From the Sector

Reset
3 results
(c) FET
Business Secretary Grant Shapps discusses FET’s wet spinning system with Mark Smith, FET R&D Manager
16.12.2022

FET extrusion system features in UK Business Secretary’s visit

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

“R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country. Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.”

The Henry Royce Institute was established in 2015 with an initial £235 million government investment through the Engineering and Physical Sciences Research Council and the latest £95 million sum represents the second phase of the investment.

Opportunities being investigated by Royce include lightweight materials and structures, biomaterials and materials designed for reuse, recycling and remanufacture. Advanced materials are critical to the UK future in various industries, such as health, transport, energy, electronics and utilities.

(c) BRÜCKNER
The project team of BRÜCKNER and HEATHCOAT in BRÜCKNER’s Technology Centre in Leonberg
04.10.2022

BRÜCKNER: New finishing line for British company HEATHCOAT FABRICS

HEATHCOAT FABRICS partnered again with BRÜCKNER Textile Technologies and their sales partner ADVANCED DYEING SOLUTIONS to install a finishing line for industrial textiles. HEATHCOAT FABRICS specializes in the production of technical textiles in the fields of texturising, weaving and warp knitting as well as dyeing and finishing. The prroducts are manufactured for use in the automotive, healthcare, defence, and aerospace industries

Mrs. Regina Brückner, CEO and owner of the BRÜCKNER Group stated: "To meet the complex re-quirements of HEATHCOAT is not easy because of the great variety of technical textiles produced. Our line has to finish light as well as heavy articles, so the design, control and the whole line layout have to be flexible, functional and still easy to operate. Fortunately, the team at HEATHCOAT FABRICS is very innovative and open-minded, and together we worked hard to develop the right technology and han-dling. We are very happy that we could convince this customer, whom we appreciate very much, with the productivity of our line and of course with our technological know-how."

HEATHCOAT FABRICS partnered again with BRÜCKNER Textile Technologies and their sales partner ADVANCED DYEING SOLUTIONS to install a finishing line for industrial textiles. HEATHCOAT FABRICS specializes in the production of technical textiles in the fields of texturising, weaving and warp knitting as well as dyeing and finishing. The prroducts are manufactured for use in the automotive, healthcare, defence, and aerospace industries

Mrs. Regina Brückner, CEO and owner of the BRÜCKNER Group stated: "To meet the complex re-quirements of HEATHCOAT is not easy because of the great variety of technical textiles produced. Our line has to finish light as well as heavy articles, so the design, control and the whole line layout have to be flexible, functional and still easy to operate. Fortunately, the team at HEATHCOAT FABRICS is very innovative and open-minded, and together we worked hard to develop the right technology and han-dling. We are very happy that we could convince this customer, whom we appreciate very much, with the productivity of our line and of course with our technological know-how."

The direct gas heated BRÜCKNER POWER-FRAME stenter with its staggered heating source arrangement every half zone provides best available temperature consistency across the length and the width of the stenter. The unit is equipped with a low-lub, horizontally returning combined pin / clip chain and several fabric paths, especially designed for the different fabrics being processed. Together with HEATHCOAT FABRICS technologists, the BRÜCKNER design team developed a special delivery end of the stenter with different edge trimming and slitting possibilities. Depending on the kind of products, the fabrics can be batched on large diameter A-frames, wound on cardboard tubes or plaited into trolleys.

Source:

Brückner Trockentechnik GmbH & Co. KG

23.07.2021

FET installs new Spunbond system at University of Leeds

Fibre Extrusion Technology Ltd, UK has completed the installation and commissioning of a new FET Laboratory Spunbond system for the University of Leeds.

Fibre Extrusion Technology Ltd, UK has completed the installation and commissioning of a new FET Laboratory Spunbond system for the University of Leeds.

This FET spunbond system is now an integral part of the research facilities of the CCTMIH (Clothworkers’ Centre for Textile Materials Innovation for Healthcare), led by Prof. Stephen Russell based in the School of Design, University of Leeds, who commented “The new spunbond system is perfectly suited to our academic research work, and is already proving itself to be extremely versatile and intuitive to use”.
 
This spunbond system complements existing research lab facilities at the university, which covers all areas of fibre and fabric processing, physical testing and characterisation. It forms part of a wider investment in facilities to support fundamental, academic research on ‘future manufacturing’ for medical devices, where the focus is on studying small-scale processing of unconventional polymers and additive mixes to form spunbond fabrics with multifunctional properties.
 
Key to this research is developing the underlying process-structure-performance relationships, based on the measured data, to provide detailed understanding of how final fabric performance can be controlled during processing.

As a rule, many exciting materials developed in academic research struggle to progress beyond the bench, because of compatibility issues with key manufacturing processes such as spunbond. By leveraging mono, core-sheath and island-in-the-sea bicomponent technology, the Leeds University team is working with polymer and biomaterial research scientists, engineers and clinicians to explore the incorporation of unusual materials in spunbond fabrics, potentially widening applications.
 
FET has built on its melt spinning expertise to develop a true laboratory scale spunbond system and is currently working on a number of other such projects globally with research institutions and manufacturers.

Source:

Fibre Extrusion Technology Ltd / Project Marketing Ltd