From the Sector

Reset
26 results
Presentation of the certificate for 1st place in the business plan competition KEUR.NRW 2023 to the RWTH start-up SA-Dynamics; from left to right: Oliver Krischer (Minister for the Environment, Nature Conservation and Transport of the State of NRW), Sascha Schriever (SA-Dynamics); Maximilian Mohr (SA-Dynamics); Jens Hofer (SA-Dynamics); Christian Schwotzer (SA-Dynamics) © Business Angels Deutschland e. V. (BAND)
Presentation of the certificate for 1st place in the business plan competition KEUR.NRW 2023 to the RWTH start-up SA-Dynamics; from left to right: Oliver Krischer (Minister for the Environment, Nature Conservation and Transport of the State of NRW), Sascha Schriever (SA-Dynamics); Maximilian Mohr (SA-Dynamics); Jens Hofer (SA-Dynamics); Christian Schwotzer (SA-Dynamics)
26.01.2024

Start-up: Bio-based aerogel fibres replace synthetic insulation materials

The Aachen-based start-up SA-Dynamics is developing sustainable, bio-based and biodegradable insulation materials made from aerogel fibres, thereby setting new standards in resource-saving construction. Dr Sascha Schriever (Institut für Textiltechnik ITA), Maximilian Mohr (ITA), Dr Jens Hofer (ITA Postdoc) and Dr Christian Schwotzer (Department for Industrial Furnaces and Heat Engineering IOB), who trained at RWTH Aachen University, were awarded first place in the KUER.NRW Business Plan Competition 2023 and prize money of €6,000.

SA-Dynamics relies on the impressive properties of aerogel fibres: they have excellent insulating properties, are lightweight, durable, robust, versatile and can be processed very well on conventional textile machines thanks to their flexibility. This makes them comparable to polystyrene, but still sustainable, as SA Dynamics uses bio-based and biodegradable raw materials.

The Aachen-based start-up SA-Dynamics is developing sustainable, bio-based and biodegradable insulation materials made from aerogel fibres, thereby setting new standards in resource-saving construction. Dr Sascha Schriever (Institut für Textiltechnik ITA), Maximilian Mohr (ITA), Dr Jens Hofer (ITA Postdoc) and Dr Christian Schwotzer (Department for Industrial Furnaces and Heat Engineering IOB), who trained at RWTH Aachen University, were awarded first place in the KUER.NRW Business Plan Competition 2023 and prize money of €6,000.

SA-Dynamics relies on the impressive properties of aerogel fibres: they have excellent insulating properties, are lightweight, durable, robust, versatile and can be processed very well on conventional textile machines thanks to their flexibility. This makes them comparable to polystyrene, but still sustainable, as SA Dynamics uses bio-based and biodegradable raw materials.

"We can revolutionise the construction world with bio-based aerogel fibres," explains ITA founder Dr Sascha Schriever proudly. "If all insulation materials in construction are converted to bio-based aerogel fibres, all builders can realise their dream of a sustainable house."

SA Dynamics has come a good deal closer to its founding goal by winning the KUER.NRW 2023 business plan competition. The spin-off from Institut für Textiltechnik (ITA) and Department for Industrial Furnaces and Heat Engineering (IOB) at RWTH Aachen University is scheduled for spring 2025.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Gerhard Lettl (AVK Board Member, C.F. Maier Europlast GmbH & Co. KG), Felix Pohlmeyer (ITA), Prof. Dr Jens Ridzewski (AVK Board Member, IMA Materialforschung und Anwendungstechnik GmbH), Tim Röding (ITA), from left to right © AVK
Gerhard Lettl (AVK Board Member, C.F. Maier Europlast GmbH & Co. KG), Felix Pohlmeyer (ITA), Prof. Dr Jens Ridzewski (AVK Board Member, IMA Materialforschung und Anwendungstechnik GmbH), Tim Röding (ITA), from left to right
23.11.2023

CarboScreen: Sensor monitoring for complex carbon fibre production

Felix Pohlkemper and Tim Röding from Institut für Textiltechnik (ITA) of RWTH Aachen University are developing a technology with their start-up CarboScreen GmbH that makes complex carbon fibre production controllable through sensor monitoring. With the help of CarboScreen technology, it should be possible to double the production speed from the current 15 m/min to 30 m/min in the medium term. The doubling of production speed alone could result in an increase in turnover of up to €37.5 million per year and production plant. Felix Pohlkemper and Tim Röding were awarded third place in the AVK Innovation Award 2023 in the Processes and Procedures category for this ground-breaking development. The award ceremony took place during the JEC Roof Forum in Salzburg, Austria.

Felix Pohlkemper and Tim Röding from Institut für Textiltechnik (ITA) of RWTH Aachen University are developing a technology with their start-up CarboScreen GmbH that makes complex carbon fibre production controllable through sensor monitoring. With the help of CarboScreen technology, it should be possible to double the production speed from the current 15 m/min to 30 m/min in the medium term. The doubling of production speed alone could result in an increase in turnover of up to €37.5 million per year and production plant. Felix Pohlkemper and Tim Röding were awarded third place in the AVK Innovation Award 2023 in the Processes and Procedures category for this ground-breaking development. The award ceremony took place during the JEC Roof Forum in Salzburg, Austria.

The production of carbon fibres is highly complex. In the current state of the art, however, the manufacturing process is only monitored manually by semi-skilled workers. However, even minimal fibre damage during production leads to a reduction in the quality of the carbon fibre. In extreme cases, it can also lead to plant fires. To ensure production quality, the production speed is currently limited to a maximum of 15 m/min. In fact, the production speed of the systems could be higher. The sensor-based online monitoring of Carbo-Screen makes it possible to increase the production speed to 30 m/min in the medium term. As a result of the increased production volume per system, the specific production costs of the carbon fibre are reduced, which can result in lower prices.

A reduced sales price would make it possible to use carbon fibres and their composite materials even more widely in traditional markets such as aerospace technology and wind energy, as well as for mass production in the automotive industry.

The CarboScreen online monitoring system is currently being developed for industrial use. It is to be validated at an industrial plant in 2024. CarboScreen GmbH was founded as part of EXIST funding and offers AI-supported sensor systems for carbon fibre production. The sensor technology continuously monitors the fibre throughout the entire production process. Deviations are detected automatically.

The winners of the AVK Innovation Award are honoured annually by the AVK Industrievereinigung Verstärkte Kunststoffe. Companies, institutes and their partners are honoured in three categories: products and applications, processes and procedures, and research and science.

JEC World: METYX and ITA officially join forces (c) METYX
METYX and ITA officially join forces
11.05.2022

JEC World: METYX and ITA officially join forces

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA) and their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new partnership with METYX Composites, Turkey today at JEC World in Paris. METYX is a globally leading manufacturer of high-performance technical textiles for applications in the transportation, wind energy, construction, sports and leisure industries.

Ugur Ustunel, CEO METYX Composites: “The access to ITA´s competences along the entire textile composite value chain and to the impressive machine parks with over 250 machines from lab scale to industrial scale and the exchange with other partners will be very welcome for our future pre-competitive developments.” Dr. Christoph Greb, Scientific Director of ITA: “We are very happy to welcome METYX to our
network and to collaborate in many joint projects and studies on topics like recycling and sustainability, tapes and hybrid yarns or natural fibres just to name a few.”

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA) and their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new partnership with METYX Composites, Turkey today at JEC World in Paris. METYX is a globally leading manufacturer of high-performance technical textiles for applications in the transportation, wind energy, construction, sports and leisure industries.

Ugur Ustunel, CEO METYX Composites: “The access to ITA´s competences along the entire textile composite value chain and to the impressive machine parks with over 250 machines from lab scale to industrial scale and the exchange with other partners will be very welcome for our future pre-competitive developments.” Dr. Christoph Greb, Scientific Director of ITA: “We are very happy to welcome METYX to our
network and to collaborate in many joint projects and studies on topics like recycling and sustainability, tapes and hybrid yarns or natural fibres just to name a few.”

Dr. Michael Effing, Managing Director of AMAC GmbH: „I am very happy to support ITA in developing and growing their network. ITA is located in the centre of the RWTH Aachen University Campus in close proximity to numerous other institutes for lightweight developments.”

VDMA: Top young talent with cutting-edge topics  (c) VDMA
The 2021 winners (from top left to right): Dr Martin Hengstermann, Irina Kuznik, Kai-Chieh Kuo.
10.11.2021

VDMA: Top young talent with cutting-edge topics

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

Mr Kai-Chieh Kuo was awarded the diploma/master's thesis promotion prize of 3,500 euros. With his master's thesis, which was written at RWTH Aachen University, Mr Kuo contributes to the production of vital components used in medicine. The stents made of ultra-fine yarns are made possible by an innovative modification of the classic tube weaving process.

The Walter Reiners Foundation rewarded the doctoral thesis of Dr. Martin Hengstermann with the promotional prize in the dissertation category, endowed with 5,000 euros. The thesis deals with the production of recycled carbon fibres. These can be used to produce lightweight components for motor vehicle and aircraft construction or the wind energy sector.

New Prize Sustainability / Circular Economy
The environmental conditions of the textile industry and machine construction are changing. Topics such as climate protection and the circular economy are becoming central. From this perspective, the board of the Walter Reiners Foundation has decided to further develop the foundation's prize system.

In 2022, the foundation will for the first time offer a prize with a focus on design / sustainability. Peter D. Dornier, Chairman of the Foundation, explained: "Already in the design phase, one can set the parameters so that a textile product can be reintroduced after use into the economic cycle for a high-quality application. For example, through the appropriate use of materials and finishing. We are looking for solutions for resource-saving design, technology and manufacturing processes."   

26.10.2021

ITA: New pre-competitive partnership model for industrial companies

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA), their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new strategic positioning: in order to better respond to actual industrial demands and needs, ITA decided to install a partnership model as of January, 25 2022.

The ITA Group comprises the ITA of RWTH Aachen University, a leading research and qualification research institute with 400 employees in the areas of fibre-based high-performance materials, textile semi-finished products and their manufacturing processes and the ITA Technologietransfer GmbH, the partner of the industry in R&D, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA), their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new strategic positioning: in order to better respond to actual industrial demands and needs, ITA decided to install a partnership model as of January, 25 2022.

The ITA Group comprises the ITA of RWTH Aachen University, a leading research and qualification research institute with 400 employees in the areas of fibre-based high-performance materials, textile semi-finished products and their manufacturing processes and the ITA Technologietransfer GmbH, the partner of the industry in R&D, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

Prof. Dr. Thomas Gries, Director of ITA, explains the new partnership model:” The impact of the Covid-19-crisis has shown once more the importance of long-term trustworthy business relationships. Therefore, we are establishing our new partnership model where we will even more closely cooperate with our actual and future industrial partners, providing them with the latest technologies and innovations from R&D side. We will initiate networking and workgroup meetings, offer access to ITA´s large machine parks and labs, carry out joint partner projects and commonly organized publicly-funded projects as well as training for partner´s employees and HR opportunities.”

Dr. Christoph Greb, Scientific Director of ITA: “We are very happy to initiate this new partnership model where science, research and industry are working shoulder to shoulder in pre-competitive projects on our future projects along the entire value-chain from the fibre to the final component in order to close a missing gap and form innovative paths forward in various industrial fields.”

During an initial session of three Innovation days in hybrid format, ITA successfully introduced in September 2021 the first industrial partner projects which will be carried out, among them “Recycling of composite battery cases”, “Recycling of composite pressure vessels”, “Natural Fibre Composites”, “Textile Structures with focus on biaxial Warp-Knitted Structures”, “Factory of the Future”, “Tapes and Hybrid Yarns”.

The next opportunity to meet with ITA is at JEC DACH in Frankfurt (November 23 and 24 2021).

Source:

ITA

(c) Tom Schulze. “IQ Innovationspreis Mitteldeutschland“, overall winner (from left to right) FibreCoat GmbH from Aachen, ITA graduate Dr Robert Brüll, Deutsche Basalt Fiber GmbH from Sangerhausen, Georgi Gogoladze.
28.06.2021

Overall prize of the “IQ Innovationspreis Mitteldeutschland“ for FibreCoat GmbH and DBF Deutsche Basalt Faser GmbH

FibreCoat GmbH from Aachen, Germany, together with DBF Deutsche Basalt GmbH, developed a completely new type of fibre material to shield electromagnetic radiation from digital end devices, medical technology or e-car batteries cheaply and effectively. The joint project was awarded the overall prize of the“ IQ Innovationspreises Mitteldeutschland“ on 24 June in an online event broadcast live from Leipzig.

The prize is endowed with €15,000 and was sponsored by the Halle-Dessau, Leipzig and East Thuringia Chambers of Industry and Commerce.

FibreCoat GmbH from Aachen, Germany, together with DBF Deutsche Basalt GmbH, developed a completely new type of fibre material to shield electromagnetic radiation from digital end devices, medical technology or e-car batteries cheaply and effectively. The joint project was awarded the overall prize of the“ IQ Innovationspreises Mitteldeutschland“ on 24 June in an online event broadcast live from Leipzig.

The prize is endowed with €15,000 and was sponsored by the Halle-Dessau, Leipzig and East Thuringia Chambers of Industry and Commerce.

Electromagnetic radiation from smartphones, hospital diagnostics and electric car batteries must be shielded so that they do not inter-fere with each other. To prevent mutual interference, they have so far been covered with metal fibre fabrics, a very time- and energy-consuming and thus expensive procedure. The new material from Basalt Faser GmbH and FibreCoat GmbH prevents this with a fibre core made of melted, thinly drawn basalt, which is coated with aluminium and bundled into the so-called AluCoat yarn. This yarn remains just as conductive and shielding, but is lighter, stronger, cheaper and more sustainable than previous alternatives. In addition, there are further advantages:

  • The number of process steps required is reduced from ten to one.
  • 1,500 metres of yarn are produced per minute instead of the previous five metres.
  • The energy required is only 10 per cent of the previous amount.

The result is a price that is twenty times lower.

The textile made of AluCoat fibres is versatile and flexible: as wallpaper it can shield 5G radiation in offices or medical rooms or encase batteries and thus ensure the smooth functioning of electric cars. AluCoat is already being used in some companies. A European fibre centre in Sangerhausen is being planned for mass production.

The two innovative companies DBF Deutsche Basalt GmbH and FibreCoat GmbH from East and West combine the two materials basalt and aluminium to protect against electromagnetic radiation. In doing so, they coat basalt with aluminium and, through this novel combination, create an inexpensive, sustainable and quickly produced alter-native for a market worth billions.

FibreCoat GmbH from Aachen is a spin-off of the Institut für Textiltechnik (ITA) of RWTH Aachen University; the managing directors Dr Robert Brüll and Alexander Lüking and Richard Haas have completed their doctorates at the ITA or are in the process of preparing their doctorates. Georgi Gogoladze, Managing Director of Deutsche Basaltfaser GmbH, also studied at RWTH Aachen University. The two managing directors Brüll and Gogoladze know each other from their student days.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Digital Pioneer Awards ceremony at the digitalCHURCH (c) digitalHUB Aachen e.V.; photo: Thomas Langens
Digital Pioneer Awards ceremony at the digitalCHURCH
15.06.2021

ITA Academy GmbH wins Digital Pioneer Award 2021

  • Digital Pioneer Awards ceremony at the digitalCHURCH
  • ITA Academy GmbH was honoured to receive the Digital Pioneer Award at the Digital Summit Event in Aachen on June 09, 2021.

The Digital Pioneer Award is given to companies that drive digitalisation with digital business models, processes or digital products. ITA Academy GmbH was honoured with the Digital Capability Center (DCC) Aachen and its support of companies in their digital transformation.

  • Digital Pioneer Awards ceremony at the digitalCHURCH
  • ITA Academy GmbH was honoured to receive the Digital Pioneer Award at the Digital Summit Event in Aachen on June 09, 2021.

The Digital Pioneer Award is given to companies that drive digitalisation with digital business models, processes or digital products. ITA Academy GmbH was honoured with the Digital Capability Center (DCC) Aachen and its support of companies in their digital transformation.

Using the latest didactic methods, sophisticated solution concepts and state-of-the-art technologies, the DCC Aachen supports people in keeping up with the digital future and becoming pioneers in digital transformation. In order to make innovative solutions such as AI and digital assistance systems tangible, the ITA Academy founded the Digital Capability Center (DCC) Aachen together with McKinsey & Company in 2017. The DCC is a model factory 4.0 in which digital applications are demonstrated and taught using the example of a realistic factory. The DCC thus offers a learning environment for companies in which participants are supported in building up competencies in the field of digital transformation in the form of practical work-shops.

The digital pioneers are to be publicised as best-practice examples in order to sensitize regional SMEs to the topic of digitisation. Around the award of the digital pioneers, the digitalHUB Aachen e.V. rolls out effective marketing activities. The pioneers achieve high visibility through the various planned campaigns and advertising opportunities.

AMAC kooperiert mit ITA (Institut für Textiltechnik der RWTH Aachen und deren ITA GmbH) für die weitere Geschäftsentwicklung im Bereich Composites  © AMAC
fltr: Markus Beckmann, Prof. Thomas Gries, Dr. Michael Effing, Dr. Christoph Greb
19.04.2021

AMAC cooperates with ITA

AMAC cooperates with ITA (Institute for Textile Technology of RWTH Aachen University and their ITA GmbH) for the business development in composites 

As of April 19th, 2021, AMAC is pleased to announce its cooperation with the Institute for Textile Technology, ITA, of RWTH Aachen University and their ITA GmbH. The aim of the cooperation is to strengthen and develop their business activities in composites.

AMAC cooperates with ITA (Institute for Textile Technology of RWTH Aachen University and their ITA GmbH) for the business development in composites 

As of April 19th, 2021, AMAC is pleased to announce its cooperation with the Institute for Textile Technology, ITA, of RWTH Aachen University and their ITA GmbH. The aim of the cooperation is to strengthen and develop their business activities in composites.

ITA, as one of the largest institutes on the campus of the excellence University RWTH Aachen, Germany, develops complete solutions from the manufacturing of the fiber itself over the processing of textile intermediates with thermoplastic and thermoset resins, textile-based part manufacturing, capabilities such as braiding, pultrusion and in-situ impregnation of textile preforms. Top 3 focused industries are transportation and particularly the e-mobility sector, building and construction as well as the wind energy sector. Additionally, ITA GmbH is the partner of the industry in R&D, focusing on 8 business segments, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

Prof. Dr. Thomas Gries, Director of ITA, explains the background of the strategic cooperation with focus on composites: „Our long-term experience and unmatched know-how with all aspects of continuous fibers, non-wovens and web-based reinforcements allows us to deliver to the composite manufacturers a complete technology and service offer around the development of technical textiles, from the development of glass and carbon fibers to the textile-based processing of composite parts. In all process steps of our research and developments, we focus on sustainable and recyclable solutions, an efficient cost-performance ratio, the possible use of bio-based materials and the reduction of the CO2 footprint. We are glad to cooperate with Dr. Michael Effing and AMAC in order to benefit from his door-opening network in the composites industry. “

Dr. Michael Effing, Managing Director of AMAC GmbH: „I am very happy to support the ITA to generate innovation thanks to further industrial networking and pre-competitive joint projects. ITA is indeed a one-stop source for composite solutions from the fiber to the cost-efficient manufacturing of final parts. In the context of the Covid-19 impact to the entire industry, it makes sense to bundle forces. Furthermore, ITA, with its long tradition and satisfied customers offers further valuable networking opportunities to the composites industry as well as access to relevant complementary fiber-based excellence and 250 different technologies in their machine-park with an outstanding infrastructure in Aachen.”

23.11.2020

AMAC cooperates with start-up FibreCoat

Cooperation and business development with AMAC
As of November 1st, 2020, AMAC is pleased to announce its cooperation with company FibreCoat for the market introduction of their products and global business development. FibreCoat is a young, award-winning start-up and spin-off of the RWTH Aachen University in Germany and develops multi-filament coated yarns, fabrics and composites based on glass or basalt fibres.

Dr. Michael Effing, CEO AMAC GmbH: „FibreCoat is a very promising newcomer in the electro-magnetic shielding and composites industry and their innovations are very cost-efficient for new technologies such as e-mobility or telecommunications. I am very pleased to introduce them to relevant key players in the industry and accompany them in their growth strategy.“

Product Launch
FibreCoat develops metal-coated fibres like bi-component multi-filament yarns with basalt core and aluminum coating which can be used for EMI-shielding and heat sinks in battery casings, electric diverters in filters, reinforcement of cast aluminum parts o ras conductive yarns in smart textiles.

Cooperation and business development with AMAC
As of November 1st, 2020, AMAC is pleased to announce its cooperation with company FibreCoat for the market introduction of their products and global business development. FibreCoat is a young, award-winning start-up and spin-off of the RWTH Aachen University in Germany and develops multi-filament coated yarns, fabrics and composites based on glass or basalt fibres.

Dr. Michael Effing, CEO AMAC GmbH: „FibreCoat is a very promising newcomer in the electro-magnetic shielding and composites industry and their innovations are very cost-efficient for new technologies such as e-mobility or telecommunications. I am very pleased to introduce them to relevant key players in the industry and accompany them in their growth strategy.“

Product Launch
FibreCoat develops metal-coated fibres like bi-component multi-filament yarns with basalt core and aluminum coating which can be used for EMI-shielding and heat sinks in battery casings, electric diverters in filters, reinforcement of cast aluminum parts o ras conductive yarns in smart textiles.

FibreCoat launches ALUCOAT™, an aluminum-coated glass or basalt fibre which is suitable as electro-magnetic shielding material in automotive applications such as radar, antennas or for autonomous driving as well as for mobile phones and applications in buildings. Due to its extraordinary thermal conductivity and better heat transfer compared to traditional composite material, it can be used for the manufacturing of automotive battery trays or industrial applications such as fine particulate air filters.

ALUCOAT™ is available as of January 1st 2021 as a yarn, fabric or non-woven with a wide range of possible titers and areal weight. The material will offer an electrical conductivity of 100 Ωm and a working temperature of at least 400 °C. Furthermore, it can be used for the shielding of low to high frequencies with an effectiveness of 80 to 120 dB.

Source:

AMAC GmbH

Warden Schijve joins the AZL team (c) AZL
Dr. Michael Emonts, Warden Schijve, Philipp Fröhlig und Dr. Kai Fischer (von links nach rechts) im AZL Tech Center
02.11.2020

Warden Schijve joins the AZL team

Aachen - Warden Schijve, former Chief Scientist Composites at SABIC, recently joined the AZL engineering team in October. As Design Leader, he is further expanding the product and application development division of the service provider for business development and technology development in lightweight.

AZL Aachen GmbH supports companies along the entire value chain in implementing competitive lightweight technologies. "We develop component and production concepts for companies, including the analysis of costs and production-relevant KPIs. With our broad range of material and production technologies, we provide a comprehensive solution for the development and evaluation of products and identify the most suitable paths to implementation. Warden Schijve will use his many years of experience to support our partners in the efficient development, evaluation and implementation of component and production solutions through to market readiness," says Dr. Kai Fischer, Managing Partner of AZL Aachen GmbH.

Aachen - Warden Schijve, former Chief Scientist Composites at SABIC, recently joined the AZL engineering team in October. As Design Leader, he is further expanding the product and application development division of the service provider for business development and technology development in lightweight.

AZL Aachen GmbH supports companies along the entire value chain in implementing competitive lightweight technologies. "We develop component and production concepts for companies, including the analysis of costs and production-relevant KPIs. With our broad range of material and production technologies, we provide a comprehensive solution for the development and evaluation of products and identify the most suitable paths to implementation. Warden Schijve will use his many years of experience to support our partners in the efficient development, evaluation and implementation of component and production solutions through to market readiness," says Dr. Kai Fischer, Managing Partner of AZL Aachen GmbH.

From his 35 years in the composites industry with Fokker, DSM and SABIC, Warden Schijve brings a broad and deep expertise in structural design, plastics and composites, as well as processing technology.
Warden Schijve: “In my career I’ve always seen that it pays off to evaluate various different design concepts, which may use different materials or material combinations, to finally come to the most cost-competitive lightweight applications. Taking into account different manufacturing technologies right from the beginning can save a lot in later stages of component development. And this is what fascinates me about AZL and its eco-system: the available knowledge on a wide variation of process and production technologies, including cutting edge equipment, at both the AZL Tech Center, and the various institutes present in the total RWTH Aachen Campus.”

Dr. Michael Emonts, Managing Partner of AZL Aachen GmbH: "We are delighted that Warden Schijve, as a well-known face from the AZL community, will enrich us in developing lightweight applications, production systems and processes, identifying competitive technology optimizations through the analysis of markets and applications, and supporting our customers in the industrial implementation of the developed technologies."

Warden Schijve will also lead the project for a concept study for future battery casings based on composite-based multi-material systems. The AZL started the project in October together with 30 participating companies from the entire value chain to get an overview of existing component solutions, evaluate the advantages of a multi-material approach and develop a multi-material component design including a production concept for battery casings.

BioökonomieREVIER Rheinland: Neue Wertschöpfungsmöglichkeiten für die Region © BioökonomieREVIER Rheinland
Logo BioökonomieREVIER Rheinland
05.02.2020

BioökonomieREVIER Rheinland

Neue Wertschöpfungsmöglichkeiten für die Region

»Vom Braunkohle- zum BioökonomieREVIER«: Im Rahmen des Strukturwandels soll das Rheinische Revier zu einer Modellregion für ressourceneffizientes und nachhaltiges Wirtschaften werden. Insgesamt 15 Innovationslabore entstehen gerade an der Schnittstelle zwischen (Land-)Wirtschaft und Wissenschaft, beteiligt sind Vertreter aus Wirtschaft, Wissenschaft, Politik und Gesellschaft. Die Innovationslabore sollen den schnellen Transfer neuer Verfahren in die Praxis ermöglichen, um Wertschöpfung und neue Arbeitsplätze zu generieren. Das Fraunhofer UMSICHT ist gemeinsam mit weiteren Partnern für das Projekt »AZUR« verantwortlich, das den Anbau und die Verwertung von Heil- und Medizinpflanzen am Beispiel von Arnika untersucht.

Neue Wertschöpfungsmöglichkeiten für die Region

»Vom Braunkohle- zum BioökonomieREVIER«: Im Rahmen des Strukturwandels soll das Rheinische Revier zu einer Modellregion für ressourceneffizientes und nachhaltiges Wirtschaften werden. Insgesamt 15 Innovationslabore entstehen gerade an der Schnittstelle zwischen (Land-)Wirtschaft und Wissenschaft, beteiligt sind Vertreter aus Wirtschaft, Wissenschaft, Politik und Gesellschaft. Die Innovationslabore sollen den schnellen Transfer neuer Verfahren in die Praxis ermöglichen, um Wertschöpfung und neue Arbeitsplätze zu generieren. Das Fraunhofer UMSICHT ist gemeinsam mit weiteren Partnern für das Projekt »AZUR« verantwortlich, das den Anbau und die Verwertung von Heil- und Medizinpflanzen am Beispiel von Arnika untersucht.

Aus den Händen von Forschungsstaatssekretär Thomas Rachel MdB (3.v.l.) nahmen Prof. Wolfgang Marquardt (Vorstandsvorsitzender Forschungszentrum Jülich), Prof. Ulrich Schurr (Forschungszentrum Jülich), Prof. Ulrich Schwaneberg (RWTH Aachen), Dr. Georg Schaumann (Sense up) und Prof. Volker Sander (FH Aachen) die Förderurkunden entgegen. Die Fraunhofer-Gesellschaft und YNCORIS GmbH & Co. KG sind weitere Partner des Konsortiums.

Aus den Händen von Forschungsstaatssekretär Thomas Rachel MdB (3.v.l.) nahmen Prof. Wolfgang Marquardt (Vorstandsvorsitzender Forschungszentrum Jülich), Prof. Ulrich Schurr (Forschungszentrum Jülich), Prof. Ulrich Schwaneberg (RWTH Aachen), Dr. Georg Schaumann (Sense up) und Prof. Volker Sander (FH Aachen) die Förderurkunden entgegen. Die Fraunhofer-Gesellschaft und YNCORIS GmbH & Co. KG sind weitere Partner des Konsortiums.

Das Rheinische Revier ist stark von der Nutzung fossiler Rohstoffe geprägt. Ein zentraler Pfeiler der Energiewende ist jedoch der Kohleausstieg, weshalb die Region besonders vom Strukturwandel betroffen ist. Die Gestaltung dieses Strukturwandels ist Kern des Projekts »BioökonomieREVIER Rheinland«, das Ziel: eine Modellregion für nachhaltiges Wirtschaften zu schaffen. Insgesamt stellt die Bundesregierung bis Mitte 2021 rund 25 Millionen Euro für das Vorhaben zur Verfügung. »Mit der Förderung durch das Bundesministerium für Bildung und Forschung wollen wir die Bioökonomie in die Anwendung bringen und so zu neuen Produkten, neuen Produktionsverfahren und neuen Arbeitsplätzen kommen. Das Rheinische Revier bietet dafür beste Voraussetzungen und wird einer der Eckpfeiler sein, um die jüngst beschlossene, neue Bioökonomiestrategie der Bundesregierung mit Leben zu füllen«, so Forschungsstaatssekretär Thomas Rachel MdB zum Projektauftakt. Beste Voraussetzungen für eine erfolgreiche Umsetzung bringen auch die beteiligten Organisationen mit ein: Sie decken das gesamte Spektrum von der Grundlagenforschung bis hin zur praktischen Umsetzung ab.

Landwirtschaftliche Produktion erweitern: hochwertige pharmazeutische Inhaltsstoffe

Im ersten Teilprojekt wird eine Regionalstrategie ausgearbeitet. Parallel dazu entstehen sogenannte Innovationslabore und -plattformen an den Schnittstellen von Wissenschaft, Wirtschaft und Landwirtschaft. Sie gehen auf konkrete Probleme im Rheinischen Revier ein und sollen auch in der Fläche wirksame Maßnahmen umsetzen.

Das Fraunhofer UMSICHT bringt seine Expertise im Bereich nachhaltiger Landwirtschaft mit ein. Auf Basis der Forschungsarbeit soll die landwirtschaftliche Produktion in der Region ausgebaut werden. In Zusammenarbeit mit dem Fraunhofer IME und dem Forschungszentrum Jülich betrachten die Wissenschaftlerinnen und Wissenschaftler die nachhaltige biogene Wertschöpfung von Heil- und Medizinpflanzen am Beispiel von Arnika. »Im Laufe des Projekts `AZUR` wählen wir zum einen ertragreiche Arnikapflanzen aus Zuchtprogrammen für den Freilandbau aus, zum anderen entwickeln wir die sensorgesteuerte Kultivierung in Indoor-Systemen«, erklärt Volkmar Keuter, Leiter der Abteilung Photonik und Umwelt am Fraunhofer UMSICHT. Auch der Ernteprozess wird detailliert betrachtet, um mithilfe neuer Technologien gezielt die wirkstoffreichsten Blüten zu gewinnen.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

 

18.04.2019

AZL and Partner Institutes present lightweight processes and equipment during AZL Open Day

On April 11th, 2019, the 9 Partner Institutes of the AZL opened the doors of their machinery halls and research labs to provide an extensive and on-site insight into the research and development capaci-ties in the field of lightweight production and composites at the RWTH Aachen Campus. As a special highlight of this year, the AZL presented the "iComposite 4.0" self-optimizing process chain: fiber-spraying - dry fiber placement - adaptive RTM as well as AZL´s new prototype machine development "Ultra-Fast Consolidator Machine" for highly productive and flexible processing of thermoplastic tapes with in-situ consolidation (winner of the JEC World Innovation Award 2019).

More than 100 Participants from external companies as well as from the AZL Network had the possibility to experience updates on the latest lightweight production technologies and equipment, get to know the bene-fital infrastructure on the Campus and network with internationally represented companies of the entire light-weight value chain researches by taking part in five guided tours to the lightweight institutes.

On April 11th, 2019, the 9 Partner Institutes of the AZL opened the doors of their machinery halls and research labs to provide an extensive and on-site insight into the research and development capaci-ties in the field of lightweight production and composites at the RWTH Aachen Campus. As a special highlight of this year, the AZL presented the "iComposite 4.0" self-optimizing process chain: fiber-spraying - dry fiber placement - adaptive RTM as well as AZL´s new prototype machine development "Ultra-Fast Consolidator Machine" for highly productive and flexible processing of thermoplastic tapes with in-situ consolidation (winner of the JEC World Innovation Award 2019).

More than 100 Participants from external companies as well as from the AZL Network had the possibility to experience updates on the latest lightweight production technologies and equipment, get to know the bene-fital infrastructure on the Campus and network with internationally represented companies of the entire light-weight value chain researches by taking part in five guided tours to the lightweight institutes.

The AZL brought together content in the field of textiles (ITA), plastics and composite materials (IKV), pro-duction technology (WZL, IPT, ILT, and ISF), quality assurance and production-integrated measurement technology (WZL), lightweight design (SLA), automotive production (IKA) as well as multi-material systems and process integration (AZL).

Once a year at the Open Day, the AZL offers an exclusive and widespread unique insight into the R&D capacities of the institutes in the field of lightweight and composite technologies on the campus of RWTH Aachen University. Within walking distance, researchers and students from 9 institutes are working on the latest technologies for the cost-efficient development and production of lightweight components within one of the largest research landscapes in Europe. The research, closely involving industrial companies, covers the entire value chain from fiber production, materials and processing technology to quality assurance and com-ponent testing.

More information:
AZL SMC, AZL, RWTH Aachen
Source:

AZL Aachen GmbH

(c) AZL Aachen GmbH
04.03.2019

AZL demonstrates new Ultra-Fast Consolidator Machine at JEC World in Paris

After many years of successful cooperation on JEC World since 2015, the Aachen Center for Integrative Lightweight Production (AZL) renewed the cooperation with the JEC Group for 2019:

At the dedicated exhibition area called “Composites in Action - JEC Group in partnership with AZL” (Hall 5A, D17), AZL and its 9 Partner Institutes of RWTH Aachen University present their latest research and development results. The innovations covering the whole composite value chain including research results of AZL, Fraunhofer Institute for Production Technology IPT and Fraunhofer Institute for Laser Technology ILT, the Institute of Plastics Processing (IKV) in Industry and the Skilled Crafts as well as RWTH Aachen University institutes including the Laboratory for Machine Tools and Production Engineering (WZL), the Welding and Joining Institute (ISF), the “Institut für Textiltechnik” (ITA), the Institute for Automotive Engineering (IKA), the Institute of Structural Mechanics and Lightweight Design (SLA). Following companies are sponsoring partners of this booth and will present their latest products and services: Hille Engineering, Maru Hachi, TELENE and Textechno.

After many years of successful cooperation on JEC World since 2015, the Aachen Center for Integrative Lightweight Production (AZL) renewed the cooperation with the JEC Group for 2019:

At the dedicated exhibition area called “Composites in Action - JEC Group in partnership with AZL” (Hall 5A, D17), AZL and its 9 Partner Institutes of RWTH Aachen University present their latest research and development results. The innovations covering the whole composite value chain including research results of AZL, Fraunhofer Institute for Production Technology IPT and Fraunhofer Institute for Laser Technology ILT, the Institute of Plastics Processing (IKV) in Industry and the Skilled Crafts as well as RWTH Aachen University institutes including the Laboratory for Machine Tools and Production Engineering (WZL), the Welding and Joining Institute (ISF), the “Institut für Textiltechnik” (ITA), the Institute for Automotive Engineering (IKA), the Institute of Structural Mechanics and Lightweight Design (SLA). Following companies are sponsoring partners of this booth and will present their latest products and services: Hille Engineering, Maru Hachi, TELENE and Textechno.

This year, AZL is very proud to present a new machine system development at their booth:
The real machine setup of the “Ultra-Fast Consolidator Machine” will be shown at the AZL booth (Hall 5A, D17) which is one of three finalists for the JEC AWARD 2019 in the category “Industry and Equipment”.

More information:
SMC, AZL, RWTH Aachen AZL
Source:

AZL Aachen GmbH

The cushion helps the user to operate different applications by means of sensor surfaces, light and wireless communication, for example an alarm function by light. (c) ITA
The cushion helps the user to operate different applications by means of sensor surfaces, light and wireless communication, for example an alarm function by light.
22.02.2019

Smart Textiles Micro Factory brings Smart Textiles into series production at Texprocess 2019

The study "Technologies, Markets and Players" by E-Textiles 2018-2028 predicts a 2 billion dollar growth of the smart textile market. This growth can only be achieved by replacing the existing approaches, mostly manual production, with series production. With the Smart Textiles Micro Factory, the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be demonstrating for the first time on the Texprocess stand, stand number C02, in the transition from Halls 4.1 and 5.1 how a smart textile can be manufactured from design to finished product together with various partners by producing a smart cushion.

The product and the manufacturing process are the result of co-innovation. In the future, co-innovation for smart textiles is to be implemented via the GeniusTex platform. As part of the German Federal Ministry of Economic Affairs and Energy's major strategic project for the “Smart Service World”, ITA is working with partners from industry and research to develop the online platform for smart textile innovation.

The study "Technologies, Markets and Players" by E-Textiles 2018-2028 predicts a 2 billion dollar growth of the smart textile market. This growth can only be achieved by replacing the existing approaches, mostly manual production, with series production. With the Smart Textiles Micro Factory, the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be demonstrating for the first time on the Texprocess stand, stand number C02, in the transition from Halls 4.1 and 5.1 how a smart textile can be manufactured from design to finished product together with various partners by producing a smart cushion.

The product and the manufacturing process are the result of co-innovation. In the future, co-innovation for smart textiles is to be implemented via the GeniusTex platform. As part of the German Federal Ministry of Economic Affairs and Energy's major strategic project for the “Smart Service World”, ITA is working with partners from industry and research to develop the online platform for smart textile innovation.

Bushing heated via induction of the novel glass fibre production line (c) ITA
Bushing heated via induction of the novel glass fibre production line
21.02.2019

ITA at JEC World 2019: newly constructed induction heated glass fibre production line among other exhibits

At the joint stand of the Aachen Centre for Integrative Lightweight Construction (AZL) in Hall 5A, booth D17, the Institut für Textiltechnik of RWTH Aachen University (ITA) will demonstrate its expertise in the field of glass fibres, preforms and textile concrete 12-14 March 2019 in Paris.
The exhibits come from various fields of application and address the automotive, aerospace and mechanical engineering sectors.

At the joint stand of the Aachen Centre for Integrative Lightweight Construction (AZL) in Hall 5A, booth D17, the Institut für Textiltechnik of RWTH Aachen University (ITA) will demonstrate its expertise in the field of glass fibres, preforms and textile concrete 12-14 March 2019 in Paris.
The exhibits come from various fields of application and address the automotive, aerospace and mechanical engineering sectors.

  1. Innovative glass fibre research at ITA
    The newly constructed induction heated glass fibre production line enables increased flexibility in research. For the first time, glass fibres will be produced live at the ITA booth at JEC World. One of the innovations of the system is the inductively heated bushing. It features a flexible design and consists of a platinum/rhodium alloy (Pt/Rh20) for use in high-temperature glasses.
    The glass fibre production line was designed in such a way that new concepts and ideas can be tested quickly. The modular design allows a high flexibility, the induction system a significantly faster operability.
    Research and development projects can therefore be carried out faster and more cost-effectively.
     
  2. DrapeCube - Forming of textile semi-finished products
    The DrapeCube offers a cost-effective design for the production of fibre preforms from textile semi-finished products. It is used in the production of preforms for prototypes and in small series and is suit-able for companies active in the production of fibre-reinforced plas-tics (FRP).
    In the production of FRP components, the preforming process de-fines a large part of the subsequent component costs. In small- and medium-sized enterprises, this process step is often still carried out manually. This results in high quality fluctuations and component prices. Especially in the case of highly stressed structural components, the fluctuation in quality leads to oversizing of the components.
    Thus, the lightweight construction potential of fiber-reinforced plastics is underused. One solution is offered by the stamp forming process adapted from the sheet metal forming industry for shaping rein-forcing textiles. The textile is inserted between two mould halves (male and female) and automatically formed. Due to high plant and tooling costs, this process is used almost exclusively in large-scale production.
    The ITA has developed the DrapeCube forming station which offers a cost-effective alternative and is able to completely reproduce the current state of the art for forming textile half branches. The process steps will be demonstrated in a video at the booth.
     
  3. Carbon fibre reinforced plastic (CFRP) preform
    The CFRP preform consists of carbon multiaxial fabrics formed by expanded polystyrene (EPS) to optimise draping quality. Preforms of increased quality can be produced by gentle, textile-compatible forming with foam expansion. For the first time, foam expansion was used to form preforms in such a way that the draping quality is improved compared to classic stamp forming.
    The advantages of the CFRP preform lie in the savings in plant costs, as the investment is much lower. In addition, the proportion of waste is reduced because near-net-shape production is possible. In addition, rejects are reduced, as fewer faults occur in the textile.
     
  4. Embroidered preform with integrated metal insert
    The 12k carbon fibre rovings are shaped into a preform using Tai-lored Fibre Placement (TFP) which is a technical embroidery pro-cess. For the further layer build-up, a fastener is not only integrated under the roving layers but also fixed by additional loops. The highly integrative preforming approach offers the possibility of reducing weight and process steps as well as increasing mechanical perfor-mance.
    Until now, inserts were glued or holes had to be drilled in the com-ponent. Bonded fasteners are limited by the adhesive surface. The bonding of fasteners into drilled holes results in high drill abrasion and thus high tool wear.
    The advantages of the embroidered preform with integrated metal fasteners are the reduction of scrap due to TFP preforming and the increase in the specific pull-out force. In addition, it is possible to automatize the production of integrative preforms. This makes the preform with integrated metal fasteners interesting for the automotive and aerospace industries.
Source:

Institut für Textiltechnik of RWTH Aachen University

Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage (c) ITA
Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage,
21.02.2019

ITA zeigt auf der JEC World 2019 u.a. neue Glasfaserspinnanlage

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

  1. Innovative Glasfaserforschung am ITA
    Der modulare Aufbau der neu entwickelten, induktiv beheizten Glasfaserproduktionsanlage ermöglicht hohe Flexibilität in der Forschung und das Induktionssystem eine deutlich schnellere Bedienbarkeit. Erstmalig werden am Stand des ITA Glasfasern live auf der JEC World hergestellt. Zu den Neuheiten der Anlage gehört das induktiv beheizte Bushing. Es hat ein flexibles Design und besteht aus einer Platin-/Rhodium-Legierung (Pt/Rh20) zum Einsatz für Hochtemperaturgläser. Die Glasfaserproduktionsanlage wurde so konstruiert, dass sich neue Konzepte und Ideen schnell erproben lassen.
     
  2. DrapeCube – Umformung textiler Halbzeuge
    Der DrapeCube bietet eine kostengünstige Konstruktion zur Herstellung von Faservorformlingen aus textilen Halbzeugen. Er kommt zum Tragen bei der Fertigung von Preforms für Prototypen und in der Kleinserie und eignet sich für Unternehmen, die in der von faserverstärkten Kunststoffen (FVK) tätig sind.
    Bei der Produktion von FVK-Bauteilen wird im Preformingprozess ein Großteil der späteren Bauteilkosten definiert. In kleinen und mittelständischen Unternehmen wird dieser Prozessschritt oft noch manuell ausgeführt. Daraus resultieren hohe Qualitätsschwankungen und Bauteilpreise. Besonders bei hochbelasteten Strukturbauteilen führt die Qualitätsschwankung dazu, dass die Bauteile überdimensioniert sind. So wird das Leichtbaupotential von faserverstärkten Kunststoffen zu wenig genutzt.
    Eine Lösung bietet das aus der blechumformende Industrie adaptierte Stempelumformverfahren zur Formgebung von Verstärkungstextilien. Dabei wird das Textil zwischen zwei Formhälften (Patrize und Matrize) eingelegt und automatisiert umgeformt. Dieses Verfahren kommt aufgrund hoher Anlagen- und Werkzeugkosten fast ausschließlich in der Großserie zum Einsatz. Das ITA hat die Formgebungsstation DrapeCube entwickelt, die eine kostengünstige Alternative bietet und in der Lage ist, den aktuellen Stand der Technik für die Formgebung textiler Halbzeige vollständig abzubilden. Am Stand werden die Prozessschritte in einem Video demonstriert.
     
  3. Kohlenstoffaserverstärkter Kunststoff (CFK)-Preform
    Der CFK-Preform besteht aus Carbon-Multiaxial-Gelege, das durch expandiertes Polystyrol (EPS) umgeformt ist, um die Drapierqualität zu optimieren. Durch die schonende, textilgerechte Umformung mittels Schaumexpansion können Preforms in erhöhter Qualität hergestellt werden. Erstmalig wurde die Schaumexpansion genutzt, um Preforms so umzuformen, dass die Drapierqualität im Vergleich zur klassischen Stempelumformung verbessert wird.
    Die Vorteile des so umgeformten CFK-Preforms liegen in der Einsparung von Anlagenkosten, da das Investment viel geringer ist. Dazu wird der Verschnittanteil reduziert, weil eine endkonturnahe Fertigung ermöglicht wird. Darüber hinaus wird der Ausschuß verringert, da weniger Fehler im Textil entstehen.
    Zielgruppe sind die Hersteller von faserverstärkten Bauteilen, insbesondere für die Klein- und Mittelserie, bei denen die klassische Stempelumformung nicht wirtschaftlich ist.
     
  4. Gestickter Preform mit integriertem Metallinsert
    Die 12k Carbonfaserrovings werden durch das Spezial-Stickverfahren Tailored Fibre Placement (TFP) zu einem Preform abgelegt. Beim weiteren Lagenaufbau wird der Insert nicht nur unter den Rovinglagen integriert, sondern durch zusätzliches Umschlaufen fixiert. Der hochintegrative Preformingansatz bietet die Möglichkeit zur Reduktion von Gewicht und Prozessschritten sowie zur Steigerung der mechanischen Performance.
    Bisher wurden Inserts geklebt oder es waren Bohrungen im Bauteil notwendig. Aufgeklebte Inserts sind durch die Klebefläche limitiert. Das Einkleben von Inserts in Bohrungen zieht hohe Bohrerabrasion und damit hohen Werkzeugverschleiß nach sich.
    Die Vorteile des gestickten Preforms mit integriertem Metallinsert bestehen in der Reduktion von Verschnitt durch TFP-Preforming und der Steigerung der spezifischen Ausreißkraft. Dazu besteht die Möglichkeit, die Herstellung integrativer Preforms zu automatisieren. Damit ist der Preform mit integriertem Metallinsert interessant für die Zielgruppe Automotive und Luft- und Raumfahrt.
Source:

Institut für Textiltechnik of RWTH Aachen University

Concrete bar stool with hybrid carbon reinforcement for fast, cost-efficient part production (c) Institut für Textiltechnik of RWTH Aachen University
29.10.2018

ITA at the Composites Europe 2018 in Stuttgart

At the Composites Europe in Stuttgart /06 - 08 November 2018), the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be showing products, components and machines along the fibre composite process chain. The ITA will present itself at the booth of the Aachen Center for Integrative Lightweight Construction (AZL) in hall 9, booth E70. Various demonstrators will be used to present selected innovative processes and products over the individual steps. The exhibits come from different fields of application: From mobility applications to the construction sector. Here is an example from the field of "construction composites":

With the concrete bar stool with hybrid carbon reinforcement, the ITA demonstrates that textiles as reinforcement structures for concrete elements allow a enormous geometrical freedom of Design. So far, manual positioning of the textile reinforcement used to be time-consuming and complex, as permitted tolerances are in the millimetre range. Thus the production mainly contributed to the high costs of textile concrete.

At the Composites Europe in Stuttgart /06 - 08 November 2018), the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be showing products, components and machines along the fibre composite process chain. The ITA will present itself at the booth of the Aachen Center for Integrative Lightweight Construction (AZL) in hall 9, booth E70. Various demonstrators will be used to present selected innovative processes and products over the individual steps. The exhibits come from different fields of application: From mobility applications to the construction sector. Here is an example from the field of "construction composites":

With the concrete bar stool with hybrid carbon reinforcement, the ITA demonstrates that textiles as reinforcement structures for concrete elements allow a enormous geometrical freedom of Design. So far, manual positioning of the textile reinforcement used to be time-consuming and complex, as permitted tolerances are in the millimetre range. Thus the production mainly contributed to the high costs of textile concrete.

At the ITA, the two industrial partners Albani Group GmbH & Co. KG and DuraPact 2.0 Kompetenzzentrum Faserbeton GmbH developed a new hybrid reinforcement with integrated spacer. This hybrid reinforcement reduces the time required to position the reinforcement by up to 60 percent and thus makes the material significantly more

The new, cost-effective hybrid reinforcement contains an integrated spacer and thus faciliates the positioning of dry and coated reinforcements. The integrated spacer allows several layers of reinforcement to be stacked quickly, allowing the desired degree of reinforcement to be set. The hybrid reinforcement consists of a carbon or glass fibre grid joined with a permeable polyamide mat and will be available in roll form from industrial partners in the near future.

More information:
Composites AZL
Source:

Institut für Textiltechnik of RWTH Aachen University

Barhocker aus Beton mit hybrider Carbon-Bewehrung zur schnellen, kosteneffizienten Positionierung der Textilbewehrung (c) Institut für Textiltechnik of RWTH Aachen University
29.10.2018

ITA auf der Composites Europe 2018 in Stuttgart

Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt auf der Composites Europe in Stuttgart vom 06.-08. November Produkte, Bauteile und Maschinen entlang der Faserverbundprozesskette. Das ITA präsentiert sich auf dem Stand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 9, Stand E70. Anhand verschiedener Demonstratoren werden ausgewählte innovative Prozesse und Produkte über die einzelnen Schritte hin dargestellt. Die Exponate stammen aus unterschiedlichen Anwendungsfeldern: Von Mobilitätsanwendungen bis hin zur Baubranche. Anbei ein Beispiel aus dem Baubereich:

Durch den Barhocker aus Beton mit hybrider Carbon-Textilbewehrung beweist das ITA, dass Textilbetonelemente eine enorme geometrische Gestaltungsfreiheit ermöglichen und gleichzeitig einfach herstellbar sind. Bislang war die manuelle Positionierung der Textilbewehrung zeitaufwändig und komplex, da zulässige Toleranzen im Millimeterbereich liegen. So trug die Fertigung hauptsächlich zu den hohen Kosten von Textilbeton bei.

Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt auf der Composites Europe in Stuttgart vom 06.-08. November Produkte, Bauteile und Maschinen entlang der Faserverbundprozesskette. Das ITA präsentiert sich auf dem Stand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 9, Stand E70. Anhand verschiedener Demonstratoren werden ausgewählte innovative Prozesse und Produkte über die einzelnen Schritte hin dargestellt. Die Exponate stammen aus unterschiedlichen Anwendungsfeldern: Von Mobilitätsanwendungen bis hin zur Baubranche. Anbei ein Beispiel aus dem Baubereich:

Durch den Barhocker aus Beton mit hybrider Carbon-Textilbewehrung beweist das ITA, dass Textilbetonelemente eine enorme geometrische Gestaltungsfreiheit ermöglichen und gleichzeitig einfach herstellbar sind. Bislang war die manuelle Positionierung der Textilbewehrung zeitaufwändig und komplex, da zulässige Toleranzen im Millimeterbereich liegen. So trug die Fertigung hauptsächlich zu den hohen Kosten von Textilbeton bei.

Am ITA wurde gemeinsam mit den beiden Industriepartnern Albani Group GmbH & Co. KG und DuraPact 2.0 Kompetenzzentrum Faserbeton GmbH eine neue Hybridbewehrung mit integriertem Ab-standshalter entwickelt. Diese Hybridbewehrung senkt die erforderliche Zeit zur Positionierung der Bewehrung um bis zu 60 Prozent und macht den Werkstoff damit deutlich wettbewerbsfähiger.

Die kostengünstige, hybride Bewehrung enthält einen integrierten Abstandshalter und ermöglicht damit die einfache Positionierung von trockenen und beschichteten Bewehrungen. Durch den integrierten Abstandhalter lassen sich schnell mehrere Bewehrungslagen stapeln, wodurch der gewünschte Bewehrungsgrad einstellbar ist. Die Hybridbewehrung besteht aus einem Carbon- oder Glasfasergitter, das mit einer durchlässigen Matte aus Polyamid gefügt ist und in naher Zukunft bei den Industriepartnern als Rollenware erhältlich ist.

More information:
Composites AZL
Source:

Institut für Textiltechnik of RWTH Aachen University

03.09.2018

New ENGEL Injection Molding System at AZL of RWTH Aachen University

The Aachen Center for Integrative Lightweight Production (AZL) of RWTH Aachen University is installing a new ENGEL injection molding system in its technical center. Engel Deutschland GmbH – in cooperation with the ENGEL Centre for Lightweight Composite Technologies in Austria – will install the 2-component injection molding system with turning plate and 17,000 kN clamping force in 2019. This machine setup is the basis for further developments of efficient inline-combination technologies using different kinds of polymer performance materials.

The ENGEL injection molding system will enable innovative combinations of already established fiber-reinforced plastics (FRP) processes and the development of new individual processes. The focus is on increasing resource efficiency in lightweight production. With the new equipment, new research and development initiatives can explore the more efficient use of materials, which are eventually the key to the mass production of lightweight components. The research will address multi-material systems, continuous processes, process chains as well as self-optimizing processes.

The Aachen Center for Integrative Lightweight Production (AZL) of RWTH Aachen University is installing a new ENGEL injection molding system in its technical center. Engel Deutschland GmbH – in cooperation with the ENGEL Centre for Lightweight Composite Technologies in Austria – will install the 2-component injection molding system with turning plate and 17,000 kN clamping force in 2019. This machine setup is the basis for further developments of efficient inline-combination technologies using different kinds of polymer performance materials.

The ENGEL injection molding system will enable innovative combinations of already established fiber-reinforced plastics (FRP) processes and the development of new individual processes. The focus is on increasing resource efficiency in lightweight production. With the new equipment, new research and development initiatives can explore the more efficient use of materials, which are eventually the key to the mass production of lightweight components. The research will address multi-material systems, continuous processes, process chains as well as self-optimizing processes.

Dr.-Ing. Michael Emonts, Managing Director of the Aachen Center for Integrative Lightweight Production (AZL) is looking forward to realizing new innovative lightweight production process with the new injection molding system: “This new injection molding system offers us as specialists for lightweight production technology in cooperation with the injection molding experts of the Institute of Plastics Processing – the IKV – the opportunity to establish hybrid processes for industrial lightweight applications. The system will expand our existing machinery in the AZL Technical Center and will be available as an important platform for lightweight production research at RWTH Aachen University.”

Being a Partner of the AZL, ENGEL has already been working closely with the AZL for many years as a Partner Company of the AZL Partner Network. Dr. Stefan Engleder, CEO of the ENGEL Group, emphasizes the importance of close collaboration with technical universities and especially with the AZL: “The AZL provides great conditions for industry-related research activities in the field of lightweight composites as it is characterized by a strong interdisciplinary approach. It benefits from the great infrastructure and the collaboration with well-known institutes of the RTWH Aachen University. ENGEL is looking forward to working together with the AZL on developing efficient lightweight composite mass production processes.”

In addition to the numerous composite and lightweight equipment at the RWTH Aachen Campus, the AZL Technical Center comprises large-scale equipment for the development of processes for lightweight production, such as a composite press from Schuler Pressen GmbH with 18,000 kN clamping force.

 

27.11.2017

AZL is building on the success of the study on Composites in Buildings & Infrastructure

The AZL will continue its collaboration on composites in buildings and infrastructure after completing an initial market and technology study which identified new potentials for composite technologies in buildings and infrastructure markets. The aim of the new AZL Workgroup which will meet for the first time on January 25th, 2018 is to jointly develop new applications and to support the business development for composites in these two growing markets. The meeting is open to interested companies from the composite industry as well as the building and infrastructure markets.


The aim of the initial workgroup meeting will be to turn insights from the study into a long-term workgroup collaboration and to define topics and initiatives for the joint cooperation in the field of process and manufacturing technologies, fire safety regulations, materials as well as standards and norms. Industrial keynote presentations will introduce these action fields and will provide an insight into building and infrastructure applications for composites. The meeting will furthermore provide a platform to network with companies along the entire composite value chain.

The AZL will continue its collaboration on composites in buildings and infrastructure after completing an initial market and technology study which identified new potentials for composite technologies in buildings and infrastructure markets. The aim of the new AZL Workgroup which will meet for the first time on January 25th, 2018 is to jointly develop new applications and to support the business development for composites in these two growing markets. The meeting is open to interested companies from the composite industry as well as the building and infrastructure markets.


The aim of the initial workgroup meeting will be to turn insights from the study into a long-term workgroup collaboration and to define topics and initiatives for the joint cooperation in the field of process and manufacturing technologies, fire safety regulations, materials as well as standards and norms. Industrial keynote presentations will introduce these action fields and will provide an insight into building and infrastructure applications for composites. The meeting will furthermore provide a platform to network with companies along the entire composite value chain.


Dr. Amer Affan, CEO and founder of AFFAN Innovative Structures based in Dubai is in charge of various composite projects for buildings such as the Museum of the Future in Dubai: “We have been utilizing structural composites in construction since 2010. Composites is a truly high-tech material compared with the traditional building materials (steel, concrete, timber and aluminum) but it is still to be recognized as such in the conservative and price-sensitive building industry. AZL, particularly its location at the RWTH Aachen University and its partner companies, offers a good platform to progress the use of composites in construction.”


AZL together with more than 25 companies just completed the Joint Market and Technology Study on “New Potentials for Composite Technologies in Buildings and Infrastructure” establishing a broad knowledge on business opportunities for composite technologies in these two growing markets. In a structured approach, the study determined the key segments as well as the technologies/applications with the highest market and technological potential. Analyses of 20 market segments, investigation of 438 applications, technology analyses of 25 highlight components and 11 detailed business cases were elaborated throughout the study. Additional to requirement analyses for materials and production technologies, new concepts for efficient profitable production technologies and cost engineering analysis were developed. With the workgroup, the AZL will take this initiative a step further with the aim to build a long-term cooperation platform for composites in buildings and infrastructure markets.


Justin Jin, CEO of the Korean company AXIA Materials participated in the study and is part of the AZL Partner Network: “As producer of large thermoplastic composite sheets and composite SIP (Structural Insulated Panel), we are eager to drive composites in B&I applications with the best efficient way. The AZL study on Buildings and Infrastructure provided us a great networking with key players in this business field and opportunities to strengthen our products with the key elements from partners. The study also gave us a proper market understanding including market size/volume in numbers to prove the value of this technology to building industry. We are looking forward to following up on these first insights and to realize applications with the AZL and its partners.”


Besides the networking options, the meeting will offer the opportunity to get an insight into the activities of the AZL Network consisting of nine research institutes at the RWTH Aachen Campus and more than 80 companies from 21 countries. During an optional guided tour, participants will visit selected institutes at the RWTH Aachen Campus. The meeting is open to all interested companies and free of charge.

More Information on Meeting and the Study
Information on AZL activities in the field of buildings and infrastructure:
www.azl-lightweight-production.com/composites-buildings-infrastructure
Details and registration to first Workgroup Meeting on January 25th, 2018:
http://www.azl-lightweight-production.com/termine/1st-workgroup-meeting-buildings-infrastructure