From the Sector

Reset
43 results
Baldwin presents spray finishing system at Techtexil (c) Baldwin Technology Company Inc.
13.03.2024

Baldwin presents spray finishing system at Techtexil

Baldwin Technology Co. will join Elmatex GmbH at Techtexil (April 23-26 in Frankfurt, Germany) to demonstrate its TexCoat™ G4 precision spray finishing system.

Baldwin Technology Co. will join Elmatex GmbH at Techtexil (April 23-26 in Frankfurt, Germany) to demonstrate its TexCoat™ G4 precision spray finishing system.

With Baldwin’s system, the chemistry is precisely distributed across the textile surface and is applied only where it is required, on one or both sides of the fabric. The non-contact technology eliminates chemistry dilution in wet-on-wet processes, allowing full control of maintaining consistent chemistry coverage rates. Plus, pad bath contamination is eliminated, and changeovers are only required when there is a change of finish chemistry.
 
Furthermore, the system offers automated speed tracking, fabric-width compensation, and real-time monitoring to track system uptime, performance and chemistry usage, as well as active care alerts.
 
In addition, the TexCoat™ G4 system can process a wide range of low-viscosity water-based chemicals, such as durable water repellents, softeners, antimicrobials, flame retardants and more. Baldwin’s technology utilizes the same chemicals used in the traditional pad bath, and no special auxiliaries are required. The recipe is adjusted by increasing the concentration and reducing the pickup by a corresponding amount, so that the same level of solids is applied.
 
Some applications, such as durable water repellents, are only applied on the face of the fabric, instead of the traditional method of saturation through dipping and squeezing. Drier fabric entering the stenter means lower drying temperatures and faster process speeds. Single-side applications also open up the opportunity to process back-coated or laminated fabrics in a single pass of the stenter, instead of two passes.

Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta. Abbildung 1 © W. Barthlott, M. Mail/Universität Bonn
Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta.
14.12.2023

Self-driven and sustainable removal of oil spills in water using textiles

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

For many technical applications, unexpected solutions come from the field of biology. Millions of years of evolution led to optimized surfaces of living organisms for their interaction with the environment. Solutions - often rather unfamiliar to materials scientists and difficult to accept. The long-time routine examination of around 20,000 different species showed that there is an almost infinite variety of structures and functionalities. Some species in particular stand out for their excellent oil adsorption properties. It was shown that, e.g., leaves of the floating fern Salvinia molesta, adsorb oil, separate it from water surfaces and transport it on their surfaces (Figure 1, see also the video of the phenomon.).

The observations inspired them to transfer the effect to technical textiles for separating oil and water. The result is a superhydrophobic spacer fabric that can be produced industrially and is therefore easily scalable.

The bio-inspired textile can be integrated into a device for oil-water separation. This entire device is called a Bionic Oil Adsorber (BOA). Figure 2: Cross-section of computer-aided (CAD) model of the Bionic Oil Adsorber. The scheme shows an oil film (red) on a water surface (light blue). In the floating cotainer(gray), the textile (orange) is fixed so that it is in contact with the oil film and the end protrudes into the container. The oil is adsorbed and transported by the BOA textile. As shown in the cross-section, it enters the contain-er, where it is released again and accumulates at the bottom of the container. See also the video regarding the oil absorption on the textile, source ITA).
 
Starting from the contamination in the form of an oil film on the water surface, the separation and collection process works according to the following steps:

  • The BOA is introduced into the oil film.
  • The oil is adsorbed by the textile and separated from the water at the same time.
  • The oil is transported through the textile into the collection container.
  • The oil drips from the textile into the collection container.
  • The oil is collected until the container is emptied.

The advantage of this novel oil separation device is that no additional energy has to be applied to operate the BOA. The oil is separated from the surrounding water by the surface properties of the textile and transported through the textile driven solely by capillary forces, even against gravity. When it reaches the end of the textile in the collection container, the oil desorbs without any further external influence due to gravitational forces. With the current scale approximately 4 L of diesel can be separated from water by one device of the Bionic Oil Adsorber per hour.

  • It seems unlikely that a functionalized knitted spacer textile is cheaper than a conventional nonwoven, like it is commonly used for oil sorbents. However, since it is a functional material, the costs must be related to the amount of oil removed. In this respect, if we compare the sales price of the BOA textile with the sales prices of various oil-binding nonwovens, the former is 5 to 13 times cheaper with 10 ct/L oil removed.
    Overall, the BOA device offers a cost-effective and sustainable method of oil-water separation in contrast to conventional cleaning methods due to the following advantages:
  • No additional energy requirements, such as with oil skimmers, are necessary
  • No toxic substances are introduced into the water body, such as with oil dispersants
  • The textiles and equipment can be reused multiple times
  • No waste remains inside the water body
  • Inexpensive in terms of the amount of oil removed.
  • The team of researchers from the ITA, the University of Bonn and Heimbach GmbH was able to prove that the novel biomimetic BOA technology is surprisingly efficient and sustainable for a self-controlled separation and automatic collection of oil films including their complete removal from the water. BOA can be asapted for open water application but also for the use in inland waters. Furthermore, it is promising, that the textile can be used in various related separation processes. The product is currently being further developed so that it can be launched on the market in 2-3 years.

 

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

AGU’s HeiQ Smart Temp cycling kits at three Grand Tours Photo: AGU
Jumbo-Visma team winning at Vuelta a España with AGU’s HeiQ Smart Temp cycling kits
22.09.2023

AGU’s HeiQ Smart Temp cycling kits at three Grand Tours

Team Jumbo-Visma’s triumphant victories in Europe’s three Grand Tours of cycling, including the recent Vuelta a España, were supported by AGU’s cycling kits that are powered by the HeiQ Smart Temp thermoregulation technology.

HeiQ celebrates its collaboration with AGU, a high-performance sports gear manufacturer. Together, the companies integrated HeiQ Smart Temp technology into the jerseys of Jumbo-Visma, the triumphant team whose outstanding cyclists Jonas Vingegaard, Primoz Roglic, and Sepp Kuss won Europe’s three Grand Tours; the Tour de France, Giro d’Italia, and Vuelta a España.

HeiQ Smart Temp, an innovative thermoregulation solution, dynamically responds to body heat and moisture, providing cyclists with a cooling effect when they need it most. This technology enhances comfort and performance, making it ideal for next-to-skin apparel, sportswear, and activewear.

AGU's product developers harnessed the power of HeiQ Smart Temp to create jerseys with cooling properties. The Jumbo-Visma team's lightest-weight jersey, weighing 25% less than their regular aero shirt, keeps athletes up to 2.5°C cooler than other performance fabrics.

Team Jumbo-Visma’s triumphant victories in Europe’s three Grand Tours of cycling, including the recent Vuelta a España, were supported by AGU’s cycling kits that are powered by the HeiQ Smart Temp thermoregulation technology.

HeiQ celebrates its collaboration with AGU, a high-performance sports gear manufacturer. Together, the companies integrated HeiQ Smart Temp technology into the jerseys of Jumbo-Visma, the triumphant team whose outstanding cyclists Jonas Vingegaard, Primoz Roglic, and Sepp Kuss won Europe’s three Grand Tours; the Tour de France, Giro d’Italia, and Vuelta a España.

HeiQ Smart Temp, an innovative thermoregulation solution, dynamically responds to body heat and moisture, providing cyclists with a cooling effect when they need it most. This technology enhances comfort and performance, making it ideal for next-to-skin apparel, sportswear, and activewear.

AGU's product developers harnessed the power of HeiQ Smart Temp to create jerseys with cooling properties. The Jumbo-Visma team's lightest-weight jersey, weighing 25% less than their regular aero shirt, keeps athletes up to 2.5°C cooler than other performance fabrics.

Source:

HeiQ Materials AG

14.09.2023

Rudolf commissions Baldwin’s TexCoat™ G4 lab-scale precision spray unit

Rudolf GmbH, a provider of chemicals to the textile industry, can now offer side-by-side performance tests of the age-old “dip and squeeze” pad versus precision spray finishing with the delivery of Baldwin Technology Inc.’s TexCoat ™ G4 lab-scale unit.

Rudolf GmbH, a provider of chemicals to the textile industry, can now offer side-by-side performance tests of the age-old “dip and squeeze” pad versus precision spray finishing with the delivery of Baldwin Technology Inc.’s TexCoat ™ G4 lab-scale unit.

The new TexCoat lab-scale unit at Rudolf’s Geretsried, Germany-based Customer Solution Center, tests the sprayability of chemicals on fabrics as an additional tool to help the market transition to precision spray with confidence in the performance and sustainability of the end result.
 
With Baldwin’s innovative system, the chemistry is precisely distributed across the textile surface and is applied only where it is required, on one or both sides of the fabric. The non-contact technology eliminates chemistry dilution in wet-on-wet processes, allowing full control of maintaining consistent chemistry coverage rates.
 
Plus, pad bath contamination is eliminated, and changeovers are only required when there is a change of finish chemistry. On wet-on-dry processes, the finish is applied with 50% of the amount of water required for pad finishing. Dryer fabric entering the stenter means less water to evaporate resulting in less energy and higher production speeds.
 
More specifically, with Baldwin’s TexCoat G4, textile finishers can track and control the finishing process. Changeovers are quickly performed thanks to recipe management, including automated chemistry and coverage selection. Furthermore, the system takes speed information from the drying process to insure exact coverage regardless of any change in speed. TexCoat G4 measures every drop of chemical usage ensuring that the amount of chemical add-on is precise.
 
In addition, the TexCoat G4 system can process a wide range of low-viscosity water-based chemicals, such as durable water-repellants including PFAS-free, softeners, anti-microbials, easy care resins, flame retardants and more. Baldwin’s technology utilizes the same chemicals used in the traditional pad bath, with no special auxiliaries required.

Source:

Baldwin Technology Company Inc.

seat belts Photo Oerlikon Textile GmbH & Co. KG
07.09.2023

Oerlikon Polymer Processing Solutions at the Techtextil India 2023

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

More polyester for airbags
The yarns used in airbags are made predominantly from polyamide. As a result of increasingly diverse airbag applications and also the increasing size of the systems used, polyester is today used as well, depending on the application requirements and cost-benefit considerations. Against this background, the Oerlikon Barmag technol-ogies make an invaluable contribution. In addition to high productivity and low energy consumption, they particularly excel in terms of their stable production processes. Furthermore, they comply with every high quality standard for airbags, which – as in the case of virtually all other textile products used in vehicle construction – must provide the highest level of safety for vehicle occupants - without any loss of function in any climate and for the lifetime of the vehicle

Buckle up!
Seat belts have to withstand tensile forces in excess of three tons and simultaneously stretch in a controlled manner in emergencies in order to reduce the load in the event of impact. A seat belt comprises approximately 300 filament yarns, whose individual, high-tenacity yarn threads are spun from around 100 individual filaments. “With our unique, patented Single Filament Layer Technology, we offer a sophisticated and simultaneously gentle high-tenacity (HT) yarn process for manufacturing these lifesavers and other applications made from industrial yarn”, explains André Wissenberg, Head of Marketing.

Road reinforcement using geotextiles
Low stretch, ultra-high tenacity, high rigidity – industrial yarns offer outstanding properties for the demand-ing tasks carried out by geotextiles; for instance, as geogrids in the base course system under asphalt. Normally, geotextiles have extremely high yarn titers of up to 24,000 denier. Oerlikon Barmag system concepts simultaneously manufacture three filament yarns of 6,000 denier each. Due to the high spinning titers, fewer yarns can be plied together to the required geo-yarn titer in a more cost- and energy-efficient manner.

hycuTEC –  quantum leap for filter media
In the case of its hycuTEC hydro-charging solution, Oerlikon Neumag offers a new technology for charging nonwovens that increases filter efficiency to more than 99.99%. For meltblown producers, this means material savings of 30% with significantly superior filter performance. For end users, the consequence is noticeably improved comfort resulting from significantly reduced breathing resistance. With its considerably lower water and energy consumption, this new development is also a future-proof, sustainable technology.

Source:

Oerlikon Textile GmbH & Co. KG

Devan’s R-vital NTL with high durability (c) Devan Chemicals NV
11.08.2023

Devan’s R-vital NTL with high durability

Devan, part of Pulcra Chemicals, has announced its R-Vital NTL technology.

R-Vital NTL enables textile manufacturers to boost textiles with a versatile range of micro-encapsulated active ingredients. This functional finish provides added value for textiles and allows manufacturers to create products that differentiate them from competitors. Furthermore, the bio-based and biodegradable well-being technology achieves a durability of 50 washes.

The main concept behind micro-encapsulation is that active ingredients, present on textiles, are gradually released on the skin. When using the textiles or while wearing the clothing, the microcapsules burst by friction and release their assets. Since not all capsules break at the same time, a continuous and gradual release of the actives is obtained.

The natural range comprises five distinct products, each with specific attributes:

Devan, part of Pulcra Chemicals, has announced its R-Vital NTL technology.

R-Vital NTL enables textile manufacturers to boost textiles with a versatile range of micro-encapsulated active ingredients. This functional finish provides added value for textiles and allows manufacturers to create products that differentiate them from competitors. Furthermore, the bio-based and biodegradable well-being technology achieves a durability of 50 washes.

The main concept behind micro-encapsulation is that active ingredients, present on textiles, are gradually released on the skin. When using the textiles or while wearing the clothing, the microcapsules burst by friction and release their assets. Since not all capsules break at the same time, a continuous and gradual release of the actives is obtained.

The natural range comprises five distinct products, each with specific attributes:

  • Aloe vera: Known for its skin-smoothing and softening properties.
  • Avocado seed oil: Known for its skin-moisturizing capabilities.
  • CBD: Known for its relaxation properties.
  • Multivitamin: A blend of provitamin D, vitamins C and E, and ginger.
  • Vitamin E: Known to offer protection against free radicals and premature aging
Source:

Devan Chemicals NV

Freudenberg complements Range of Technical Packaging Textiles (c) Freudenberg Performance Materials Holding GmbH
28.07.2023

Freudenberg complements Range of Technical Packaging Textiles

Freudenberg Performance Materials (Freudenberg) is launching its latest innovation Evolon® Ultra Smooth to serve the specific packaging needs of technical industries.

Evolon® Ultra Smooth fabrics are low-linting, strong and hard-wearing. The new materials are designed for industrial parts and components which require low-friction, sliding behavior during the part packing and handling procedures. Furthermore, they are durably hydrophobic and available in different weights. The reusable textile containers made of Evolon® Ultra Smooth can be used in various industries to pack and transport even very heavy and sensitive parts without damage.

The Evolon® Ultra Smooth materials have a point-sealed patterned white surface which is very different from the standard Evolon® packaging textiles and which makes them easily identifiable.  

Freudenberg Performance Materials (Freudenberg) is launching its latest innovation Evolon® Ultra Smooth to serve the specific packaging needs of technical industries.

Evolon® Ultra Smooth fabrics are low-linting, strong and hard-wearing. The new materials are designed for industrial parts and components which require low-friction, sliding behavior during the part packing and handling procedures. Furthermore, they are durably hydrophobic and available in different weights. The reusable textile containers made of Evolon® Ultra Smooth can be used in various industries to pack and transport even very heavy and sensitive parts without damage.

The Evolon® Ultra Smooth materials have a point-sealed patterned white surface which is very different from the standard Evolon® packaging textiles and which makes them easily identifiable.  

Evolon® Ultra Smooth materials protect the surfaces of industrial and automotive parts by avoiding micro-scratches or lint contamination. By using Evolon® Ultra Smooth reusable packaging to transport parts with highly-sensitive surfaces, customers reduce the number of damaged parts and the reject rate. The innovation is available worldwide. As Evolon® Ultra Smooth is 100% made in Europe, European customers benefit from even greater flexibility in the supply chain and quick go-to-market.

Source:

Freudenberg Performance Materials Holding GmbH

Graphik Freudenberg Performance Materials
10.01.2023

Freudenberg: Technical packaging textiles with less CO2 emissions

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

Evolon® microfilament textiles have a small carbon footprint because their manufacturing process uses low CO2 energy sources. The fabrics are lightweight and can be reused throughout entire production programs, e.g. of a car model when it is about the automotive industry. Furthermore, the new Evolon® RE fabrics contain up to 85% of recycled PET which is produced in-house out of post-consumer PET bottles.

Evolon® textiles are suitable for reusable technical packaging, which eliminate the use of thousands of disposable packaging materials. Evolon® fabrics offer scratch-free, lint-free, high-end surface protection for molded plastic parts, painted parts and other sensitive industrial and automotive parts during transport. This contributes to lower the scrap rate of parts and provide both financial and ecological benefits. By using Evolon® reusable packaging to transport highly-sensitive parts, customers can increase their efficiency and save resources.

Source:

Freudenberg Performance Materials

(c) Fraunhofer ICT
06.01.2023

Fraunhofer CPM develop programmable material for ergonomic lying position

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Materials and microstructuring
Materials for applications requiring specific changes to stiffness or shape are being developed by researchers from Fraunhofer CPM, which is formed of six core institutes with the aim of designing and producing programmable materials. So, how can we program materials? “Essentially, there are two key areas where adjustments can be made: the base material – thermoplastic polymers in the case of mattresses and metallic alloys for other applications, including shape memory alloys – and, more specifically, the microstructure,” explains Dr. Heiko Andrä, spokesperson on the topic at the Fraunhofer Institute for Industrial Mathematics ITWM, one of the Fraunhofer CPM core institutes. “The microstructure of these metamaterials is made up of unit cells that consist of structural elements such as small beams and thin shells.” While the size of each unit cell and its structural elements in conventional cellular materials, like foams, vary randomly, the cells in the programmable materials are also variable – but can be precisely defined, i.e., programmed. This programming can be made, for example, in such a way that pressure on a particular position will result in specific changes at other regions of the mattress, i.e., increase the size of the contact surface and provide optimal support to certain areas of the body.

Materials can also react to temperature or humidity
The change in shape that the material should exhibit and the stimuli to which it reacts - mechanical stress, heat, moisture or even an electric or magnetic field - can be determined by the choice of material and its microstructure.

The journey to application
A single piece of material can take the place of entire systems of sensors, regulators and actuators. The goal of Fraunhofer CPM is to reduce the complexity of systems by integrating their functionalities into the material and reducing material diversity. We always have industrial products in mind when developing the programmable materials. As such, we take mass production processes and material fatigue into account, among other things,” says Franziska Wenz, deputy spokesperson on the topic at the Fraunhofer Institute for Mechanics of Materials IWM, another core institute of Fraunhofer CPM. The initial pilot projects with industry partners are also already underway. The research team expects that initially, programmable materials will act as replacements for components in existing systems or be used in special applications such as medical mattresses, comfortable chairs, variable damping shoe soles and protective clothing. “Gradually, the proportion of programmable materials used will increase,” says Andrä. Ultimately, they can be used everywhere – from medicine and sporting goods to soft robotics and even space research.

Source:

Fraunhofer ITWM

24.11.2022

EURATEX: A price cap at 275€/MWh would be meaningless

The plan of the European Commission to propose a price cap on wholesale gas price at 275€/MWh would be a bitter disappointment for the European textiles and clothing manufacturers, said EURATEX.

November 22nd, EURATEX stated in a letter to EC President, Ursula von der Leyen, that any price cap above the level of 80€euro/MWh would not help the EU industry – the textile sector in particular – to survive the current crisis. Indeed as early as July 2021, the wholesale gas price in the EU was below 30€/MWh. Now, the EU industry is facing gas and energy prices that have exceeded any coping capacity: from the record-high 320€/MWh last August, the price has reached to 127€/MWh today. Still, it is more than 300% than the business as usual prices.

The plan of the European Commission to propose a price cap on wholesale gas price at 275€/MWh would be a bitter disappointment for the European textiles and clothing manufacturers, said EURATEX.

November 22nd, EURATEX stated in a letter to EC President, Ursula von der Leyen, that any price cap above the level of 80€euro/MWh would not help the EU industry – the textile sector in particular – to survive the current crisis. Indeed as early as July 2021, the wholesale gas price in the EU was below 30€/MWh. Now, the EU industry is facing gas and energy prices that have exceeded any coping capacity: from the record-high 320€/MWh last August, the price has reached to 127€/MWh today. Still, it is more than 300% than the business as usual prices.

The very existence of the European industry is at stake and with it the European sustainability agenda – and Europe’s capacity to implement it. Furthermore, Europe will lose its strategic autonomy, which guarantees essential goods and services are made available on the European Internal Market. If we continue on this path, the EU will soon become totally dependent on foreign imports with no leverage to implement its sustainability agenda, let alone lead the transition to a circular economy on the international stage.

At present, the EU industry is facing a dire international competition with the industry in China, India and the US working at energy prices of around 10$/MWh. In addition, these competitors are benefitting of sky-high subsidies from their own governments: the rollout of the US $369bln industrial subsidy scheme is just the latest example.

EURATEX Director General, Dirk Vantyghem, believes that “while the EU Industry is under immense, unprecedented pressure, a price cap at 275€/MWh would be meaningless: the European industry will be permanently pushed out on the market. The industry is at the heart of the European way of life and the fundament of our social market economy. The EU must save its industry to save Europe. The moment to act is now.”

More information:
price gap energy crisis Euratex
Source:

EURATEX

comfortemp® nature Lyocell HO 60x Bild Freudenberg
comfortemp® nature Lyocell HO 60x
16.11.2022

Freudenberg presents sustainable product innovations at ISPO 2022

Freudenberg Performance Materials Apparel (Freudenberg) as a leading specialist in woven, knitted and non-woven interlinings and thermal insulation, presents sustainable solutions for sportswear and related product segments of all kinds in Munich.

Trade show visitors will experience a wide range of innovative and sustainable interlinings for active sports outfits, stretch interlinings for yoga wear, Pilates & Co, and thermal insulations that combine perfect outdoor wearing comfort with high warmth retention. With comfortemp® brand thermal insulations and the Active Range, Freudenberg presents a complete package for outdoor and sportswear for winter sports: thermal insulations, interlinings, tapes, lining fabrics and adhesive solutions.

Freudenberg Performance Materials Apparel (Freudenberg) as a leading specialist in woven, knitted and non-woven interlinings and thermal insulation, presents sustainable solutions for sportswear and related product segments of all kinds in Munich.

Trade show visitors will experience a wide range of innovative and sustainable interlinings for active sports outfits, stretch interlinings for yoga wear, Pilates & Co, and thermal insulations that combine perfect outdoor wearing comfort with high warmth retention. With comfortemp® brand thermal insulations and the Active Range, Freudenberg presents a complete package for outdoor and sportswear for winter sports: thermal insulations, interlinings, tapes, lining fabrics and adhesive solutions.

The independent jury has nominated the 100 percent biodegradable thermal insulation comfortemp® nature Lyocell HO 60x, made from Lyocell regenerated fibers, for the Textrends Award fall/winter 2024/25 season. The award is given exclusively to innovative products that are groundbreaking for the development of the textile industry. comfortemp® nature Lyocell HO 60x has a variety of extraordinary performance characteristics as a high warmth retention, bacteria inhibiting and fast drying, furthermore water repellent. High wearing comfort and the assurance of a perfect moisture balance characterize the volume fleece as ideal for the application in sportswear.

Freudenberg is presenting its entire European and global product portfolio from its "House of Sustainability" at ISPO. The "House of Sustainability" supports Freudenberg in minimizing its ecological footprint and maximizing its ecological handprint. For this purpose, the company's own manufacturing processes are designed to minimize the impact on the environment. In addition, products are developed to help customers produce more sustainably.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

16.11.2022

CHT: From plastic waste to textile finishing: ARRISTAN rAIR

  • made out of recycled PET flakes and recyclable again
  • suited for finishing recycled yarns and fabrics
  • moisture management in sports and active wear

For the sustainable use of resources, the CHT Group has developed the product ARRISTAN rAIR, according to the principles of the circular economy. Here, plastic waste is converted into a valuable textile finishing product to achieve, for example, optimal moisture management in sports and active wear. Other areas of application include socks and tights in the clothing sector, filtration media and nonwovens in the technical textiles sector, and pillows and curtains in home textiles.

Since ARRISTAN rAIR is made out of recycled PET flakes, it is suited for finishing recycled yarns and fabrics which are subsequently recyclable again.

The hydrophilizing agent ARRISTAN rAIR is characterized by its fast-drying properties in combination with excellent soil release and thermoregulation. It therefore offers, especially in the field of functional textiles, optimal functionalities for high-quality and durable sportswear.

  • made out of recycled PET flakes and recyclable again
  • suited for finishing recycled yarns and fabrics
  • moisture management in sports and active wear

For the sustainable use of resources, the CHT Group has developed the product ARRISTAN rAIR, according to the principles of the circular economy. Here, plastic waste is converted into a valuable textile finishing product to achieve, for example, optimal moisture management in sports and active wear. Other areas of application include socks and tights in the clothing sector, filtration media and nonwovens in the technical textiles sector, and pillows and curtains in home textiles.

Since ARRISTAN rAIR is made out of recycled PET flakes, it is suited for finishing recycled yarns and fabrics which are subsequently recyclable again.

The hydrophilizing agent ARRISTAN rAIR is characterized by its fast-drying properties in combination with excellent soil release and thermoregulation. It therefore offers, especially in the field of functional textiles, optimal functionalities for high-quality and durable sportswear.

Source:

CHT Germany GmbH

Photo: Bogner
11.08.2022

BOGNER Golf Collection Fall/Winter 2022

The BOGNER Golf collection combines an active lifestyle with luxurious comfort and a hint of glamour. Highly functional essentials are the best equipment for long days on the golf course: a waterproof finish and taped seams offer protection from the rain; high-performance Thermore® insulation gives mid-layers moisture-regulating, quick-drying and warming qualities; Powerstretch guarantees freedom of movement, and the lightweight quality of tech jersey ensures the best in comfort.

Each BOGNER golf collection is used to layer styles individually to create the perfect golf outfit according to the needs and regardless of the season. The selection of pants, polos, skirts, jackets and accessories combine sporty appeal and timeless style. Modern contrast stripes, monochrome elegance, neutral colors and sporty silhouettes – true to the motto Athluxury Sports Fashion.

The BOGNER Golf collection combines an active lifestyle with luxurious comfort and a hint of glamour. Highly functional essentials are the best equipment for long days on the golf course: a waterproof finish and taped seams offer protection from the rain; high-performance Thermore® insulation gives mid-layers moisture-regulating, quick-drying and warming qualities; Powerstretch guarantees freedom of movement, and the lightweight quality of tech jersey ensures the best in comfort.

Each BOGNER golf collection is used to layer styles individually to create the perfect golf outfit according to the needs and regardless of the season. The selection of pants, polos, skirts, jackets and accessories combine sporty appeal and timeless style. Modern contrast stripes, monochrome elegance, neutral colors and sporty silhouettes – true to the motto Athluxury Sports Fashion.

Source:

Willy Bogner GmbH & Co. KGaA

Foto: Freudenberg Performance Materials
11.08.2022

Freudenberg Friction Inserts at WindEnergy Hamburg 2022

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

FFI help to improve the reliability of connections and thus of the entire wind turbine. Furthermore, they eliminate slipping and prevent fretting of connections.

Other examples of applications for FFI are highly loaded flange connections between the rotor shaft and gearbox, connections between the main bearing and the machine carrier housing, the gearbox to generator, or at the pitch gear or ring gear. They increase the friction co-efficient between two components.

Source:

Freudenberg Performance Materials

(c) Euratex
17.05.2022

EURATEX 2022 Spring Report: Exports of textile and clothing articles +10.6%

EURATEX has just released its Spring report, offering a detailed insight into trade figures for the European textile and apparel industry in 2021. The numbers are encouraging: comparing with the dramatic corona-year 2020, EU exports of textile and clothing articles increased by +10.6%, while imports dipped by -7.5%. As a result, the EU trade deficit improved, even it remains significant (- €48 billion).

Furthermore, import prices went slightly down in clothing and dropped in textiles, following a strong decrease of Chinese import prices of face masks and protective medical supplies.

The boost in exports was mainly due to strong performance on the Swiss, Chinese and US markets. On the other side, EU sales of textile & clothing to the United Kingdom fell sharply (-23%), due to Brexit new requirements, customs’ delays and shortage of truck drivers.  Imports from the EU top supplier, China, plunged by -28%, corresponding to €13 billion. Similarly, textile and clothing imports from the United Kingdom recorded a sharp decrease over the period (-48%, equal to €-3 billion).

EURATEX has just released its Spring report, offering a detailed insight into trade figures for the European textile and apparel industry in 2021. The numbers are encouraging: comparing with the dramatic corona-year 2020, EU exports of textile and clothing articles increased by +10.6%, while imports dipped by -7.5%. As a result, the EU trade deficit improved, even it remains significant (- €48 billion).

Furthermore, import prices went slightly down in clothing and dropped in textiles, following a strong decrease of Chinese import prices of face masks and protective medical supplies.

The boost in exports was mainly due to strong performance on the Swiss, Chinese and US markets. On the other side, EU sales of textile & clothing to the United Kingdom fell sharply (-23%), due to Brexit new requirements, customs’ delays and shortage of truck drivers.  Imports from the EU top supplier, China, plunged by -28%, corresponding to €13 billion. Similarly, textile and clothing imports from the United Kingdom recorded a sharp decrease over the period (-48%, equal to €-3 billion).

Director General Dirk Vantyghem commented: “the 2021 export figures, presented in this Spring report, confirm that EURATEX members have gained momentum; even if energy prices are causing some serious short-term disruptions, our long-term ambition remains to be a world leader on sustainable textiles.”

The international trade dimension is indeed critical for the competitiveness of the European textile ecosystem, and needs to be fully embedded in the EU’s Strategy for Sustainable and Circular Textiles. The Commission insists that “all textile products placed on the EU market, are durable, free of hazardous substances, produced respecting social standards…” This is an essential condition to create a level playing field between all textile and apparel companies, regardless of their production base. With €100 billion of imports, and over 20 billion of “foreign” textile items put on the Single Market, this requires a dramatic upscaling of market surveillance, without however disrupting fluid supply chains.

Looking at the impact of war in Ukraine, EURATEX has strongly condemned the Russian aggression, and offered support to the Ukrainian textile industry. Ukraine offers valuable sourcing opportunities for European textile and apparel brands, as part of a broader nearshoring trend, which seems to emerge from the trade figures.

More information:
Euratex export
Source:

Euratex

Mobile robot system for automated loading of a bobbin creel (c) STFI
12.05.2022

STFI with sustainable and digital innovations at Techtextil 2022

The Saxon Textile Research Institute (STFI) will be presenting innovative highlights from research and development at Techtextil 2022, the international trade fair for technical textiles and nonwovens. In addition to a warp-knitted textile façade greening in a modular system and textile lightweight construction elements for the building sector made from hemp as a renewable raw material, the STFI will also be showing innovations from nonwovens research. The project optiformTEX is an example of the nonwovens competence: in this project, the mass per unit area was specifically influenced for the production of semi-finished products in the automotive sector. Furthermore, the Chemnitz Institute exhibits an ecological foam coating for protective textiles. Central highlight of the STFI's presence at the fair is also a mobile robot system, which demonstrates the automated loading of a small-scale bobbin creel.

The Saxon Textile Research Institute (STFI) will be presenting innovative highlights from research and development at Techtextil 2022, the international trade fair for technical textiles and nonwovens. In addition to a warp-knitted textile façade greening in a modular system and textile lightweight construction elements for the building sector made from hemp as a renewable raw material, the STFI will also be showing innovations from nonwovens research. The project optiformTEX is an example of the nonwovens competence: in this project, the mass per unit area was specifically influenced for the production of semi-finished products in the automotive sector. Furthermore, the Chemnitz Institute exhibits an ecological foam coating for protective textiles. Central highlight of the STFI's presence at the fair is also a mobile robot system, which demonstrates the automated loading of a small-scale bobbin creel.

Highlights at Techtextil 2022
The greened façade tile is a system with which large building surfaces can be cost-effectively greened through a simple, modular segment structure. In addition to insulating the building, the system has been created to meet the design requirements of a modern city centre; low-maintenance greening is made possible through functional integration in the textile carrier layer and coordinated plant selection.

Moulded components made of natural fibre nonwovens are increasingly used in the automotive sector. Conventional nonwovens currently have uniform masses per unit area. Technical solutions for load-oriented component reinforcement and the resulting optimised use of materials represent an enormous economic potential. The basic idea of “optiformTEX” was therefore to specifically influence the mass per unit area distribution in the pile before the semi-finished product is consolidated. As a result, a textile-technological process and the corresponding plant component were successfully developed.

Future-oriented materials are offered by developments from the field of renewable raw materials in combination with bio-based resin systems: In the “Gro-Coce” project, an innovative ceiling system was developed by combining sustainable building products and methods. Currently, a high-performance hemp-based semi-finished product as well as the steps for its reproducible production by means of textile surface formation is developed by the research team. Initial application and load tests of the hemp-based semi-finished products on wooden beams confirmed the high performance potential of the natural fibre materials.

Special functional textiles are based on composite materials with coatings or membranes. The previous production of the coatings/membranes poses ecological and health risks. At STFI, solvent-free, purely aqueous coating systems and a technology for their application were therefore developed for the protective textile sector, resulting in a breathable, waterproof and wash-resistant textile coating.

The central highlight of the STFI's presence at the fair is a mobile robot system, which demonstrates the automated loading of a small-scale bobbin creel. At the STFI, the robot is part of the “textile factory of the future”, where a play mat is woven and processed step by step along the textile chain.

(c) Cobra International
26.04.2022

COBRA International: Highlights Diversification into New Market Sectors at JEC World 2022

Cobra International, a leading manufacturer of advanced composite products for the watersports, automotive, marine, and industrial sectors, will highlight recent diversification into new composite markets at JEC World 2022, with exhibits ranging from VTOL drones to carbon fibre prosthetics.  Cobra will also demonstrate how it is working alongside automotive and water sports customers to further enhance the sustainability of products in these sectors.

High Volume Production Capacity for the UAV sector
Cobra will display a wing from the Swiftlet UAV. This compact tactical fixed wing UAV platform has a 5.5m wingspan and was developed by the Royal Thai Air Force and National Science and Technology Development Agency (NSTDA) for survey, monitoring and search and rescue operations. Cobra manufactured the 32kg Swiftlet composite airframe using a combination of CNC cut carbon sandwich internal structure and PVC foam sandwich skins using both high grade glass fibre and carbon fibre reinforcements.  

Cobra International, a leading manufacturer of advanced composite products for the watersports, automotive, marine, and industrial sectors, will highlight recent diversification into new composite markets at JEC World 2022, with exhibits ranging from VTOL drones to carbon fibre prosthetics.  Cobra will also demonstrate how it is working alongside automotive and water sports customers to further enhance the sustainability of products in these sectors.

High Volume Production Capacity for the UAV sector
Cobra will display a wing from the Swiftlet UAV. This compact tactical fixed wing UAV platform has a 5.5m wingspan and was developed by the Royal Thai Air Force and National Science and Technology Development Agency (NSTDA) for survey, monitoring and search and rescue operations. Cobra manufactured the 32kg Swiftlet composite airframe using a combination of CNC cut carbon sandwich internal structure and PVC foam sandwich skins using both high grade glass fibre and carbon fibre reinforcements.  

Sustainability Options for Automotive and Watersports
Sustainability has a been a key focus for the Cobra Waterports division and CAC, the Cobra automotive business unit. At JEC World 2022, Cobra will showcase the increasing material and process options it has developed with both bio-resin and natural fibre reinforcements variants presented alongside more traditional carbon fibre parts.

Visitors will be able to get up close to a new Bio SUP Wingfoil board featuring a basalt, flax, bamboo and GreenPoxy bio-epoxy construction created for partners NSP, as well as state-of-the-art compression moulded prepreg foils. Cobra’s first fully recyclable surfboard incorporating the Recyclamine® resin technology that Cobra was recognised for in the 2020 JEC Innovation Awards will also be on display alongside a new Audi e-tron foil by Aerofoils – the world’s safest electric hydrofoil board.

The CAC team (Automotive Business Unit of Cobra) will present a set of OEM mirror cap parts that showcase a range of carbon SMC, woven visual carbon, pure woven visual flax, hybrid flax-carbon and painted flax construction options for the same component.  Clear carbon aesthetic and structural parts including CAC made M-carbon components for the BMW S 1000 RR Motorcycle will furthermore underline the high quality and eye-for-detail for which CAC is renowned.

Carbon Prosthetics
An entirely new composite application for the company, Cobra will also show two composite prosthetic devices at JEC which were productionised by the in-house design and development team. Working alongside a leading Thai university and a medical device OEM, Cobra created a rapid and cost effective series production process for a lightweight carbon fibre prosthetic foot. In another example of lightweight composites creating major quality of life improvements, Cobra has also designed and manufactured a carbon and glass fibre prepreg foot support for Elysium Industries.

More information:
COBRA Composites UAV
Source:

Cobra International

Snuggle Implements Kornit Atlas MAX Systems to Support Sustained Growth in Sustainable, Efficient Production on Demand (c) Kornit Digital
Kornit XDi at Snuggle
14.03.2022

Snuggle Implements Kornit Atlas MAX Systems to Support Sustained Growth in Sustainable, Efficient Production on Demand

  • “The Atlas MAX technology provides a marked improvement in quality; it gives you that edge and something different."

Kornit Digital Ltd. (NASDAQ: KRNT), a worldwide market leader in sustainable, on-demand, digital textile production technologies, announced today that Peterborough, United Kingdom-based print provider Snuggle has installed two Kornit Atlas MAX systems for superior versatility in their on-demand fulfilment production operations. A Kornit customer since 2017, the addition of Kornit’s most advanced direct-to-garment production systems reflects Snuggle’s sustained profitability and growth since that time.

  • “The Atlas MAX technology provides a marked improvement in quality; it gives you that edge and something different."

Kornit Digital Ltd. (NASDAQ: KRNT), a worldwide market leader in sustainable, on-demand, digital textile production technologies, announced today that Peterborough, United Kingdom-based print provider Snuggle has installed two Kornit Atlas MAX systems for superior versatility in their on-demand fulfilment production operations. A Kornit customer since 2017, the addition of Kornit’s most advanced direct-to-garment production systems reflects Snuggle’s sustained profitability and growth since that time.

Kornit Atlas MAX is the first digital direct-to-garment production system to feature XDi technology, which empowers users to simulate embroidery, dye sublimation, vinyl heat transfer, and 3D graphic effects with one single-step platform, using Kornit’s eco-friendly NeoPigment™ inks. Delivering superior graphic detail, consistent retail quality, and low and consistent cost per print to ensure profitability in any quantity, the system is engineered for adaptability to long-term automation needs, which helps businesses like Snuggle address the ongoing labour shortage.

With seven Kornit Digital systems in total, Snuggle is now able to produce up to 12,000 units daily, and has expanded its production space more than threefold since first investing in the technology. While the business does include an embroidery unit, Snuggle rejected screen printing due to its slow setup process, inefficient sampling for bulk orders, and the inability to generate profit from smaller custom orders. Furthermore, digitally-enabled production on demand was critical to their adapting when the pandemic economy caused many customers to cancel bulk orders suddenly.

More information:
Kornit Digital Atlas MAX
Source:

Kornit Digital

(c) Sitip
21.01.2022

Sitip presents COSMOPOLITAN Fashion-tech fabrics at Milano Unica

Sistema Moda Italia confirms its Innovation Area for the 34th edition of Milano Unica, an area which responds to the growing demand for innovation in products, processes and services able to give specific performances or made with innovative and sustainable systems. And right here we find Sitip’s technical fabrics for clothing, with the COSMOPOLITAN Fashion-tech fabrics collection, modern and comfortable, dedicated to contemporary urbanwear/sportswear style and which perfectly meets the new needs required by the market and by the final consumer: performance and design.

COSMOPOLITAN Fashion-tech is declined into urbanwear through the sartorial technical fabrics that the company has defined Techno Sartorial: a tailoring that combines flawless cuts with exceptional fabric performance.

Sistema Moda Italia confirms its Innovation Area for the 34th edition of Milano Unica, an area which responds to the growing demand for innovation in products, processes and services able to give specific performances or made with innovative and sustainable systems. And right here we find Sitip’s technical fabrics for clothing, with the COSMOPOLITAN Fashion-tech fabrics collection, modern and comfortable, dedicated to contemporary urbanwear/sportswear style and which perfectly meets the new needs required by the market and by the final consumer: performance and design.

COSMOPOLITAN Fashion-tech is declined into urbanwear through the sartorial technical fabrics that the company has defined Techno Sartorial: a tailoring that combines flawless cuts with exceptional fabric performance.

For the production of contemporary urbanwear, thought for the city, Sitip showcases the man’s suit made of jacket+trousers in warp-knit Cosmopolitan Citylife fabric: bi-stretch nylon with UV protection (UPF 50+), quick drying, easy care and skin comfort. Highly performing, breathable, comfortable, insulating and with an exceptional fit: incredible elegance and comfort that enhance the contemporary urbanwear style.

For women, Sitip presents COSMOPOLITAN Fashiontech fabrics dedicated to athleisure, with leggings made - for the summer version - in Cosmopolitan London, a bi-stretch circular knitted fabric, no seethrough, breathable, comfortable on the skin with UV protection (UPF 50+), with easy care and perfect shape retention, and - for the winter version - in Cosmopolitan Paris GZ, a circular knitted fabric raised on the reverse side, with the same properties as the previous one and thermoregulation characteristics.

The Instinct fabric is available in the recycled and raised version NATIVE INSTINCT GZ: a GRS certified thermal fabric made with pre-consumer recycled yarns, bi-stretch, breathable, resistant to pilling, easy care and high comfort, ideal for sporty knitwear and urbanwear part of the NATIVE SUSTAINABLE TEXTILES family, the Sitip fabric collection produced with GRS certified recycled yarns and low environmental impact chemicals with a lower consumption of natural resources , able to respect the environmental and social criteria extended to all the stages of the production chain, including the traceability of raw materials. Sitip also operates in line with international certifications such as OEKO-TEX®, BLUESIGN®, GRS and adheres to the ZDHC gateway, adding to these an ISO 14001 environmental management system, which certifies the company’s commitment to reducing pollution risks.

Source:

Sitip / Valeria Rastrelli

Photo: Messe Frankfurt
08.11.2021

Techtextil India: Hybrid exhibition in November

India’s leading trade fair in technical textiles, nonwovens and composites, Techtextil India, is ready to make a comeback through its hybrid edition launch from 25 – 27 November 2021. With a series of live product demonstrations, insightful knowledge sessions and B2B networking opportunities, the multimodal trade fair will provide a strong avenue for technical textile professionals to reimagine their business potential.
 
After a successful grand edition in 2019, Techtexil India is all set to return for the very first time since the pandemic. The three-day exhibition will be hosted in a hybrid format from 25 – 27 November 2021, Bombay Exhibition Centre, Goregaon which will unite technical textile players from across its varied application areas. Top technical textile brands including JB Ecotex, PARK Nonwoven, Loyal Textiles Lenzing, Mehala, Meera Industries, amongst many others will showcase their latest products at the hybrid fair. Moreover, leading German brands exhibiting at Techtextil India 2021 will be hosted under the German pavilion.

India’s leading trade fair in technical textiles, nonwovens and composites, Techtextil India, is ready to make a comeback through its hybrid edition launch from 25 – 27 November 2021. With a series of live product demonstrations, insightful knowledge sessions and B2B networking opportunities, the multimodal trade fair will provide a strong avenue for technical textile professionals to reimagine their business potential.
 
After a successful grand edition in 2019, Techtexil India is all set to return for the very first time since the pandemic. The three-day exhibition will be hosted in a hybrid format from 25 – 27 November 2021, Bombay Exhibition Centre, Goregaon which will unite technical textile players from across its varied application areas. Top technical textile brands including JB Ecotex, PARK Nonwoven, Loyal Textiles Lenzing, Mehala, Meera Industries, amongst many others will showcase their latest products at the hybrid fair. Moreover, leading German brands exhibiting at Techtextil India 2021 will be hosted under the German pavilion.

The conjunction between the physical exhibition and the online business matchmaking platform will make way to a wider range of networking. Local and international visitors who are unable to attend the venue will be able to witness the exhibition virtually through the ‘MFI virtual app’ which will host live knowledge sessions and product demonstrations for visitors. The two-day multimodal trade fair allows the visitors to search for specific products like fibers, yarns, nonwovens, machinery, coated textiles with easy-to-use filters further to which they can share their query or connect directly with the respective exhibitors.

At the same time, visitors attending the venue will be welcomed under a well-organised physical exhibition following the government-authorised safety protocols of ‘MFI SafeConnect’. These protocols will enable visitors to engage in secure face-to-face interactions with exhibitors and witness the latest technical textile technologies and innovations in-person.

Alliance with the Government of Tamil Nadu
In a bid to strengthen indigenous production through the state and attract investors, the nodal agency for investment promotion and facilitation for the Government of Tamil Nadu – Guidance has signed up for Techtextil India 2021. Furthermore, technical textile players from Tamil Nadu such as Cyber Textiles India Pvt Ltd, Jayashree Spun Bond, Lenzing Ag India, Liester Technologies, Loyal Textile Mills Ltd, Milltex Engineers Pvt Ltd, Superfil Products Pvt Ltd, Uster Technologies (India) Pvt Ltd have also confirmed their participation for the exhibition.
Announcing a close co-operation with Messe Frankfurt India for the 2021 edition, Ms Pooja Kulkarni, IAS MD & CEO, Guidance Tamil Nadu, stated: “While there are several inherent advantages for the growth of technical textiles in Tamil Nadu specifically, many raw materials used in the production of sanitary products, artificial ligaments, seat belt webbings, airbags are still heavily imported. In this context, the alliance with Techtextil India Forum can help us reduce import dependency and bring investments in R&D, manufacturing, innovation by partnering with global technical textiles companies.”

With 50% of India’s textile mills in Tamil Nadu and complementary clusters of knitting, weaving and medical devices manufacturing in Coimbatore, and Tiruppur, the region provides immense opportunities for Meditech investments. Two petrochemical and refinery units – One in Cuddalore and another in Nagapattinam by CPCL is in the process of being established in Tamil Nadu. These units will enable availability of MMF raw material for the textile industry across the state. Hence, manufacturing in Tamil Nadu can be a win-win arrangement for investors as India provides access to the burgeoning market as well.

International expertise with German pavilion
Techtexil India 2021 edition will feature an exclusive German Pavilion showcasing products and technologies from top German manufacturers, including Autefa Solution Germany GmbH, DILO Systems GmbH, Emtec Electronic GmbH, Georg Sahm GmbH & Co, Karl Mayer Verwaltungsgesellschaft mbH, Merz Maschinenfabrik GmbH and Oerlikon Barmag Zweigniederlassung der Oerlikon Textile GmbH & Co.

Source:

Messe Frankfurt (HK) Ltd