neue Projekt „Biobasierte Polyester für anspruchsvolle Langzeitanwendungen“ aus dem Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF soll die Langzeiteigenschaften von Biokunststoffen durch gezielte Additivierung verbessern, um deren Einsatz in technischen Anwendungen zu ermöglichen. Dafür suchen die Forschenden Unternehmen entlang der Wertschöpfungskette, die auch bei langlebigen Produkten petrobasierte Kunststoffe durch biobasierte Lösungen substituieren möchten.

Aktuelle biobasierte Kunststoffe sind oft nur für kurzlebige Anwendungen, wie Verpackungen geeignet, da sie unzureichende Langzeiteigenschaften aufweisen. Das neue Projekt „Biobasierte Polyester für anspruchsvolle Langzeitanwendungen“ aus dem Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF soll die Langzeiteigenschaften von Biokunststoffen durch gezielte Additivierung verbessern, um deren Einsatz in technischen Anwendungen zu ermöglichen. Dafür suchen die Forschenden Unternehmen entlang der Wertschöpfungskette, die auch bei langlebigen Produkten petrobasierte Kunststoffe durch biobasierte Lösungen substituieren möchten.

In dem geplanten Projekt werden biobasierte Materialien durch gezielte Additivierung optimiert, um mit petrochemischen Kunststoffen vergleichbar zu sein. In zahlreichen Projekten haben Forschende aus dem Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF in den letzten Jahren auf dem Gebiet Kunststoff-Additive geforscht und können die Langzeiteigenschaften von Kunststoffen sowohl aus fossilen als auch aus nachwachsenden Rohstoffen verbessern. Ziel des Projektes ist die nachhaltige Substitution petrobasierter technischer Kunststoffe auf Basis bisher gewonnener Erkenntnisse zur Materialoptimierung sowie die Realisierung entlang der gesamten Wertschöpfungskette.

Minimale Veränderungen im Verarbeitungsprozess
Das Projekt adressiert die Herausforderungen der Langzeiteigenschaften von Biokunststoffen. In einer umfassenden Literaturrecherche werden zunächst bestehende Daten zur Langzeitstabilität und eingesetzten Stabilisatoren zusammengeführt. Gemeinsam mit den Projektpartnern wird ein Lastenheft erstellt, welches die zu erreichenden Materialeigenschaften festlegt. Marktverfügbare Biokunststoffe und Additive werden identifiziert und hinsichtlich ihrer Eigenschaften getestet. Die Modifikation der Biokunststoffe erfolgt durch die Entwicklung neuer Formulierungen im Technikumsmaßstab. Ziel ist es, die Materialsubstitution mit minimalen Veränderungen in den bestehenden Verarbeitungsprozessen zu ermöglichen.

Die Fraunhofer Wissenschaftlerinnen und Wissenschaftler suchen Partner aus Unternehmen entlang der Wertschöpfungskette beginnend mit Herstellern von Kunststoffen und Additiven bis hin zu Unternehmen, die einzelne Bauteile in ihren Konstruktionen substituieren wollen, mit besonderem Fokus auf Entwickler und Produzenten fertiger Bauteile.

Gemeinsam Wettbewerbsvorteile sichern: Nachhaltige anspruchsvolle Kunststoffprodukte
OEM und Hersteller von Kunststoffbauteilen aus dem Bereich Bau, Automotive, Sport und Freizeit, Elektro- und Elektronik Bauteile, Haushaltsgeräte, die petrobasierte Kunststoffe durch biobasierte Lösungen substituieren möchten, erhalten mit der Teilnahme an dem neuen Projekt »Biobasierte Polyester für anspruchsvolle Langzeitanwendungen« ausreichend Wissen, um ihre eigene Forschung und Entwicklung individuell und zielgenau zu optimieren. Sie profitieren direkt von neuesten Erkenntnissen und sichern sich dadurch Wettbewerbsvorteile. Rohstoff- und Additivhersteller können ihr bestehendes Produktportfolio um neue Anwendungsmöglichkeiten erweitern und Compoundeure wappnen sich für zukünftige Herausforderungen beim Einsatz von Biokunststoffen.

More information:
polyester biobasierte Fasern
Source:

Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

UMSICHT-Wissenschaftspreis 2025: Start der Bewerbungsphase © Shutterstock/Composing Fraunhofer UMSICHT
UMSICHT-Wissenschaftspreis 2025: Start der Bewerbungsphase
12.12.2024

Ausschreibung UMSICHT-Wissenschaftspreis 2025

Ob Nutzung von Solar- und Windenergie, grüner Wasserstoff oder Elektromobilität – die Energiewende stellt unsere Infrastruktur, aber auch die Gesellschaft im Allgemeinen vor teils große Herausforderungen. Hinzu kommen immer häufigere Technologiesprünge in den verschiedensten Bereichen und die Notwendigkeit einer Kreislaufwirtschaft. All das beeinflusst unseren Alltag. Eine gute Zusammenarbeit aller Beteiligten ist essenziell für den erfolgreichen Weg in Richtung Klimaneutralität. Und eine entsprechende Kommunikation. Denn nur, wer gut und vor allem richtig informiert ist, hat Vertrauen und kann die Potenziale von Innovationen verstehen.

Ob Nutzung von Solar- und Windenergie, grüner Wasserstoff oder Elektromobilität – die Energiewende stellt unsere Infrastruktur, aber auch die Gesellschaft im Allgemeinen vor teils große Herausforderungen. Hinzu kommen immer häufigere Technologiesprünge in den verschiedensten Bereichen und die Notwendigkeit einer Kreislaufwirtschaft. All das beeinflusst unseren Alltag. Eine gute Zusammenarbeit aller Beteiligten ist essenziell für den erfolgreichen Weg in Richtung Klimaneutralität. Und eine entsprechende Kommunikation. Denn nur, wer gut und vor allem richtig informiert ist, hat Vertrauen und kann die Potenziale von Innovationen verstehen.

Seit 2010 prämiert der UMSICHT-Förderverein Wissenschaftler*innen und Journalist*innen mit dem UMSICHT-Wissenschaftspreis, die Forschungsergebnisse zu den Themen Umweltschutz und Nachhaltigkeit der Gesellschaft zugänglich machen. Die Bewerbungsphase für die kommende Ausgabe hat begonnen. Für die Kategorie Wissenschaft können ab sofort wissenschaftliche Publikationen eingereicht werden, die in einschlägigen Journals veröffentlicht sind. In der Kategorie Journalismus sind zwei Preise zu vergeben, hier ist die mediale Form der eingereichten Arbeit entscheidend: Print, Online oder Audio, Video. Bewerbungsschluss ist der 28. Februar 2025.

Neben der Skulptur „Innovation“ erhalten die Gewinner*innen des UMSICHT-Wissenschaftspreises 2025 ein Preisgeld von 2500 Euro pro Arbeit – und den Zugang zum Netzwerk einer anerkannten Forschungseinrichtung mit Kontakten in Wissenschaft, Wirtschaft und Politik. Die Preisverleihung findet am 3. Juli 2025 am Institutsstandort des Fraunhofer UMSICHT in Oberhausen statt.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

conference on flame retardancy for composites Photo AVK Industrievereinigung Verstärkte Kunststoffe e. V.
26.11.2024

Successful conference on flame retardancy for composites in Berlin

On November 20th/21st, 2024, the second conference on flame retardancy for composite applications took place in Berlin, organised by the AVK - Industrievereinigung Verstärkte Kunststoffe e.V. in cooperation with the FGK - Forschungsgesellschaft Kunststoffe e.V.

60 participants attended the international event, which this time focused on the requirements in the construction/infrastructure sector in addition to the transport sector.

In 14 presentations, 18 speakers provided information on new developments, requirements and innovations from the fields of standardisation, material development, construction/infrastructure, public transport, automotive and research & science.

Prof. Schartel from the Bundesanstalt für Materialforschung und –prüfung began with an introduction to the principle and concept of flame-retardant composites. In the following thematic blocks, the companies CTS Composite Technologie Systeme GmbH and Nabaltec AG provided information on new possibilities and developments at the material level of non-combustible fibre-reinforced plastics (FRP).

On November 20th/21st, 2024, the second conference on flame retardancy for composite applications took place in Berlin, organised by the AVK - Industrievereinigung Verstärkte Kunststoffe e.V. in cooperation with the FGK - Forschungsgesellschaft Kunststoffe e.V.

60 participants attended the international event, which this time focused on the requirements in the construction/infrastructure sector in addition to the transport sector.

In 14 presentations, 18 speakers provided information on new developments, requirements and innovations from the fields of standardisation, material development, construction/infrastructure, public transport, automotive and research & science.

Prof. Schartel from the Bundesanstalt für Materialforschung und –prüfung began with an introduction to the principle and concept of flame-retardant composites. In the following thematic blocks, the companies CTS Composite Technologie Systeme GmbH and Nabaltec AG provided information on new possibilities and developments at the material level of non-combustible fibre-reinforced plastics (FRP).

The implementation of fire protection requirements in the operation of rail vehicles or for load-bearing FRP components played a major role in the area of construction/infrastructure, as did the sustainability of these building materials, which Frank Lüders from DB Systemtechnik GmbH and Kabelan Thavayogarajah from Fraunhofer LBF reported on in their presentations.

The well-known topic of e-mobility took its place in the automotive sector, where Dr. Christian Battenberg from Clariant Plastics &Coatings (Deutschland) GmbH spoke about flame retardants for applications in this field.

The successful event was rounded off by the Research and Science block with two presentations by Fraunhofer LBF and Deutsches Textilforschungszentrum Nord-
West gGmbH & Centre for Nanointegration Duisburg-Essen.

Over the course of one and a half days, the conference provided an important platform for experts from industry and science to discuss the latest developments and challenges in the field of flame retardancy for composites. The high level of participation highlighted the relevance of the topic and underpinned the decision to organise a third round of the conference in 2026.

Source:

AVK  Industrievereinigung Verstärkte Kunststoffe e. V.

21.11.2024

Fraunhofer IGCV unterstützt Europa bei Lieferengpässen

Der Krieg in der Ukraine, die COVID-19-Krise oder auch die Schließung des Suezkanals hatten jeweils schwere Versorgungsunterbrechungen zur Folge und stellten die Weltwirtschaft vor finanzielle und logistische Herausforderungen. Doch auch im Kleinen konnte man erst kürzlich an den Überschwemmungen in Süddeutschland sehen, was es bedeutet, wenn Lieferketten unterbrochen sind.

Um vor allem kleine und mittlere Unternehmen (KMUs) in Europa zu unterstützen derartigen Störungen widerstandsfähiger und nachhaltiger entgegenzutreten, hat das ResC4EU Konsortium das EU-Projekt & die Initiative ResC4EU (Resilient Supply Chains for Europe) ins Leben gerufen. Im Rahmen des Projektes arbeitet das Fraunhofer IGCV an der Entwicklung von Modellen und digitalen Werkzeugen, die Störungen in Produktionsprozessen schneller erkennen und beheben können. Das EU-Projekt wird mit drei Millionen Euro von der Europäischen Union gefördert wird und ist auf drei Jahre ausgelegt.  

Der Krieg in der Ukraine, die COVID-19-Krise oder auch die Schließung des Suezkanals hatten jeweils schwere Versorgungsunterbrechungen zur Folge und stellten die Weltwirtschaft vor finanzielle und logistische Herausforderungen. Doch auch im Kleinen konnte man erst kürzlich an den Überschwemmungen in Süddeutschland sehen, was es bedeutet, wenn Lieferketten unterbrochen sind.

Um vor allem kleine und mittlere Unternehmen (KMUs) in Europa zu unterstützen derartigen Störungen widerstandsfähiger und nachhaltiger entgegenzutreten, hat das ResC4EU Konsortium das EU-Projekt & die Initiative ResC4EU (Resilient Supply Chains for Europe) ins Leben gerufen. Im Rahmen des Projektes arbeitet das Fraunhofer IGCV an der Entwicklung von Modellen und digitalen Werkzeugen, die Störungen in Produktionsprozessen schneller erkennen und beheben können. Das EU-Projekt wird mit drei Millionen Euro von der Europäischen Union gefördert wird und ist auf drei Jahre ausgelegt.  

Schnell Alternativen finden
Unternehmen sind in der Regel auf unterschiedliche Zulieferer angewiesen. Rohmaterialien oder Bauteile werden nicht selten über weite Strecken mit dem LKW, Zug oder Flugzeug transportiert. „Grundsätzlich ist es hilfreich, die eigenen Lieferketten gut zu kennen. Woher kommt mein Material und welche Wege muss es nehmen, um bei mir zu landen? Leider kommt es immer wieder vor, dass vor allem kleinere Unternehmen bankrottgehen, weil sie diesen Aspekt vernachlässigen und Lieferschwierigkeiten beziehungsweise -ausfälle im Krisenfall nicht ausgleichen können“, sagt Clemens Gonnermann, der am Fraunhofer IGCV zu Fragen der Digitalisierung und KI in der Produktion arbeitet.

Im Rahmen des ResC4EU Projekts soll deshalb ein Wissensmodell entstehen, das Unternehmen einen genauen Überblick über ihre Lieferketten gibt und umfassende Risikobewertungen für potenzielle Unterbrechungen aufzeigt. Im Bedarfsfall gibt das digitale Werkzeug dann mithilfe eines Algorithmus individuelle Lösungen für Produktion, Transport sowie Lagerung an. „Das übergeordnete Ziel ist immer, dass die Produktion wie gewohnt weiter geht, ohne Produktionsstopp oder Kurzarbeit der Mitarbeitenden. Das reduziert nicht nur Kosten, sondern fördert auch die Kundenzufriedenheit und schafft erhebliche Wettbewerbsvorteile“, erklärt der Fraunhofer-Wissenschaftler.

Nachhaltigkeit im Blick
Ändert sich eine Lieferkette, hat das allerdings nicht nur Auswirkungen darauf, ob weiter produziert werden kann oder nicht. Auch die CO2e-Bilanz eines Produktes ändert sich. Gemeint sind damit nicht nur CO2-Emissionen sondern auch Methanemissionen und weitere Einflussfaktoren. „Es lässt sich ein globaler Trend beobachten, bei dem Unternehmen immer stärker in die Pflicht genommen werden, transparent über ihre Treibhausgasemissionen Auskunft zu geben. Zudem werden diese zunehmend zu einem Wettbewerbsfaktor“, führt Aljoscha Hieronymus an, der am Fraunhofer IGCV im Themenbereich der Nachhaltigkeit arbeitet. Am naheliegendsten sei das beim Standort und Transport. „Ob ich mein Material regional beziehe oder es einfliegen lasse, hat einen Einfluss auf dessen ökologischen Fußabdruck."

Aber auch das Herstellungsverfahren als solches kann viel oder wenig Energie verbrauchen. Im Rahmen des EU-Projekts erarbeiten Gonnermann, Hieronymus und die Kolleg:innen daher nicht nur einheitliche Parameter für die Widerstandsfähigkeit von Lieferketten, sondern kategorisieren diese auch nach ihrem Energie- und Ressourcenverbrauch sowie ihrer Klimaauswirkung. »Wir werfen dabei zum Beispiel einen Blick auf die Energiemärkte in unterschiedlichen Ländern und schauen, ob der Strom dort aus erneuerbaren oder fossilen Quellen stammt. Das vereinfacht die Nachhaltigkeitsfrage für Unternehmen deutlich.“

CO2e-Bilanz am Beispiel von Carbon-Bauteilen
Gemeinsam mit der Abteilung für Nachhaltige Fabrikplanung und -betrieb am Fraunhofer IGCV untersuchen Clemens Gonnermann und sein Team exemplarisch die CO2e-Bilanz des Verbundwerkstoffs Carbon, der in der Luft- und Raumfahrt zum Einsatz kommt. Von der Produktion bis zum Recycling deckt das Fraunhofer IGCV dessen gesamte Wertschöpfungskette ab und berücksichtigt dabei auch die Ansprüche aus der Industrie. „Aufgrund unserer Expertise in der Forschungs- und Entwicklungsarbeit von Carbon-Composites, können wir auf umfangreiche Daten zurückgreifen. Für das ResC4EU-Projekt entwickeln wir auf dieser Basis Modelle, die unterschiedliche Fertigungsprozesse miteinander vergleichen und dabei ökologisch und ökonomisch bewerten“, erklärt Gonnermann. „Diese Berechnungen werden automatisiert und bieten dem Unternehmen im Bedarfsfall eine nachhaltige und wirtschaftlich sinnvolle Lösung.“ Die Modellierungen dienen im zweiten Schritt als Blaupause für weitere technische Verfahren und Bauteile aus anderen Industriesektoren.

Die ResC4EU Initiative bietet Unterstützung für KMUs aus insgesamt 14 unterschiedlichen Industriesektoren an, darunter Luftfahrt-, Raumfahrt- und Verteidigung, zivile Sicherheit, Mobilität (Transport- und Automobilindustrie), Erneuerbare Energien, Elektronikindustrie, digitale Industrie, Baugewerbe, Textilindustrie, Agrar- und Lebensmittelsektor, Kultur- und Kreativwirtschaft, Gesundheitssektor, Sozialwirtschaft, Einzelhandel, und Tourismus.

Um diese Bandbreite abdecken zu können, besteht das ResC4EU Konsortium aus sechs der führenden europäischen Industrieverbände und -cluster mit direkten Zugang zu bis zu 1000 KMUs in ganz Europa. Außerdem gehören dem Konsortium zwei KMUs an, eine KMU für Cluster- und Innovationsmanagement und eine KMU für digitale B2B Plattformentwicklung und -management. Das Fraunhofer IGCV und das Institut für Seeverkehrswirtschaft und Logistik (ISL) vervollständigen das Konsortium als Forschungseinrichtungen. Koordiniert wird das EU-Projekt vom deutschen Industrieverband Composites United e.V. (CU).

Die einzelnen Partner des ResC4EU-Konsortiums sind:

  • CU, Composites United e.V. (Deutschland) – Koordinator
  • MCN, Maritimes Cluster Norddeutschland e.V. (Deutschland)
  • LITC, Lettischer IT Cluster (Lettland), ein Europäisches Digitales Innovationszentrum (EDIH, European Digital Innovation Hub)
  • AIDIMME (Spanien), Technologieinstitut und Verband Innovativer Unternehmen
  • PKTK, Polnisches Cluster für Verbundwerkstoffe (Polen), koordiniert von GoFar Sp.z.o.o
  • ATIM Cluster, Irisches Cluster für fortschrittliche Technologien in der Fertigung (Irland), koordiniert von der Technischen Universität Shannon: Midlands Midwest (TUS)
  • Scaberia AS (Norwegen)
  • GreenTwin GmbH (Österreich)
  • ISL, Institut für Seeverkehrswirtschaft und Logistik (Deutschland)
  • Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (Deutschland)

Das ResC4EU Konsortium
Das ResC4EU Konsortium wird Modelle und Tools entwickeln und bereitstellen, die KMUs bei der Erkennung und Antizipation von Störungen in ihrer Lieferkette unterstützen können. Des Weiteren werden KMUs maßgeschneiderte Unterstützungs- und Schulungsprogramme angeboten. Darüber hinaus werden KMUs aus dem verarbeitenden Gewerbe, die fortschrittliche Technologien implementieren müssen, mit technisch versierten KMUs zusammengebracht, die innovativen Lösungen für widerstandsfähigere und nachhaltigere Produktionsprozesse und Lieferketten anbieten. Die Unterstützung durch das Konsortium beginnt mit einer Bewertung der Bedürfnisse, Risiken, Störungen, Herausforderungen und Möglichkeiten für KMUs.

Source:

Fraunhofer IGCV

09.10.2024

Dezentrale Versorgung mit Wasserstoff: Ammoniak als Speicher

In der Wasserstoffwirtschaft spielt Ammoniak eine wichtige Rolle als Transport- und Speichermedium. Vielversprechende Lösungen für dessen Einsatz als Energievektor werden aktuell im Fraunhofer-Leitprojekt AmmonVektor entwickelt. Doch wie groß sind die Potenziale? Und wo liegen die Grenzen? Der Workshop »Ammoniak – DIE Lieferkette für die Wasserstoffwirtschaft?!«, am 30. Oktober in Oberhausen, gibt einen Überblick über die neuesten Technologien und Entwicklungen und liefert Impulse für die Energiewende.

In der Wasserstoffwirtschaft spielt Ammoniak eine wichtige Rolle als Transport- und Speichermedium. Vielversprechende Lösungen für dessen Einsatz als Energievektor werden aktuell im Fraunhofer-Leitprojekt AmmonVektor entwickelt. Doch wie groß sind die Potenziale? Und wo liegen die Grenzen? Der Workshop »Ammoniak – DIE Lieferkette für die Wasserstoffwirtschaft?!«, am 30. Oktober in Oberhausen, gibt einen Überblick über die neuesten Technologien und Entwicklungen und liefert Impulse für die Energiewende.

Der industrielle Bedarf an Strom und Prozesswärme in Deutschland ist immens und wird ohne Importe nachhaltig erzeugter Energieträger nicht gedeckt werden können. Ein solcher Energieträger der Zukunft ist Wasserstoff. Auf dem Weg zu einer Wasserstoffwirtschaft gibt es noch viele offene Fragen. Eine davon ist, wie die Versorgung mit grünem Wasserstoff in der Fläche aussehen kann. Lösungen für die logistischen Herausforderungen werden im Rahmen von AmmonVektor entwickelt. Das Fraunhofer-Leitprojekt setzt auf Ammoniak als sogenannten Energievektor, der sich in seiner flüssigen Form technisch einfach und ohne großen Energieaufwand transportieren lässt. Ein weiterer Vorteil ist, dass Ammoniak durch die Düngemittelproduktion bereits über eine weltweite Transportinfrastruktur verfügt.

Forschende aus den acht Fraunhofer-Instituten ICT, IGB, IKTS, IML, IMM, IMW, ITWM und UMSICHT betrachten über einen Zeitraum von drei Jahren die gesamte Wertschöpfungskette: »Es entstehen Reaktoren und Katalysatoren für eine flexible, energieeffiziente Ammoniak-Synthese. Zudem entwickeln wir Technologien für die Spaltung von Ammoniak und dessen Nutzung zur Erzeugung von Strom, Wärme und Bewegung«, erklärt Dr.-Ing. Andreas Menne von Fraunhofer UMSICHT, das die Projektleitung innehat. Ebenfalls werden Speicher- und Logistikkonzepte erstellt und Geschäftsmodelle entworfen. Alles unter der Zielsetzung, in Zukunft Wasserstoff dezentral verfügbar zu machen.

Die gesamte Wertschöpfungskette
AmmonVektor umfasst insgesamt fünf Teilprojekte. Das erste Teilprojekt beschäftigt sich mit der Entwicklung von Prozessen, die den Betrieb von dezentralen Anlagen für die lastflexible und bedarfsorientierte Ammoniaksynthese ermöglichen. Im zweiten Teilprojekt werden sichere Logistikalternativen und Szenarien für den Transport und die Speicherung von Ammoniak untersucht. An der dezentralen Wasserstoffrückgewinnung – dem Ammoniakcracken – forschen die Beteiligten in Teilprojekt drei. Sie optimieren Crackkatalysatoren hinsichtlich ihrer Aktivität und Stabilität für den Betrieb in verschiedenen Reaktoren. Den Blick auf die direkte Ammoniaknutzung richtet Teilprojekt Nummer vier. Es werden zwei grundlegende Wege zur Strom- und Wärmebereitstellung betrachtet: die Umsetzung von Ammoniak in Festoxidbrennstoffzellen-Systemen und die motorische Verbrennung. Last but not least Teilprojekt fünf, in dem die zuvor entlang der Ammoniak-Wertschöpfungskette optimierten Technologien hinsichtlich ihrer Resilienz sowie ökonomischen und ökologischen Nachhaltigkeit analysiert werden. Andreas Menne: »Auf dieser Basis wollen wir aussagekräftige Informationen über die Potenziale einer langfristig erfolgreichen Umsetzung der Technologien im industriellen Maßstab liefern.«

Workshop: neueste Technologien und Entwicklungen im Themenfeld Ammoniak
Doch wie genau kann diese Umsetzung in der Praxis aussehen? Am 30. Oktober widmet sich der Workshop »Ammoniak – DIE Lieferkette für die Wasserstoffwirtschaft?!« bei Fraunhofer UMSICHT in Oberhausen dem Themenfeld Ammoniak. Expertinnen und Experten aus Wissenschaft und Wirtschaft informieren aus verschiedenen Blickwinkeln über dezentrale Nutzungskonzepte. Es geht um konkrete Anwendungsfälle von Ammoniak als Wasserstoffspeicher und das Fraunhofer-Leitprojekt AmmonVektor, aber auch um die Hürden einer Wasserstoffwirtschaft und die Regulatorik. Der Workshop richtet sich u. a. an Interessierte aus Industrie und Wissenschaft, Energieversorger, dezentrale Anwender von Wasserstofftechnologien, Transport- und Logistikunternehmen. Teilnehmende können sich direkt einbringen und sind eingeladen, gemeinsam mit den Referentinnen und Referenten zu diskutieren.

Source:

Fraunhofer UMSICHT

07.08.2024

Hohenstein: Start of new Recycling Project

Transforming old textiles into new, high-quality materials on a large scale – that is the subject of a new innovation project by eeden, the Textile Logistics Center (CTL) at the Niederrhein University of Applied Sciences and the Fraunhofer IML, and Hohenstein.

The project aims to promote a circular textile economy through technological and logistical optimizations. eeden's innovative fiber-to-fiber recycling process will be further developed to efficiently process textile waste from laundries. Additionally, logistics will be restructured, from collection to recycling, to ensure a resource-conserving and efficient supply of this material stream. With a total investment of over €625,000, the project is co-financed by the Ministry for the Environment, Nature Conservation and Transport of the State of North Rhine-Westphalia and the European Union as part of the Green Economy in NRW innovation competition.

Hohenstein and eeden jointly conduct analytical tests on used textiles to accurately determine the properties of the textile waste after various cleaning cycles.

Transforming old textiles into new, high-quality materials on a large scale – that is the subject of a new innovation project by eeden, the Textile Logistics Center (CTL) at the Niederrhein University of Applied Sciences and the Fraunhofer IML, and Hohenstein.

The project aims to promote a circular textile economy through technological and logistical optimizations. eeden's innovative fiber-to-fiber recycling process will be further developed to efficiently process textile waste from laundries. Additionally, logistics will be restructured, from collection to recycling, to ensure a resource-conserving and efficient supply of this material stream. With a total investment of over €625,000, the project is co-financed by the Ministry for the Environment, Nature Conservation and Transport of the State of North Rhine-Westphalia and the European Union as part of the Green Economy in NRW innovation competition.

Hohenstein and eeden jointly conduct analytical tests on used textiles to accurately determine the properties of the textile waste after various cleaning cycles.

Subsequently, the CTL, supported by eeden, will develop a concept for the efficient procurement of raw materials and their integration into a sustainable business structure.

Finally, the new process will be validated by eeden on a technical scale. By 2026, the close collaboration between eeden, the Center Textile Logistics (CTL) and Hohenstein aims to promote textile circularity and make a significant contribution to reducing textile waste.

Source:

Hohenstein

10.07.2024

Circular Valley Convention 2025: New Platform for the circular economy

The Circular Valley Convention is a new trade fair format organised by Messe Düsseldorf in cooperation with the non-profit Circular Valley Foundation and with scientific support from the renowned Fraunhofer Institute for Environmental, Safety, and Energy Technology called UMSICHT.

The convention looks at the circular economy from a holistic perspective: across industries and materials – and all phases of the circular economy, from smart circular design to the reuse and further utilisation of products.

As a central global platform for the circular economy, it brings together decision-makers and experts from business, academia, politics, and society in one place. Under the motto "Uniting Industries for a Circular Tomorrow", it promotes their networking in order to present and jointly develop circular solutions and processes and drive forward the transformation towards a circular economy.

The Circular Valley Convention is a new trade fair format organised by Messe Düsseldorf in cooperation with the non-profit Circular Valley Foundation and with scientific support from the renowned Fraunhofer Institute for Environmental, Safety, and Energy Technology called UMSICHT.

The convention looks at the circular economy from a holistic perspective: across industries and materials – and all phases of the circular economy, from smart circular design to the reuse and further utilisation of products.

As a central global platform for the circular economy, it brings together decision-makers and experts from business, academia, politics, and society in one place. Under the motto "Uniting Industries for a Circular Tomorrow", it promotes their networking in order to present and jointly develop circular solutions and processes and drive forward the transformation towards a circular economy.

Messe Düsseldorf is contributing its many years of expertise to the Circular Valley Convention stemming from a wide range of trade fairs such as K, interpack and drupa, which are closely related to the circular economy. The non-profit Circular Valley Foundation, the cooperation partner of the convention, has a comprehensive understanding of the circular economy and a large network. The scientific support provided by the Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT and the associated expertise round off the extensive professional support.

The Circular Valley Convention covers all phases of the circular economy: from the use of renewable raw materials to product design, manufacturing, logistics, and operations all the way through to collection, sorting, and recycling, featuring solutions for different material classes and value chains. The convention combines applied research and practice and is a content hub for top decision-makers and experts. With the guiding theme "Enabling Circular Economy", the focus is on three central topics that enable the transformation towards a circular economy:

  • Enabling Value Chains: the implementation of efficient, sustainable, and cross-industry circular solution strategies to maximise the use of resources and make business models fit for the future.
  • Enabling Technologies: the transfer of circular competencies such as redesign, refurbish, remanufacture & recycle. The goal is to optimise products and processes using technologies that comply with the principles of the circular economy.
  • Enabling Materials: the promotion of the efficient use and recycling of various materials, aiming for the extension of product lifespans and the integration of cross-material circular strategies for the sustainable use of resources.

the Circular Valley Convention offers a three-part event format consisting of a conference, an expo, and a networking event on the evening of 12 March 2024. Over 100 high-calibre speakers are scheduled to attend the conference. More than 130 exhibitors and partners are expected to attend the expo, the marketplace for future-oriented circular solutions, which offers insights into new trends, innovations, and best practice examples.

Source:

Messe Düsseldorf GmbH

STFI: Wirkstoff der Graviolapflanze in Textilien (c) STFI, Fraunhofer IAP
Mit Graviola-Mikrokapseln und textilen Beschichtungssystemen funktionalisierte Sheet Mask als Anwendungsbeispiel
09.07.2024

STFI: Wirkstoff der Graviolapflanze in Textilien

Forschern des Sächsischen Textilforschungsinstituts e.V. (STFI) ist es gemeinsam mit internationalen Partnern gelungen, den Wirkstoff der Graviolapflanze so aufzubereiten, dass dieser für den Einsatz in Textilien verwendet werden kann. Die Stachelannone, wie die Pflanze auch genannt wird, ist in ihrer tropischen Heimat als Heilpflanze bekannt.

Abgeleitet aus den Megatrends Gesundheit, Wellness und Nachhaltigkeit besteht allgemein ein sehr großes Interesse an Textilien mit integrierten natürlichen, pflanzlichen Wirkstoffen. In der Naturmedizin werden die Blätter des tropischen Graviolabaumes (Annona muricata) zur Verbesserung des Wohlbefindens und zur Behandlung zahlreicher Krankheiten eingesetzt. Die Wirkung der Graviolapflanze ist hauptsächlich auf die enthaltenen aktiven Wirkstoffe Acetogenine zurückzuführen. Gewinnung, Aufbereitung und Einsatz dieser Wirkstoffe für textile Anwendungen waren bisher noch kein Forschungsgegenstand.

Forschern des Sächsischen Textilforschungsinstituts e.V. (STFI) ist es gemeinsam mit internationalen Partnern gelungen, den Wirkstoff der Graviolapflanze so aufzubereiten, dass dieser für den Einsatz in Textilien verwendet werden kann. Die Stachelannone, wie die Pflanze auch genannt wird, ist in ihrer tropischen Heimat als Heilpflanze bekannt.

Abgeleitet aus den Megatrends Gesundheit, Wellness und Nachhaltigkeit besteht allgemein ein sehr großes Interesse an Textilien mit integrierten natürlichen, pflanzlichen Wirkstoffen. In der Naturmedizin werden die Blätter des tropischen Graviolabaumes (Annona muricata) zur Verbesserung des Wohlbefindens und zur Behandlung zahlreicher Krankheiten eingesetzt. Die Wirkung der Graviolapflanze ist hauptsächlich auf die enthaltenen aktiven Wirkstoffe Acetogenine zurückzuführen. Gewinnung, Aufbereitung und Einsatz dieser Wirkstoffe für textile Anwendungen waren bisher noch kein Forschungsgegenstand.

Ziel des Projektes GRAVIOLA war die Entwicklung neuartiger Textilien, die mit Wirkstoffen der Graviolapflanze ausgerüstet sind. Das Aufbringen der aktiven Wirkstoffe wurde auf zwei verschiedenen Wegen untersucht: eine direkte Ausrüstung der Textilien mit Beschichtungssystemen, in die Graviolawirkstoffe integriert wurden, und die Applikation von Mikrokapseln, welche mit Acetogeninen beladen wurden. Bei der direkten Beschichtung wurden Dispersionssysteme mit verschiedenen Bindemitteln verwendet. Diese Systeme wurden anschließend durch Imprägnierung per Foulard auf die Textiloberflächen aufgebracht. Bei der Mikrokapselmethode wurden die extrahierten Wirkstoffe aus Graviola in Mikrokapseln, kleiner als 100 Mikrometer, eingeschlossen. Textile Flächen wurden mit diesen Mikrokapseln und geeigneten Bindemittelsystemen ausgerüstet.

Durch die Einbindung von wässrigen Mikrokapsel-Suspensionen in geeignete Bindemittelsysteme wurden die Mikrokapseln so fixiert, dass eine problemlose Verarbeitbarkeit des Textilmaterials gewährleistet und die Freisetzung des Wirkstoffs über einen definierten Zeitraum aufrechterhalten werden kann. Die entwickelte stabile Ausrüstung für Maschenware und Vliesstoffe berücksichtigt wesentliche Textileigenschaften wie Farbechtheit, Wasserbeständigkeit und Reibung sowie humanökologische Anforderungen.

Mit Inhaltsstoffen der Graviola ausgerüstete Textilien bieten aufgrund ihrer entzündungshemmenden und gesundheitsfördernden Wirkung einen dermatologisch breit gefächerten Einsatz im Wellness- und Gesundheitsbereich sowie eine nachhaltige Verwendung im Textillebenszyklus.

Hergestellt wurden Funktionsmuster auf Basis a) von Mikrokapseln und b) von Graviola-Extrakten: „Sheet Masks“ aus Viskosevliesstoffen für den Beauty und Wellnesssektor sowie Single-Jersey-Gestricke mit Graviola-Extrakt und verkapselten Wirkstoffen, kombiniert mit Aloe Vera-Öl, für therapeutische Bekleidung zur Hautbehandlung.

Kooperationspartner
In diesem CORNET-Forschungsvorhaben kooperierten die deutschen Forschungsstellen Sächsisches Textilforschungsinstitut e.V. (STFI), Chemnitz (Deutschland), und Fraunhofer-Institut für Angewandte Polymerforschung (IAP), Potsdam (Deutschland) mit der tschechischen Forschungsstelle INOTEX, Dvůr Kralove n.L. (Tschechien). Das Projekt wurde von den Forschungsvereinigungen Forschungskuratorium Textil e.V. (FKT), Berlin (Deutschland) und Clutex - klastr technické textilie, Liberec (Tschechien) unterstützt.

Source:

Sächsische Textilforschungsinstitut e.V.

Fraunhofer CCPE: Nachhaltige Geokunststoffe und Advanced Recycling auf der ACHEMA 2024 (c) Fraunhofer LBF
Geokunststoffe - Nachhaltiger Landschaftsbau mit biobasierten Polymeren
24.05.2024

Fraunhofer CCPE: Nachhaltige Geokunststoffe und Advanced Recycling auf der ACHEMA 2024

Erstmalig stellt der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE das Thema »Nachhaltige Geokunststoffe für den Landschaftsbau« auf der ACHEMA 2024 neben dem Thema »Advanced Recycling« vor.

Ist es möglich, Kunststoffe für den Landschaftsbau aus biobasierten Polymeren herzustellen? Können Produkte ohne Umweltprobleme und mit kontrolliertem Abbau hergestellt werden? Genau diesen Fragen, die für eine Vielzahl an kommerziellen Produkten wichtig ist, widmet sich das Fraunhofer CCPE in seinem neuen Forschungsschwerpunkt »Nachhaltige Geokunststoffe für den Landschaftsbau«.

Erstmalig stellt der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE das Thema »Nachhaltige Geokunststoffe für den Landschaftsbau« auf der ACHEMA 2024 neben dem Thema »Advanced Recycling« vor.

Ist es möglich, Kunststoffe für den Landschaftsbau aus biobasierten Polymeren herzustellen? Können Produkte ohne Umweltprobleme und mit kontrolliertem Abbau hergestellt werden? Genau diesen Fragen, die für eine Vielzahl an kommerziellen Produkten wichtig ist, widmet sich das Fraunhofer CCPE in seinem neuen Forschungsschwerpunkt »Nachhaltige Geokunststoffe für den Landschaftsbau«.

Vom 10. bis 14. Juni 2024 zeigt das Fraunhofer CCPE auf der ACHEMA 2024, wie sich innovative und nachhaltige Materialien für den Einsatz in komplexen Umgebungen designen lassen. Geokunststoffe werden heutzutage bereits für diverse Anwendungen auf Basis nachwachsender Rohstoffe, sowohl Biopolymere als auch z. B. Naturfasern, hergestellt. Hierbei gilt es, sowohl herausfordernden Anforderungen nicht nur initial, sondern über eine vordefinierte Einsatzdauer zu genügen, um gleichzeitig aber für viele Anwendungen vollständig bioabbaubar zu sein. In der Kooperation des Fraunhofer CCPE werden bereits jahrelange Erfahrungen mit Biopolymeren, wie Polylactid (PLA) und Polybutylensuccinat (PBS), sowie mit allen notwendigen Prozessschritten mit Fokus auf die Herstellung hochqualitativer Fasern aus PLA und PBS verfolgt. Flankiert werden diese durch Untersuchungen zu zeitlich definiertem Abbau in Böden und aquatischen Umgebungen sowie durch ökotoxikologische Einschätzungen der Neuentwicklungen, um den raschen Transfer in die Anwendung zu gewährleisten.

Ebenfalls auf der ACHEMA stellt Fraunhofer CCPE das »Advanced Recycling« aus. Gerade bei schwer recycelbaren Abfällen ist es oft eine Herausforderung, das passende Verfahren zu finden. Mit der CCPE-Recyclingkaskade für kunststoffhaltige Abfälle, die aus einer Kombination von drei Fraunhofer-Technologien besteht, können hochwertige Kunststoff-Rezyklate mit optimierter Produktausbeute erzeugt werden. Diese Abfälle umfassen beispielsweise gemischte Verpackungsabfälle, Schredderreste oder Verbundmaterialien, die mit konventionellen, mechanischen Verfahren nicht mehr recycelbar sind. Die Einsatzstoffe werden vorsortiert und dann mit einer Kombination aus drei innovativen Recyclingtechnologien behandelt: lösungsmittelbasierter Prozess, Solvolyse und iCycle® Prozess.

Source:

Fraunhofer CCPE

BioComposites AG - Flachsgewebe © Hochschule Aalen
07.05.2024

Gemeinsam Forschung an nachhaltigen Lösungen für Faserverbundwerkstoffe im Leichtbau

Faserverbundwerkstoffe verfügen über herausragende mechanische Eigenschaften bei gleichzeitig niedriger Dichte. Daraus gefertigte Gegenstände sind leicht und gleichzeitig sehr stabil – das macht sie zum idealen Werkstoff für Sportartikelhersteller über die Automobilindustrie bis hin zur Luft- und Raumfahrt. Statt den bisher üblichen Glas- und Carbonfasern sollen nun zunehmend natürliche Fasern wie Flachs, Hanf oder Jute als Verstärkung eingesetzt werden. Durch ihr Potential während der Herstellung Treibhausgasemissionen und Energie einzusparen, ermöglichen sie eine vergleichsweise günstige Herstellung. Ihre mechanischen Eigenschaften deuten einerseits auf noch nicht ausgeschöpftes Potenzial hin, können jedoch je nach jährlichen Wachstumsbedingungen in ihrer Dichte, Festigkeit oder Steifigkeit stark variieren. Um zukünftig Faserverbundwerkstoffe auf Basis nachwachsender Rohstoffe möglichst effizient, nachhaltig und vor allem wettbewerbsfähig herstellen zu können, bündeln die Hochschule Aalen und das Fraunhofer-IGCV ihre Expertisen hinsichtlich Werkstoff- und Produktionstechnik.

Faserverbundwerkstoffe verfügen über herausragende mechanische Eigenschaften bei gleichzeitig niedriger Dichte. Daraus gefertigte Gegenstände sind leicht und gleichzeitig sehr stabil – das macht sie zum idealen Werkstoff für Sportartikelhersteller über die Automobilindustrie bis hin zur Luft- und Raumfahrt. Statt den bisher üblichen Glas- und Carbonfasern sollen nun zunehmend natürliche Fasern wie Flachs, Hanf oder Jute als Verstärkung eingesetzt werden. Durch ihr Potential während der Herstellung Treibhausgasemissionen und Energie einzusparen, ermöglichen sie eine vergleichsweise günstige Herstellung. Ihre mechanischen Eigenschaften deuten einerseits auf noch nicht ausgeschöpftes Potenzial hin, können jedoch je nach jährlichen Wachstumsbedingungen in ihrer Dichte, Festigkeit oder Steifigkeit stark variieren. Um zukünftig Faserverbundwerkstoffe auf Basis nachwachsender Rohstoffe möglichst effizient, nachhaltig und vor allem wettbewerbsfähig herstellen zu können, bündeln die Hochschule Aalen und das Fraunhofer-IGCV ihre Expertisen hinsichtlich Werkstoff- und Produktionstechnik.

Die Arbeitsgruppe BioComposites mit aktuell noch zwei Forschenden aus beiden Einrichtungen hat zum Ziel, hochwertige biobasierte Faserverbundwerkstoffe für Leichtbauanwendungen zu entwickeln und deren Fertigungsprozesse zu optimieren. Faserverbundwerkstoffe aus biobasierten Komponenten können so – insbesondere in Kombination mit den richtigen Recyclingstrategien – dazu beitragen, dass weniger Schadstoffe in Luft, Wasser und Boden freigesetzt werden

Prof. Dr.-Ing. Iman Taha, Inhaberin des Lehrstuhls für nachhaltige Werkstoffe in der Kunststofftechnik der Hochschule Aalen und Leiterin der Arbeitsgruppe, sieht großes Potenzial in der gemeinsamen Forschung: "Bio-Composites haben ein grünes Image, aber sie bieten noch so viel mehr. Im Gegensatz zu herkömmlichen Verbundwerkstoffen, die oft auf Erdölprodukten basieren, sind Bio-Composites eine ökologische Alternative, die einen wichtigen Beitrag auch zur Reduzierung des CO2-Ausstoßes leisten kann. Damit kommt ihnen eine tragende Rolle zu, unseren Alltag nachhaltiger zu gestalten."