From the Sector

Reset
241 results
Winner of Cellulose Fibre Innovation Award 2024 (c) nova-Institute
Winner of Cellulose Fibre Innovation Award 2024
27.03.2024

Winner of Cellulose Fibre Innovation Award 2024

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

40 international speakers presented the latest market trends in their industry and illustrated the innovation potential of cellulose fibres. Leading experts introduced new technologies for the recycling of cellulose-rich raw materials and gave insights into circular economy practices in the fields of textiles, hygiene, construction and packaging. All presentations were followed by exciting panel discussions with active audience participation including numerous questions and comments from the audience in Cologne and online. Once again, the Cellulose Fibres Conference proved to be an excellent networking opportunity to the 214 participants and 23 exhibitors from 27 countries. The annual conference is a unique meeting point for the global cellulose fibre industry.  

For the fourth time, nova-Institute has awarded the “Cellulose Fibre Innovation of the Year” Award at the Cellulose Fibres Conference. The Innovation Award recognises applications and innovations that will lead the way in the industry’s transition to sustainable fibres. Close race between the nominees – “The Straw Flexi-Dress” by DITF & VRETENA (Germany), cellulose textile fibre from unbleached straw pulp, is the winning cellulose fibre innovation 2024, followed by HONEXT (Spain) with the “HONEXT® Board FR-B (B-s1, d0)” from fibre waste from the paper industry, while TreeToTextile (Sweden) with their “New Generation of Bio-based and Resource-efficient Fibre” won third place.

Prior to the event, the conference advisory board had nominated six remarkable innovations for the award. The nominees were neck and neck, when the winners were elected in a live vote by the audience on the first day of the conference.

First place
DITF & VRETENA (Germany): The Straw Flexi-Dress – Design Meets Sustainability

The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

Second place
Honext Material (Spain): HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry

HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, the product is verified in the Product Environmental Footprint.

Third Place
TreeToTextile (Sweden): A New Generation of Bio-based and Resource-efficient Fibre

TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn’t exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

The next conference will be held on 12-13 March 2025.

Source:

nova-Institut für politische und ökologische Innovation GmbH

12.03.2024

Polartec: New Initiative “Beyond Begins Today”

Since inventing the first fleece crafted from recycled plastic water bottles more than three decades ago, Polartec®, a Milliken & Company brand, and the creator of innovative and more sustainable textile solutions, has upheld its pledge to protect the environment.

With its new Beyond Begins Today initiative, Polartec aims to raise awareness around the important global themes of sustainability, diversity and positive change.

Polartec is engaged to make the goal of zero waste a reality – from using 100% recycled and plant-based materials, to delivering certified waste reductions and innovative technologies that reduce the impact of its activities.

Since inventing the first fleece crafted from recycled plastic water bottles more than three decades ago, Polartec®, a Milliken & Company brand, and the creator of innovative and more sustainable textile solutions, has upheld its pledge to protect the environment.

With its new Beyond Begins Today initiative, Polartec aims to raise awareness around the important global themes of sustainability, diversity and positive change.

Polartec is engaged to make the goal of zero waste a reality – from using 100% recycled and plant-based materials, to delivering certified waste reductions and innovative technologies that reduce the impact of its activities.

Beyond Begins Today is a multifaceted campaign featuring static and multimedia content, including short films released throughout the year via multiple touchpoints and channels – the first of which will be released on Earth Day 2024 to underscore the underlying premise that the future is what we make it. Polartec’s commitment to sustainable solutions go beyond the integration of increasingly advanced manufacturing methods or the ongoing exploration of novel fibers, and continued investments in sustainable materials development.

Polartec’s promises that every product launches in 2024 will either reduce the impact on the planet, endure the test of time, or contribute to circularity processes. Beyond Begins Today looks at how Polartec fabrics are made to last, and made to be used and enjoyed from one generation to the next and beyond. It explores the innovative monomaterials, repurposed plastic and plant-based nylon membranes and fabrics that Polartec uses to set new standards for high performance materials and the ambitious climate-related objectives across the entire value chain that exceed existing mandates. This holistic strategy shall allow Polartec to stay at the forefront of its industry by producing top-notch textiles that champion environmental stewardship and pave the way for a more sustainable tomorrow.

Source:

Akimbo Communications for Polartec

DITF: Modernized spinning plant for sustainable and functional fibres Photo: DITF
Bi-component BCF spinning plant from Oerlikon Neumag
06.03.2024

DITF: Modernized spinning plant for sustainable and functional fibres

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

Since polyamide (PA) and many other polymers were developed more than 85 years ago, various melt-spun fibers have revolutionized the textile world. In the field of technical textiles, they can have on a variety of functions: depending on their exact composition, they can for example be electrically conductive or luminescent. They can also show antimicrobial properties and be flame-retardant. They are suitable for lightweight construction, for medical applications or for insulating buildings.

In order to protect the environment and resources, the use of bio-based fibers will be increased in the future with a special focus on easy-to-recycle fibers. To this end, the DITF are conducting research into sustainable polyamides, polyesters and polyolefins as well as many other polymers. Many 'classic', that is, petroleum-based polymers cannot or only insufficiently be broken down into their components or recycled directly after use. An important goal of new research work is therefore to further establish systematic recycling methods to produce fibers of the highest possible quality.

For these forward-looking tasks, a bicomponent spinning plant from Oerlikon Neumag was set up and commissioned on an industrial scale at the DITF in January. The BCF process (bulk continuous filaments) allows special bundling, bulking and processing of the (multifilament) fibers. This process enables the large-scale synthesis of carpet yarns as well as staple fiber production, a unique feature in a public research institute. The system is supplemented by a so-called spinline rheometer. This allows a range of measurement-specific chemical and physical data to be recorded online and inline, which will contribute to a better understanding of fiber formation. In addition, a new compounder will be used for the development of functionalized polymers and for the energy-saving thermomechanical recycling of textile waste.

01.03.2024

Re:NewCell’s bankruptcy application approved

Re:NewCell AB announced that the Stockholm District Court has decided to approve the previously communicated bankruptcy application and has declared the company bankrupt.

The appointed bankruptcy trustee is lawyer Lars-Henrik Andersson at Cirio Advokatbyrå.

February,25 the Board of Directors had decided to file for bankruptcy of Re:NewCell AB at the Stockholm District Court. The reason for the decision to file for bankruptcy was that Re:NewCell has not been able to secure sufficient financing to complete the strategic review, announced on 20 November 2023, with satisfactory result.

As part of the strategic review, Re:NewCell has had well advanced negotiations with its two largest shareholders, H&M and Girindus, its existing lenders BNP Paribas, European Investment Bank, Finnvera (as partial guarantor), Nordea, AB Svensk Exportkredit and potential new investors as well as other stakeholders regarding long-term financing solutions. These discussions have not resulted in a solution which would provide Re:NewCell with the necessary liquidity and capital to ensure its operations going forward.

Re:NewCell AB announced that the Stockholm District Court has decided to approve the previously communicated bankruptcy application and has declared the company bankrupt.

The appointed bankruptcy trustee is lawyer Lars-Henrik Andersson at Cirio Advokatbyrå.

February,25 the Board of Directors had decided to file for bankruptcy of Re:NewCell AB at the Stockholm District Court. The reason for the decision to file for bankruptcy was that Re:NewCell has not been able to secure sufficient financing to complete the strategic review, announced on 20 November 2023, with satisfactory result.

As part of the strategic review, Re:NewCell has had well advanced negotiations with its two largest shareholders, H&M and Girindus, its existing lenders BNP Paribas, European Investment Bank, Finnvera (as partial guarantor), Nordea, AB Svensk Exportkredit and potential new investors as well as other stakeholders regarding long-term financing solutions. These discussions have not resulted in a solution which would provide Re:NewCell with the necessary liquidity and capital to ensure its operations going forward.

"I regret to inform that we have been forced to take this decision to file for bankruptcy. As we have a strong belief in the company’s long-term potential, we have together with our advisors spent very substantial time and efforts into trying to secure the necessary liquidity, capital and ownership structure for the company to secure its future. As part of the negotiations, we have had intense dialogues with both current main owners, new investors and our banks, as well as other stakeholders. However, these discussions have not been successful. This is a sad day for the environment, our employees, our shareholders, and our other stakeholders, and it is a testament to the lack of leadership and necessary pace of change in the fashion industry” says Chairman of the Board of Directors, Michael Berg.

More information:
Renewcell bankruptcy
Source:

Renewcell

CARBIOS and Landbell Group: Collaboration for biorecycling plant (c) Landbell Group / CARBIOS
01.03.2024

CARBIOS and Landbell Group: Collaboration for biorecycling plant

CARBIOS and Landbell Group, a global operator of more than 40 producer responsibility organizations (PROs) and a provider of closed-loop recycling solutions, announce the signing of a non-binding Memorandum of Understanding for the sourcing, preparation and recycling of post-consumer PET waste using CARBIOS’ biorecycling technology at its first commercial plant in Longlaville from 2026.  

The partnership will leverage Landbell Group’s expertise and network in the sourcing of PET packaging and textile waste which will be prepared for biorecycling. Thanks to CARBIOS’ highly selective enzyme, less sorting and washing is required compared to current recycling technologies, offering future savings in energy and water use. From 2026, Landbell Group will supply CARBIOS with 15 kt/year of PET flakes, ensuring a steady supply chain for sustainable PET production. These flakes will serve as essential feedstock for CARBIOS’ production of food-grade PTA and MEG, further re-polymerized into PET.

CARBIOS and Landbell Group, a global operator of more than 40 producer responsibility organizations (PROs) and a provider of closed-loop recycling solutions, announce the signing of a non-binding Memorandum of Understanding for the sourcing, preparation and recycling of post-consumer PET waste using CARBIOS’ biorecycling technology at its first commercial plant in Longlaville from 2026.  

The partnership will leverage Landbell Group’s expertise and network in the sourcing of PET packaging and textile waste which will be prepared for biorecycling. Thanks to CARBIOS’ highly selective enzyme, less sorting and washing is required compared to current recycling technologies, offering future savings in energy and water use. From 2026, Landbell Group will supply CARBIOS with 15 kt/year of PET flakes, ensuring a steady supply chain for sustainable PET production. These flakes will serve as essential feedstock for CARBIOS’ production of food-grade PTA and MEG, further re-polymerized into PET.

Through the partnership with Landbell Group in Germany, the supply of multilayer trays through the CITEO tender in France  and the MoU with Indorama Ventures, CARBIOS will have sourced over 70% of its feedstock required for the 50kt/year capacity when its first commercial plant in Longlaville, France, will operate at full capacity. Close to the borders with Belgium, Germany and Luxembourg, the plant’s location is strategic for nearby waste supplies.

Through this partnership with CARBIOS, Landbell Group will ensure that the problematic PET fractions such as multilayered, colored and opaque trays from packaging waste and polyester textile waste are redirected towards recycling. In this way, Landbell Group strengthens its commitment to the development of recycling solutions to enable a circular economy.

Julien Born Photo HeiQ Materials AG
Julien Born
16.02.2024

Julien Born new CEO of HeiQ AeoniQ Holding

HeiQ AeoniQ Holding, a subsidiary of HeiQ Group, is appointing Julien Born as its CEO, leveraging his extensive executive leadership and profound textile industry expertise cultivated in prestigious organizations such as DuPont, KOCH Industries, and The LYCRA Company, where he served as CEO since 2021. Julien Born will champion the growth of the cellulosic filament fiber HeiQ AeoniQ™.

The HeiQ AeoniQ™ technology is poised for commercial production at the inaugural manufacturing facility in Portugal by the close of 2025. The just concluded €5M acquisition of land and buildings, within a 2-year project total investment of €80M, marks a pivotal milestone for the 15,000m2 facility in Maia, Porto. Situated strategically in Portugal's textile hub and a mere 20 minutes from a major commercial port, this facility is poised to catalyze the scale-up phase of the business, going from pilot manufacture to mass production when it wants to compete at full-scale on cost and performance with fossil fuel-based fibers.

HeiQ AeoniQ Holding, a subsidiary of HeiQ Group, is appointing Julien Born as its CEO, leveraging his extensive executive leadership and profound textile industry expertise cultivated in prestigious organizations such as DuPont, KOCH Industries, and The LYCRA Company, where he served as CEO since 2021. Julien Born will champion the growth of the cellulosic filament fiber HeiQ AeoniQ™.

The HeiQ AeoniQ™ technology is poised for commercial production at the inaugural manufacturing facility in Portugal by the close of 2025. The just concluded €5M acquisition of land and buildings, within a 2-year project total investment of €80M, marks a pivotal milestone for the 15,000m2 facility in Maia, Porto. Situated strategically in Portugal's textile hub and a mere 20 minutes from a major commercial port, this facility is poised to catalyze the scale-up phase of the business, going from pilot manufacture to mass production when it wants to compete at full-scale on cost and performance with fossil fuel-based fibers.

HeiQ intends to consolidate the Group’s current and future activities in Portugal at the newly acquired site. This includes Shared Service Center functions as well as the Innovation Hub for the HeiQ Textile & Flooring business unit.

The recent addition of Julien Born to lead the charge follows the nomination of Robert van de Kerkhof to the HeiQ Board, a seasoned executive with extensive textile experience holding positions as CCO, CSO, Board member of Lenzing Plc, and Chairman of CIRFS, the European Man-Made Fibres Association. Robert will also serve as the Chairman of the HeiQ AeoniQ Holding Board.

HeiQ AeoniQ Holding, established as an independent subsidiary to attract new investors, value-chain partners, and brands, embarks on an ambitious multi-year scale-up strategy. This strategy involves integrating diverse sources of bio-derived feedstock and hyper-scaling cellulosic filament fiber production capacity over the next decade, targeting industries such as apparel, footwear, automotive, home textiles, and aeronautics.

Source:

HeiQ Materials AG

INDA: Sustainability as Top Priority for 2024 (c) INDA
14.02.2024

INDA: Sustainability as Top Priority for 2024

INDA announces Sustainability as a primary focus for 2024. This strategic initiative, backed by resounding support from INDA’s leadership, is a direct response to feedback from association members affirming that sustainability remains one of the nonwovens industry’s highest priorities.

INDA’s sustainability endeavor will center around three core pillars crucial to the industry’s future: Responsible Sourcing, End-of-Life Solutions, and Innovations in Sustainability. This multifaceted initiative will introduce a spectrum of new and enhanced offerings, including:

  • Webinars addressing sustainability issues impacting members and the industry.
  • Specialized technical and government affairs committees enabling members to collaborate on sustainability opportunities and challenges.
  • The inaugural release of a comprehensive sustainability report from INDA’s Market Intelligence department.
  • A dedicated sustainability special edition of the International Fiber Journal, produced by INDA Media.
  • Sustainability programming at INDA events, including a dedicated focus at the IDEA® 2025 conference.

INDA announces Sustainability as a primary focus for 2024. This strategic initiative, backed by resounding support from INDA’s leadership, is a direct response to feedback from association members affirming that sustainability remains one of the nonwovens industry’s highest priorities.

INDA’s sustainability endeavor will center around three core pillars crucial to the industry’s future: Responsible Sourcing, End-of-Life Solutions, and Innovations in Sustainability. This multifaceted initiative will introduce a spectrum of new and enhanced offerings, including:

  • Webinars addressing sustainability issues impacting members and the industry.
  • Specialized technical and government affairs committees enabling members to collaborate on sustainability opportunities and challenges.
  • The inaugural release of a comprehensive sustainability report from INDA’s Market Intelligence department.
  • A dedicated sustainability special edition of the International Fiber Journal, produced by INDA Media.
  • Sustainability programming at INDA events, including a dedicated focus at the IDEA® 2025 conference.
Source:

INDA - Association of the Nonwoven Fabrics Industry

07.02.2024

RadiciGroup’s roadmap to a sustainable future

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

In the context of a complex and constantly changing scenario, the Group has therefore decided to capitalize on the goals achieved and look beyond them with a plan defining the medium-term targets and the actions to be taken to fulfil them and covering all areas considered to be "material”, i.e., relevant from the point of view of ESG and financial risks, opportunities and impacts. Indeed, the ultimate goal of "From Earth to Earth" is to support business continuity and the growth of the company and all its stakeholders.

The project was the result of a multi-year collaboration with Deloitte, which contributed an external and objective viewpoint on the definition of the material targets and themes. However, it was not an armchair exercise, but the result of an extensive listening process involving internal and external stakeholders, all of whom were sustainability experts who helped define a shortlist of strategic themes for both the Group and its main stakeholders. These issues were then analysed in detail using working tables on the different themes to identify the objectives in Environmental, Social and Governance areas and the related concrete actions needed to achieve them, in line with the European decarbonization and energy transition policies and the
United Nations Sustainable Development Goals, a global blueprint for sustainable growth.

In particular, RadiciGroup’s environmental goals include: a 20% increase and differentiation in renewable source electricity consumption, an 80% reduction in total direct greenhouse gas emissions by 2030 compared to 2011, attention to water consumption to limit the impact on local communities and biodiversity, the extension of Life Cycle Assessment (LCA) methodology to measure the environmental impact of 70% of the products (in terms of weight) manufactured by the entire Group, collaboration among the various actors in the supply chain from an ecodesign perspective and the search for increasingly more sustainable and circular packaging solutions.

EMPEL Green Theme Technologies
06.02.2024

PFAS-free and water-free textile finishing enters Japanese market

Green Theme Technologies (GTT), creators of the PFAS-free and water-free EMPEL® textile finishing platform, delivers advanced performance and a long term sustainability solution to the Japanese market. Green Theme Technologies, Inc. (GTT) is a US-based textile innovation company with a global vision to increase performance and eliminate pollution.

EMPEL® is a solution for textile mills looking to provide clean, high-performance finishes, and GTT actively promotes this innovative technology to all relevant Japanese companies, including mills, manufacturers, and brands. YKK, the Japanese global leader in zipper manufacturing, has already adopted the EMPEL® technology into their manufacturing process and promotes the technology globally in their new DynaPel™ collection.

Green Theme Technologies (GTT), creators of the PFAS-free and water-free EMPEL® textile finishing platform, delivers advanced performance and a long term sustainability solution to the Japanese market. Green Theme Technologies, Inc. (GTT) is a US-based textile innovation company with a global vision to increase performance and eliminate pollution.

EMPEL® is a solution for textile mills looking to provide clean, high-performance finishes, and GTT actively promotes this innovative technology to all relevant Japanese companies, including mills, manufacturers, and brands. YKK, the Japanese global leader in zipper manufacturing, has already adopted the EMPEL® technology into their manufacturing process and promotes the technology globally in their new DynaPel™ collection.

GTT’s activities in Japan are supported by the Japan External Trade Organization (JETRO), a government-related organization that works to promote mutual trade and investment between Japan and the rest of the world. GTT has been approved for JETRO’s Invest Japan Support Program, which allows GTT to leverage its resources to set up an office in Japan in the future and for J-Bridge Program to forge relationships with prospective Japanese partners.

Source:

Green Theme Technologies

Celanese and Under Armour introduce elastane alternative (c) Celanese Corporation
24.01.2024

Celanese and Under Armour introduce elastane alternative

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

NEOLAST™ fibers will be produced using recyclable elastoester polymers. As end users transition to a more circular economy, Celanese and Under Armour are exploring the potential of the fibers to improve the compatibility of stretch fabrics with future recycling systems and infrastructure.

In addition to the sustainability benefits, the new NEOLAST™ fibers deliver increased production precision, allowing spinners to dial power-stretch levels up or down and engineer fibers to meet a broader array of fabric specifications.

Source:

Celanese Corporation

16.01.2024

Hohenstein releases 2023 sustainability report

The report details sustainability efforts at its Boennigheim headquarters and targets for 2024. Hohenstein has replaced previous environmental guidelines with strategic development in accordance with Environmental, Social and Corporate Governance (ESG) and adopted a sustainability roadmap for the future.

Hohenstein has been implementing environmental and social measures for decades. As the first neutral assessment of these measures in 2019, Hohenstein participated in the ECOfit programme in Baden-Württemberg, Germany. A regular external assessment is to be introduced in 2024.

The report details sustainability efforts at its Boennigheim headquarters and targets for 2024. Hohenstein has replaced previous environmental guidelines with strategic development in accordance with Environmental, Social and Corporate Governance (ESG) and adopted a sustainability roadmap for the future.

Hohenstein has been implementing environmental and social measures for decades. As the first neutral assessment of these measures in 2019, Hohenstein participated in the ECOfit programme in Baden-Württemberg, Germany. A regular external assessment is to be introduced in 2024.

  • Environmental: Overall, energy consumption was actively reduced, and renewable energy use promoted. Hohenstein also collected rail and air travel data to be used in CO2 accounting in 2024.
  • Social: Hohenstein actively involved its employees in sustainability activities based on a survey and internal education. In future, Hohenstein will improve the ratio of female managers and implement a training campaign on the company values for employees.
  • Governance: Hohenstein management has prioritized good communication through regular colloquia for employees and access to human resources consultation. They intend to intensify the dialogue with employees through further events.
Source:

Hohenstein

Vesta Corporation presented first Sustainability Report (c) Vesta Corporation
05.01.2024

Vesta Corporation: First Sustainability Report

The Tuscan tannery Vesta Corporation has presented to its stakeholders a report outlining its current commitment and future objectives, with a view to innovating, safeguarding and fostering high-end leather material processing.

Ever since it was founded in 1966 in Ponte a Egola, the Tuscan hub for the production of leather for vegetable tanned soles, Vesta has been a supplier and partner of haute couture and sportswear brands, from lightweight calf and half-calf leather, to heavy leathers made with hind and rump hide, for leatherware and shoes.

The Tuscan tannery Vesta Corporation has presented to its stakeholders a report outlining its current commitment and future objectives, with a view to innovating, safeguarding and fostering high-end leather material processing.

Ever since it was founded in 1966 in Ponte a Egola, the Tuscan hub for the production of leather for vegetable tanned soles, Vesta has been a supplier and partner of haute couture and sportswear brands, from lightweight calf and half-calf leather, to heavy leathers made with hind and rump hide, for leatherware and shoes.

To draft this Report, reference was made to the “Global Reporting Initiative Sustainability Reporting Standards” established by the Global Reporting Initiative (GRI). The information in the balance sheet refers to the year 2022 (from 1 January to 31December 2022). Wherever possible, data for the previous year are included, to allow for a comparison of data over time and to assess the trend of Vesta activities. Sustainability is an objective-driven process. This means that comparing data allows for concretely measuring the company’s progress, as it pursues this accounting process year after year.

The improvement actions already implemented by Vesta involve corporate responsibility from an environmental, social and governance perspective. An example are the improved heating and processing plants (which entails the construction of a new tumbling department based on 4.0 technology). This guarantees significant energy, water and economic savings. Along with numerous corporate certifications, the company has passed the Raw Material Traceability test with a score of EXCELLENT, as well as the Carbon and Water footprint analysis.

As confirmation of its commitment to improving corporate performance levels, Vesta has been upgraded from BRONZE (2020) to GOLD in 2023, as assessed by the Leather Working Group (which measures leather manufacturers’ environmental performance for ecological production and for a systemic management of quality, environmental, safety and ethical factors).

Becoming energy-independent is a major step in the pipeline, involving the installation of a photovoltaic plant. This is complemented by the implementation of a project aimed at totally compensating its CO2 emissions for the year subject to accounting and certification. This neutrality will be achieved through the acquisition of credits deriving from projects certified by the United Nations. For example, with the construction of an important hydro-electric plant to which Vesta is contributing. With regard to production, corporate research is currently focused on developing solutions to reduce water and energy use. It is also implementing circular trends by adopting an increasing number of bio-based products, to guarantee the most sustainable end-of-life and waste management for its products.

Source:

Vesta Corporation

Photo: akiragiulia, Pixabay
05.01.2024

Research to reduce shed of microplastics during laundering

A collaboration between Deakin University researchers and Australia’s largest commercial linen supplier Simba Global is tackling a critical global issue, the spread of harmful microplastics through our laundry.

Clothing and textiles are estimated to generate up to 35 per cent of the microplastics found in the world’s oceans, making them one of the biggest contributors. But there is still a lot to be learnt about the characteristics of these microplastics and exactly how and why they are generated.

Researchers at the ARC Research Hub for Future Fibres in Deakin’s Institute for Frontier Materials (IFM) have teamed up with Simba Global, a global textile manufacturing and supply company, to better understand the extent and type of microplastics shed when their products are laundered. Simba Global wants to lead the charge to reduce the environmental impact of textiles.

Lead scientist IFM Associate Professor Maryam Naebe said working with an industry partner on the scale of Simba Global meant the research could have a huge real-world impact.

A collaboration between Deakin University researchers and Australia’s largest commercial linen supplier Simba Global is tackling a critical global issue, the spread of harmful microplastics through our laundry.

Clothing and textiles are estimated to generate up to 35 per cent of the microplastics found in the world’s oceans, making them one of the biggest contributors. But there is still a lot to be learnt about the characteristics of these microplastics and exactly how and why they are generated.

Researchers at the ARC Research Hub for Future Fibres in Deakin’s Institute for Frontier Materials (IFM) have teamed up with Simba Global, a global textile manufacturing and supply company, to better understand the extent and type of microplastics shed when their products are laundered. Simba Global wants to lead the charge to reduce the environmental impact of textiles.

Lead scientist IFM Associate Professor Maryam Naebe said working with an industry partner on the scale of Simba Global meant the research could have a huge real-world impact.

Simba Global is the major linen supplier to Australia’s hospitals, hotels and mining camps, resulting in 950,000 tonnes of textile products – including bedsheets, bath towels, scrubs and much more – going through the commercial laundering process each year. It also supplies international markets in New Zealand, Singapore and the US.

“As part of our research, we will investigate potential solutions including the pre-treatment of textiles to reduce the shedding of microplastics, or even increasing the size of the plastics that break down so they can be better captured and removed by filtration during the laundering process,” Associate Professor Naebe said.

“Microplastics are now ubiquitous in the environment, they’re in the air we breathe, the food we eat and the earth we walk on. The magnitude of the problem is bigger than previously thought.

“Of serious concern is the mounting evidence that microplastics are having a negative impact on human and animal health. There are not just physical, but chemical and biological impacts.”

Associate Professor Naebe’s team have taken the first steps in the project, analysing wastewater samples from commercial laundries with high-powered electron microscopes in their Geelong laboratory, part of the largest fibres and textiles research facility in Australia.

The team recently presented a new scientific paper at the Association of Universities for Textiles (AUTEX) Conference 2023, which started the important process of formally categorising these types of microplastics, as well as developing standard terminology and testing methods.

“Because our understanding of microplastics is still in its infancy, we needed to start right at the beginning,” Associate Professor Naebe said.

“We need to have a standard definition of what is a microplastic. Up to this point that has been lacking, which makes it difficult to compare and incorporate other studies in this area.

“We are now developing a systematic method for sampling and identifying microplastics in laundry wastewater. It has been tricky to measure the different sizes, but this is important information to have. For example, there are studies that suggest some sizes of microplastics are causing more issues in certain animals.

“The next step will be establishing an essential method to prevent the release of microplastics from textile laundering. This may involve a coating on the surface of the textile or better ways to collect the waste during the washing process.”

Simba Global Executive Chair Hiten Somaia said the company had a strong focus on sustainability, driven by the business’ purpose statement.

“We are proud to partner with Deakin University in what is the first significant research into textile microplastic pollution in Australia. What we are most excited about is sharing the results of this research with all other textile markets in Australia – including clothing – and putting an end to microplastic pollution from textiles.”

Source:

Deakin University

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project (c) AZL Aachen GmbH
21.12.2023

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting not only served as a platform to foster new contacts and get informed about the expertise and interests of the consortium members in the field of hydrogen pressure vessels, but also laid the groundwork for steering the focus of the upc oming project's ambitious phases. As a basis for the interactive discussion session, AZL outlined the background, motivation and detailed work plan. The central issues of the dialogue were the primary objectives, the most pressing challenges, the contribut ion to competitiveness, and
the priorities that would best meet the expectations of the project partners.

Discussions covered regulatory issues, the evolving value chain and the supply and properties of key materials such as carbon and glass fibres and resins. The consortium defined investigations into different manufacturing technologies, assessing their matu rity and potential benefits. Design layouts, including liners, boss designs and winding patterns, were thoroughly considered, taking into account their implications for mobile and stationary storage. The group is also interested in cost effective testing m ethods and certification processes, as well as the prospects for recycling into continuous fibres and the use of sustainable materials. Insight was requested into future demand for hydrogen tanks, OEM needs and strategies, and technological developments to produce more economical tanks.

The meeting highlighted the importance of CAE designs for fibre patterns, software suitability and the application dependent use of thermoset and thermoplastic designs.

The first report meeting will also set the stage of the next project phase, which will be the creation of reference designs by AZL's engineering team. These designs will cover a range of pressure vessel configurations using a variety of materials and production concepts. The aim is to develop models that not only re flect current technological capabilities, but also provide deep insight into the cost analysis of different production technologies, their CO2 footprint, recycling aspects and scalability.

AZL's project remains open to additional participants. Companies interested in joining this initiative are invited to contact Philipp Fröhlig.

20.12.2023

CARBIOS: €1.2M to further optimize its PET depolymerization process

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

This collaborative R&D program focuses on the technical and economic optimization of process stages, while preserving the quality of the monomers obtained. These optimizations, new developments and the exploration of innovative solutions should enhance the technology's flexibility with regards to incoming waste. Raw materials could come from different sources that are currently rarely or not recycled, notably food trays and textiles, or a mix of incoming materials. It also aims to limit input and water consumption, as well as regenerate or reduce co-products and ultimate residual waste. Finally, it seeks to support enzyme optimization to maximize the process’ economic profitability and competitiveness.

The project therefore aims to achieve an overall improvement in performance, combining efficiency, quality and environmental sustainability, to benefit the Longlaville plant which is currently under construction, and future licensed plants.

In May 2023, CARBIOS, the project leader and coordinator, announced that it had been awarded a total of €11.4M in funding by the French State as part of France 2030, operated by ADEME, including €8.2M directly for CARBIOS (€3.2M in grants and €5M in repayable advances) and €3.2M for its academic partners INRAE, INSA and CNRS (via the TWB mixed service and TBI research units). This funding, which is made up of grants and repayable advances, will be paid out in several instalments over the course of the project, including an initial instalment of 15%, equivalent to €1.2 million, received by CARBIOS on 5 December 2023. The first Monitoring Committee with ADEME for the first key stage of the project will be held in February 2024 to validate the granting of the second instalment of funding.

This project 2282D0513-A is funded by the French State as part of France 2030 operated by ADEME.

Source:

Carbios

Bangladesh Apparel Exchange (BAE) and Fashion for Good promote Textile Circularity in Bangladesh Photo: Bangladesh Apparel Exchange
18.12.2023

Bangladesh Apparel Exchange and Fashion for Good promote Textile Circularity in Bangladesh

On December 7th and 8th, Bangladesh Apparel Exchange (BAE) in partnership with Fashion for Good, facilitated the “Chemical Recycling Technologies: Manufacturing Markets Gateway”, in Bangladesh. Fashion for Good, the Amsterdam based global platform for innovation, along with two disruptive technology start-ups focused on textile-to-textile chemical recycling, Circ and Infinited Fiber Company, were the key stakeholders in this initiative.

The two-day visit leveraged Bangladesh's status as a major garment production hub, exploring the potential of chemical recycling technologies to enhance environmental sustainability. Emphasizing the importance of circularity, the event aimed to spread awareness about current disruptive innovations that could transform the industry's approach to waste and resource management, setting an example for future sustainable practices. It focuses on integrating these technologies within the local manufacturing landscape, securing feedstock partnerships, and developing a value chain for recycled apparel materials.

On December 7th and 8th, Bangladesh Apparel Exchange (BAE) in partnership with Fashion for Good, facilitated the “Chemical Recycling Technologies: Manufacturing Markets Gateway”, in Bangladesh. Fashion for Good, the Amsterdam based global platform for innovation, along with two disruptive technology start-ups focused on textile-to-textile chemical recycling, Circ and Infinited Fiber Company, were the key stakeholders in this initiative.

The two-day visit leveraged Bangladesh's status as a major garment production hub, exploring the potential of chemical recycling technologies to enhance environmental sustainability. Emphasizing the importance of circularity, the event aimed to spread awareness about current disruptive innovations that could transform the industry's approach to waste and resource management, setting an example for future sustainable practices. It focuses on integrating these technologies within the local manufacturing landscape, securing feedstock partnerships, and developing a value chain for recycled apparel materials.

Denim Asia Limited, Knit Asia Limited, Progress Apparels Limited, Ananta BD, Reverse Resources, and the Bangladesh Garment Manufacturers and Exporters Association (BGMEA) played pivotal roles in this initiative. Knit Asia Ltd, notably acclaimed for their commitment to sustainable practices, along with Denim Asia, associated with the sustainable brand Noize Jeans, showcased their commitment to sustainable manufacturing processes.
Progress Apparels Limited, a ready-made garment producer and part of PDS Limited demonstrated its advanced sustainable production facilities. Reverse Resources and the BGMEA hosted an intimate “Meet and Greet Networking Session”, to boost awareness about the technologies in the industry.

Mr. Mostafiz Uddin, Founder and CEO of Bangladesh Apparel Exchange, emphasized the significance of this event for the wider Bangladeshi textile industry, " Bangladesh has the biggest manufacturing sector in South Asia and this tour marks a critical step towards a circular fashion ecosystem, also how can the fashion industry become more sustainable in Bangladesh. It's not just an event; it's part of a larger movement to incorporate innovative recycling, Sustainable Fashion technologies and establish global partnerships for a sustainable fashion industry."

Featuring interactive sessions, factory visits, and knowledge sharing, this initiative offered a platform for fostering collaborations between manufacturers and technology innovators.

Bangladesh Apparel Exchange and Fashion for Good are optimistic about a future where Bangladesh leads in sustainable and circular apparel manufacturing.

Source:

Bangladesh Apparel Exchange

13.12.2023

Artistic Milliners and Archroma: Eco-advanced sulfur black dyeing for denim

International denim manufacturer Artistic Milliners and Archroma are collaborating to rewrite the future of denim. Leveraging Archroma’s DIRESUL® EVOLUTION BLACK dyestuff, the partners are promoting more eco-advanced sulfur black dyeing for denim with a variety of washdown effects and reduced environmental impact.

DIRESUL® EVOLUTION BLACK delivers outstanding resource savings, using less water and energy and producing less CO2 during dye synthesis. Furthermore, it offers unique shade and washdown behavior compared to standard black dyes to consistently create eye-catching aesthetics, especially on dark black shades with no bronzing effect. It is also laser-friendly.

Artistic Milliners launched a capsule collection based on the new DIRESUL® EVOLUTION BLACK technology at Kingpins Amsterdam in October, named EVO BLACK, winning a positive response from global brands. It is now working closely with a research and innovation team from Archroma, its technology partner of many decades, to expand its use of the new black coloration system in combination with other colors and performance effects.

International denim manufacturer Artistic Milliners and Archroma are collaborating to rewrite the future of denim. Leveraging Archroma’s DIRESUL® EVOLUTION BLACK dyestuff, the partners are promoting more eco-advanced sulfur black dyeing for denim with a variety of washdown effects and reduced environmental impact.

DIRESUL® EVOLUTION BLACK delivers outstanding resource savings, using less water and energy and producing less CO2 during dye synthesis. Furthermore, it offers unique shade and washdown behavior compared to standard black dyes to consistently create eye-catching aesthetics, especially on dark black shades with no bronzing effect. It is also laser-friendly.

Artistic Milliners launched a capsule collection based on the new DIRESUL® EVOLUTION BLACK technology at Kingpins Amsterdam in October, named EVO BLACK, winning a positive response from global brands. It is now working closely with a research and innovation team from Archroma, its technology partner of many decades, to expand its use of the new black coloration system in combination with other colors and performance effects.

Graphic: ReHubs
05.12.2023

ReHubs: First General Assembly

During its first General Assembly, 18 European companies and organisations have formally joined ReHubs. They represent different segments of the circular textile value chain and share a common commitment to invest in textile recycling capacity in Europe. Additional partners are expected in the near future.

Current ReHubs partners are BASF, Boer Group, Coleo, Concordia Textiles, Decathlon, EURATEX, Gherzi Textil Organisation, Inditex, Indorama Ventures, Mango, PEPPER-i2, Purfi, Ratti, Recover, Refashion, Resortecs, Rester, RETEX.GREEN and TEXAID.

All partners will support ReHubs Executive Director, Chris Deloof, to kick start activities in the coming months. ReHubs partners will elaborate together on further steps and activities for the forthcoming work plan and the development of the European Textile Recycling Roadmap.

Chris Deloof commented: “I am delighted to see such a strong group of organisations teaming up with ReHubs. They are a great example of how to establish a new circular textile value chain in Europe. We need to focus now on rolling out ReHubs investment projects and further expanding our partners and investors network.”

During its first General Assembly, 18 European companies and organisations have formally joined ReHubs. They represent different segments of the circular textile value chain and share a common commitment to invest in textile recycling capacity in Europe. Additional partners are expected in the near future.

Current ReHubs partners are BASF, Boer Group, Coleo, Concordia Textiles, Decathlon, EURATEX, Gherzi Textil Organisation, Inditex, Indorama Ventures, Mango, PEPPER-i2, Purfi, Ratti, Recover, Refashion, Resortecs, Rester, RETEX.GREEN and TEXAID.

All partners will support ReHubs Executive Director, Chris Deloof, to kick start activities in the coming months. ReHubs partners will elaborate together on further steps and activities for the forthcoming work plan and the development of the European Textile Recycling Roadmap.

Chris Deloof commented: “I am delighted to see such a strong group of organisations teaming up with ReHubs. They are a great example of how to establish a new circular textile value chain in Europe. We need to focus now on rolling out ReHubs investment projects and further expanding our partners and investors network.”

More information:
ReHubs
Source:

ReHubs

Online session “Redefining Textile Waste Sorting: Impulses and findings for the future of next-gen sorting facilities” Graphic Texaid
27.11.2023

Redefining textile waste sorting

To meet future demands on the amount of textile waste which needs to be collected and sorted, as well as the demand on recycling feedstock, it is necessary to match the demand and need for sorting of waste in Europe and create cost efficiency sorting capacities with larger scale and automation are necessary.

In an online session “Redefining Textile Waste Sorting: Impulses and findings for the future of next-gen sorting facilities” Texaid and partners talk about the current state of development and the challenges for the future.  Anna Pehrsson (Texaid), Gesine Köppe (ITA Augsburg GmbH) and partners present the results of a Technology Assessment conducted within The Transform Textile Waste into Feedstock Project (initiated by TEXAID within the ReHubs initiative) to assess the best available sorting techniques and process.

Details:  
December 4th 2023
12:30-13:30pm   
Online
For registration follow the link.

To meet future demands on the amount of textile waste which needs to be collected and sorted, as well as the demand on recycling feedstock, it is necessary to match the demand and need for sorting of waste in Europe and create cost efficiency sorting capacities with larger scale and automation are necessary.

In an online session “Redefining Textile Waste Sorting: Impulses and findings for the future of next-gen sorting facilities” Texaid and partners talk about the current state of development and the challenges for the future.  Anna Pehrsson (Texaid), Gesine Köppe (ITA Augsburg GmbH) and partners present the results of a Technology Assessment conducted within The Transform Textile Waste into Feedstock Project (initiated by TEXAID within the ReHubs initiative) to assess the best available sorting techniques and process.

Details:  
December 4th 2023
12:30-13:30pm   
Online
For registration follow the link.

Source:

Texaid

Carbios and L’Oréal win Pioneer Award for PET recycling solution Photo: Carbios
Emmanuel Ladent (CEO Carbios, on the left) and Jacques Playe (Packaging and Development Director at L’Oréal, on the right)
15.11.2023

Carbios and L’Oréal win Pioneer Award for PET recycling solution

Carbios and L’Oréal have won the “Pioneer Awards” in the Industry category, presented by the Solar Impulse Foundation at the first World Alliance Summit. This prize was awarded to Carbios for its enzymatic PET recycling solution, labeled “Efficient Solution” by the Solar Impulse Foundation since 2019, and to L’Oréal for using this technology for the first time in a cosmetics bottle prototype. Carbios’ solution offers brands an alternative to petro-sourced plastic that helps them meet their sustainability commitments. This advancement paves the way for future applications in other sectors such as packaging, food and beverage, and textiles.

Carbios and L’Oréal have won the “Pioneer Awards” in the Industry category, presented by the Solar Impulse Foundation at the first World Alliance Summit. This prize was awarded to Carbios for its enzymatic PET recycling solution, labeled “Efficient Solution” by the Solar Impulse Foundation since 2019, and to L’Oréal for using this technology for the first time in a cosmetics bottle prototype. Carbios’ solution offers brands an alternative to petro-sourced plastic that helps them meet their sustainability commitments. This advancement paves the way for future applications in other sectors such as packaging, food and beverage, and textiles.

Carbios and L’Oréal: a long-term collaboration
Since 2017, Carbios and L’Oréal have been working together with a shared vision of accelerating the transition to a circular economy for plastic. In 2017, both companies created a Consortium to improve the recyclability and circularity of PET packaging.  Nestlé Waters, PepsiCo and Suntory Beverage & Food Europe joined this Consortium in 2019 to scale up Carbios’ innovation. The world’s first enzymatically recycled PET packaging was made in 2021 using Carbios’ biorecycling process. The world’s first PET biorecycling plant is scheduled to be commissioned in 2025. In parallel, Carbios is rolling out its technology internationally through licensing agreements.

The environmental benefits of biorecycling developed by Carbios
Recent life-cycle analyses[1] show a 57% reduction in CO2 emissions compared with the production of virgin plastic[2], and for every tonne of recycled PET produced, 1.3 tonnes of petrol are avoided. Compared with conventional recycling, enzymatic recycling is 4 times more circular (calculated according to the Ellen MacArthur Foundation’s Material Circularity Indicator). Thanks to its highly selective enzyme, optimized for efficient PET degradation, Carbios’ depolymerization process can process all types of PET waste, including colored, multilayer or textile waste that cannot be recycled using current technologies. Furthermore, the two monomers produced (PTA and MEG) make it possible to recreate recycled PET products of identical quality to virgin ones, and suitable for food contact.
 
 
[1] Database ecoinvent 3.8
[2] French scenario, taking into account the detour of 50% of PET waste from conventional end-of-life. Virgin PET: 2.53 kg CO2/kg (cradle to gate)

Source:

Carbios