From the Sector

Reset
69 results
Freudenberg showcases sustainable solutions at Techtextil 2024 (c) Freudenberg Performance Materials
Freudenberg´s sustainable carrier material for green roofs on urban buildings is made from renewable resources
15.03.2024

Freudenberg showcases sustainable solutions at Techtextil 2024

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Biocarrier for green roofs
Freudenberg is showcasing a sustainable carrier material for green roofs on urban buildings at the trade fair. The carrier is made from polylactide, i.e. from renewable resources. When filled with soil, it provides a strong foothold to root systems, enabling the growth of lightweight sedum blankets that can be rolled out to provide instant green roofs. These roofs not only help counter urban heat, they also improve stormwater management and regulate indoor temperatures.

From textile waste to padding
The company extended its circular thermal wadding product range with the release of comfortemp® HO 80xR circular, a wadding made from 70 percent recycled polyamide from discarded fishing nets, carpet flooring and industrial plastic. Because polyamide 6, also known as nylon, retains its performance characteristics after multiple recycling processes, the fibers can be used again and again to manufacture performance sporting apparel, leisurewear and luxury garments.

Packaging solutions with various sustainability benefits
Freudenberg is also showcasing products for sustainable packaging and filtration solutions. The long-lasting Evolon® technical packaging series is a substitute for disposable packaging used in the transport of sensitive industrial items such as automotive parts. The material is made from up to 85 percent recycled PET. A further highlight at Techtextil are Freudenberg’s fully bio-based solutions for manufacturing dessicant bags. The binder-free material based on bio-fibers is also industrially compostable.
In addition, the experts will be giving trade fair visitors an insight into Freudenberg’s filtration portfolio.

Source:

Freudenberg Performance Materials

SiWerTEX (c) Hochschule Niederrhein
Projektleiterin Prof. Dr. Maike Rabe (l.) mit den FTB-Mitarbeiterinnen Dr. Anna Missong und Alexandra Glogowsky
09.02.2024

SiWerTEX erforscht simultane Rückgewinnung von Faserpolymeren und Wertstoffen

Textil-Recycling ist eine der großen Herausforderungen unserer Zeit. Aktuell wird der Großteil der gebrauchten Kleidung (über 85 %) thermisch verwertet oder landet auf Deponien. Ein deutlich kleinerer Anteil wird als Second-Hand Kleidung in Entwicklungsländer verschifft. Lediglich weniger als ein Prozent der Kleidung wird recycelt und anschließend wieder zu Kleidung verarbeitet.

Textilien zu recyceln ist kompliziert. Für Sammlung und Sortierung der Altkleider gibt es noch keine etablierten Systeme. Mechanische Verfahren zur Rückgewinnung von Fasern resultieren häufig in einer schlechteren Qualität der textilen Produkte und chemische Verfahren sind technisch kaum entwickelt, sowie wirtschaftlich noch nicht attraktiv genug. Dies gilt auch für das weltweit am häufigste produzierte synthetische Textilfasermaterial Polyester, das aus dem gleichen Material wie PET Flaschen hergestellt wird. Das derzeit in der Textil- und Bekleidungsindustrie genutzte recycelte PET (rPET) stammt fast ausschließlich aus recycelten PET-Flaschen.

Textil-Recycling ist eine der großen Herausforderungen unserer Zeit. Aktuell wird der Großteil der gebrauchten Kleidung (über 85 %) thermisch verwertet oder landet auf Deponien. Ein deutlich kleinerer Anteil wird als Second-Hand Kleidung in Entwicklungsländer verschifft. Lediglich weniger als ein Prozent der Kleidung wird recycelt und anschließend wieder zu Kleidung verarbeitet.

Textilien zu recyceln ist kompliziert. Für Sammlung und Sortierung der Altkleider gibt es noch keine etablierten Systeme. Mechanische Verfahren zur Rückgewinnung von Fasern resultieren häufig in einer schlechteren Qualität der textilen Produkte und chemische Verfahren sind technisch kaum entwickelt, sowie wirtschaftlich noch nicht attraktiv genug. Dies gilt auch für das weltweit am häufigste produzierte synthetische Textilfasermaterial Polyester, das aus dem gleichen Material wie PET Flaschen hergestellt wird. Das derzeit in der Textil- und Bekleidungsindustrie genutzte recycelte PET (rPET) stammt fast ausschließlich aus recycelten PET-Flaschen.

Forscher:innen des Forschungsinstituts für Textil- und Bekleidung (FTB) der Hochschule Niederrhein und des Instituts für Chemische und Thermische Verfahrenstechnik (ICTV) der Technischen Universität Braunschweig nehmen sich im Projekt SiWerTEX den Hürden der simultanen Rückgewinnung von Monomeren und werthaltigen Zuschlagsstoffen aus dem Recycling von Polyestertextilien an. Das Bundesministerium für Wirtschaft und Klimaschutz finanziert im Rahmen der Industriellen Gemeinschaftsforschung (IGF) die Entwicklungsarbeit der Wissenschaftler:innen unter der Leitung von Professorin Dr.-Ing. Maike Rabe (FTB) und Professor. Dr.-Ing. Stephan Scholl (ICTV).

Zusammen mit deutschen Textilherstellern und Textilausrüstern wollen die Wissenschaftler:innen ein chemisches Verfahren zum PET- bzw. Polyesterrecycling, weiterentwickeln. Eine große Herausforderung stellt dabei die Vielfalt von Ausrüstungsmitteln und Additiven dar, mit denen Kleidung und technische Textilien ausgestattet sind: sie sind gefärbt, bedruckt und mit Flammschutz- oder Weichgriffmitteln ausgerüstet.

Untersucht wird im Projekt nicht nur, wie dies beim Recycling effektiv entfernt werden kann, sondern auch, ob die Additive als Wertstoffe zurückgewonnen werden können. Der Fokus wird in SiWerTEX auf die Entfernung von Farbstoffen und die Rückgewinnung des in Flammschutzmitteln enthaltenen Phosphors gerichtet. Die Erkenntnisse sollen helfen, Textilien von Beginn an so zu produzieren, dass ein späteres Recycling möglich wird.

Für die Textil-Unternehmen werden zum Ende des Projektes Handlungsempfehlungen für recyclingfreundliche Färb- und Ausrüstungsprodukte herausgegeben werden können.

nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

Graphic Toray
20.12.2023

Recycled carbon fiber: When a Boeing 787 turns into a Lenovo ThinkPad

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

TORAYCA™ is an established aerospace material known for its high strength, stiffness, and lightweighting properties. These qualities have led to its adoption in other applications such as electrical and electronic equipment housings, sports equipment, and other industrial applications.

A key advantage of carbon fiber is the ability to retain its primary mechanical properties even after the recycling process. Toray is actively advancing recycling technologies and establishing a strategic business model for rCF. Given that the carbon footprint of rCF is lower than that of virgin carbon fiber, Toray is proactively recommending the adoption of rCF to reduce the environmental impact of customers’ products. This commitment aligns with Toray’s dedication to fostering a circular economy, thereby reducing landfill waste.

Source:

Toray Industries

19.12.2023

New sustainability label Autoneum Blue

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

Marine pollution has reached alarming levels in recent decades, with plastic contamination posing one of the most harmful threats to the health of the world’s largest ecosystem. In light of ever-stricter legal requirements for the environmental performance of vehicles, especially regarding the recycled content of components and their end-of-life recyclability, the reduction and recycling of plastics is also one of the key challenges for the automotive industry. Autoneum Pure, the Company’s sustainability label for technologies with an excellent sustainability performance throughout the product life cycle, is already successfully helping customers to tackle these challenges. With Autoneum Blue, Autoneum is now expanding its sustainable product portfolio with a label for components that combine the use of recycled material with protecting the oceans and social responsibility.

In order to qualify for the Autoneum Blue label, components must be based on materials that consist of at least 30% recycled PET that was collected from coastal areas within a 50-kilometer range of the water. These credentials mean the products make an important contribution to preventing plastic pollution in the oceans. In addition, the process of collecting the PET bottles must be socially respon-sible and comply with human rights, and traceable procurement of the bottle flakes must be guaran-teed. Autoneum Blue thus complements the Company’s strategic target to continuously reduce water consumption in all areas of its operations with an additional focus on preventing plastic pollution of the oceans.

Autoneum currently offers selected wheelhouse outer liners, needlepunch carpets and trunk side trim under the Blue label. In principle, however, the label could be extended to any product based on Autoneum technologies that feature recycled polyester fibers. As an addition to Autoneum’s existing fully recyclable monomaterial polyester constructions, which are characterized by waste-free production and have a significantly lower carbon footprint compared to products made from virgin fibers, Autoneum Blue presents another example of the Company’s ongoing efforts and continuous strides towards a sustainable circular economy.

Source:

Autoneum Management AG

Propylat-Technologie Photo Autoneum Management AG
08.12.2023

Optimized acoustic performance thanks to sustainable technology with high recycled content

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

The ongoing electrification of mobility as well as increasingly strict regulatory requirements for vehicle performance in terms of sustainability and acoustics are presenting new challenges to car manufacturers worldwide. With Propylat, Autoneum now offers another lightweight, fiber-based and versatile technology whose sound-insulating and -absorbing properties as well as high content of recycled materials help customers address these challenges. Propylat-based products not only contribute to reducing pass-by noise and improving driver comfort, but they are also up to 50 percent lighter than equivalent plastic alternatives; this results in a lower vehicle weight and, consequently, less fuel and energy consumption as well as lower CO2 emissions.

Autoneum's innovative Propylat technology consists of a mixture of recycled synthetic and natural fibers – the latter include cotton, jute, flax or hemp, for example – that are consolidated using thermoplastic binding fibers without adding any further chemical binders. Thanks to the flexible fiber composition and the variable density and thickness of the porous material, the properties of the respective Propylat variant, for example with regards to acoustic performance, can be tailored to individual customer requirements. This allows for a versatile application of the technology in a variety of interior and exterior components such as wheelhouse outer liners, trunk trim, underbody systems and carpets. For instance, Propylat-based wheelhouse outer liners significantly reduce rolling noise both inside and outside the vehicle while at the same time offering optimum protection against stone chipping and spray water.

In terms of sustainability, Propylat always contains a high proportion of recycled fibers – up to 100% in some variants – and can be manufactured with zero waste. Thanks to the full vertical integration of Propylat and Autoneum’s extensive expertise in recycling processes, the technology also contributes to a further significant reduction in production waste. Moreover, the Propylat PET technology variant, which consists of 100% PET, of which up to 70% are recycled fibers, is fully recyclable at the end of product life. For this reason, Propylat PET has been selected for Autoneum Pure – the Company’s sustainability label for technologies with excellent environmental performance throughout the product life cycle – where it will replace the current Mono-Liner technology going forward.

Propylat-based components are currently available in Europe, North America and China.

Source:

Autoneum Management AG

ACTIVEYARN book (c) Suedwolle Group
05.12.2023

Suedwolle Group: New ACTIVEYARN® collection

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

The yarns in the ACTIVEYARN® collection embody the company’s six strategic pillars of innovation – sustainability, circularity, traceability, design, performance and technology – drivers of the entire process of design and production.

Jasmin GOTS Nm 2/48 (100% wool 19,5 μ X-CARE) is a natural, renewable and biodegradable yarn with GOTS certification that meets the company’s demand for sustainability. X-CARE, the innovative treatment by Suedwolle Group, uses eco-friendly and chlorine-free substances that make wool environmentally friendly and suitable for easy-care quality.

Tirano Betaspun® RWS FSC (41,5% wool 17,2 μ TEC RWS certified, 41,5% LENZING™Lyocell 1,4 dtex 17% polyamide filament 22 dtex GRS certified) is a fully traceable high performance yarn, suitable for sportswear and activewear.

OTW® Midway GRS Nm 2/60 (60% wool 23,5 μ X-CARE, 40% polyamide 3,3 dtex GRS certified) comes from the recycling of pre-consumer polyamide and thus is a perfect example of circular production. Suitable for weaving, it combines the added performance that comes from our OTW® patented technology applied to a high durability blend, ideal for active garments.

Wallaby Betaspun® Nm 1/60 (87,5% wool 18,4 μ TEC, 12,5% polyamide filament 22 dtex) is the result of application of latest-generation Betaspun® technology to a natural fibre like wool, allowing production of fine yarns with extra strength and abrasion resistance, ideal for seamless and wrap knitting.

Banda TEC X-Compact Nm 2/47 (100% wool 17,2 μ TEC) is a 100% natural, renewable and biodegradable yarn benefitting from the innovative X-Compact, permitting production of particularly linear yarns ideal for clean design and fabrics appropriate for today’s fashions.

Caprera GRS Nm 1/60 (45% wool 19,3 μ Non mulesed X-CARE 55% COOLMAX® EcoMade polyester 2,2 dtex GRS certified) increases the performance of the wool-based non mulesed fibre through combination with COOLMAX® EcoMade polyester. This is a material coming from recycling of post-consumer PET bottles, dyeable at low temperatures, that aids evaporation of moisture from the skin to maintain stable body temperature, enhancing the comfort of activewear and urban garments.

Source:

Suedwolle Group

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
14.11.2023

Successful SMCCreate 2023 Design Conference in Prague

Successful SMCCreate 2023 Design Conference in Prague

With over 60 participants from Europe and the USA the second edition of the SMCCreate Design Conference took place from November 7th to 8th in Prague. The conference was jointly organized by the AVK – Federation of Reinforced Plastics and the European Alliance for SMC BMC, promoting the use of SMC and providing design tools to designers for applying these versatile materials.

During the SMCCreate 2023 conference topics covered the wide spectrum of the design with fiber composite/composite components in SMC and BMC technology, from conceptual design, development, and scale-up, with a special emphasis on recycling and sustainability solutions. 18 speakers from various European countries showed how they address important market trends and changing customer needs, and which solutions their companies offered in terms of materials, performance and much more.

Successful SMCCreate 2023 Design Conference in Prague

With over 60 participants from Europe and the USA the second edition of the SMCCreate Design Conference took place from November 7th to 8th in Prague. The conference was jointly organized by the AVK – Federation of Reinforced Plastics and the European Alliance for SMC BMC, promoting the use of SMC and providing design tools to designers for applying these versatile materials.

During the SMCCreate 2023 conference topics covered the wide spectrum of the design with fiber composite/composite components in SMC and BMC technology, from conceptual design, development, and scale-up, with a special emphasis on recycling and sustainability solutions. 18 speakers from various European countries showed how they address important market trends and changing customer needs, and which solutions their companies offered in terms of materials, performance and much more.

As an introduction, speakers - including CTC/Airbus and Teijin - presented different possible applications for SMC and BMC components, including aircraft interiors, bicycle boxes, and applications in e-mobility. The topic of sustainability was broadly covered, highlighting recycling solutions and experiences (Siemens, IDI, OC, AOC), the use of renewable raw materials, as well new LCA models developed by the SMC BMC Alliance (LCS),

Specifically for designers, the use of the SMC flow and curing modelling was presented (ESI, OC), SMC positioning vs. aluminium (Spartners). The second day concluded with contributions on process optimization options for component production, including speeches by Dieffenbacher, Netzsch and EBG.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

Sitip fabrics to feature at "Sculpture by the Sea" in Australia Photo: Elena Redaelli
20.10.2023

Sitip fabrics to feature at "Sculpture by the Sea" in Australia

On display at Sculpture by the Sea, the land art event that brings the Sydney coastline to life every year, is “Seabilia”, Elena Redaelli’s latest work created using waste fabric from Sitip’s production processes. A creation that draws attention to the environment and its fragility in the face of human activity, “Seabilia” is a reminder of how precious yet delicate this balance is, and how humans must become mindful of their actions before the effects end up being completely irreversible.

Sitip's commitment to environmental sustainability struck a chord with Elena Redaelli, and a meeting between the Bergamo-based textile company and the artist from Erba, Italy, led to “Seabilia”, a work that will be displayed as part of Sculpture by the Sea on Tamarama Beach near Bondi in Sydney.

It’s one of the most popular events to take place in this corner of Australia, attracting half a million visitors who flock to these Aussie beaches to admire more than one hundred works created by artists from all over the world.

On display at Sculpture by the Sea, the land art event that brings the Sydney coastline to life every year, is “Seabilia”, Elena Redaelli’s latest work created using waste fabric from Sitip’s production processes. A creation that draws attention to the environment and its fragility in the face of human activity, “Seabilia” is a reminder of how precious yet delicate this balance is, and how humans must become mindful of their actions before the effects end up being completely irreversible.

Sitip's commitment to environmental sustainability struck a chord with Elena Redaelli, and a meeting between the Bergamo-based textile company and the artist from Erba, Italy, led to “Seabilia”, a work that will be displayed as part of Sculpture by the Sea on Tamarama Beach near Bondi in Sydney.

It’s one of the most popular events to take place in this corner of Australia, attracting half a million visitors who flock to these Aussie beaches to admire more than one hundred works created by artists from all over the world.

Held since 1997, this event captures the imagination of its visitors for three weeks each austral spring and, thanks to the vast area it covers, has earned the title of largest annual sculpture exhibition in the world.

The 2023 edition, scheduled to take place from 20 October to 6 November, will feature Elena Redaelli's work created using waste Native-Cosmopolitan Kyoto fabric which, having failed the company's quality control tests, was donated to the artist.

A post-consumer recycled circular knit fabric composed of 89% recycled polyester (PLR), 11% elastane (EA), and weighing 240 grams, the Native-Cosmopolitan Kyoto is made from recycled yarns derived from plastic waste that’s been recovered from the environment, particularly from the sea and from recycling centres. The fabric is Bluesign, GRS (Global Recycled Standard) and OEKO-TEX certified, attesting to Sitip's commitment to environmental responsibility and protection.

During the process, the artist hand-cut the waste fabric and crocheted the pieces together using recycled cotton and other types of thread.

In the creative mind of the artist, the genesis of “Seabilia” arose from deep in the ocean where tiny creatures inhabit the darkest, least explored parts of the planet. A place where the rhythm of life for the inhabitants is marked by silence and obscurity, while waves and tides agitate the surface above. The life of the ocean, such a vast and imposing environment, is impacted every single day by human activity, slowly weakening its delicate balance. “Seabilia” is intended to act as a reminder of how precious yet extremely fragile this balance is, and how humans must become more aware of the consequences of their actions before it’s too late and such a vital asset is lost forever.

“Following Emersione, a work that was exhibited at the Ex Ateneo in Bergamo during Fiber Storming, a textile art exhibition organised by ArteMorbida Textile Arts Magazine and curated by Barbara Pavan, Seabilia is the second art project where I’ve had the opportunity to utilise SITIP's fabrics. – explains the artist, Elena Redaelli. As it was going to be displayed on the rocks at Tamarama Beach, my installation needed a durable, elastic fabric with structural characteristics capable of withstanding ocean winds and sudden changes in weather. Using waste Native-Cosmopolitan Kyoto fabric was the obvious choice, not just because of its very high quality, but also, and more importantly, because it’s made from recycled yarns derived from plastic waste that’s been recovered from the environment, often even from the sea itself. The different textures and shades of white enabled me to create a varied work that, despite the almost monochromatic tones, conjures a diverse range of tactile sensations. The biomorphic modular composition evokes skeletons of sea creatures that appear to have been deposited onto the rocks by a wave and left there to wither in the blazing Australian sun.”

 

Source:

Sitip

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

Photo: AVK
26.05.2023

AVK: Successful Flame Retardancy Conference in Berlin

  • Flame Retardancy for Composites Applications in the Transport Sector

On 10-11 May 2023, the AVK - Industrievereinigung Verstärkte Kunststoffe e. V. in cooperation with the FGK - Forschungsgesellschaft Kunststoffe e.V. in Berlin organised for the first time an international, English-language conference on flame retardancy.

In 18 compact lectures, more than 20 experts informed nearly 80 participants about new developments, requirements and innovations regarding specific flame retardant properties of components made of fibre-reinforced plastics/composites for the transport sector.

Among others, there were presentations by industry representatives from Saertex, BÜFA, Clariant, Diehl Aviation and Airbus, but also from institutes such as the Fraunhofer Institutes or the Federal Institute for Materials Research and Testing. Presentations on the topics of standardisation, raw materials, automotive or recycling were on the agenda, but also flame retardants for connectors and battery housings for electric vehicles or fire-retardant systems for rail vehicles or fire-retardant CFRP made from recycled CF nonwoven were presented.

  • Flame Retardancy for Composites Applications in the Transport Sector

On 10-11 May 2023, the AVK - Industrievereinigung Verstärkte Kunststoffe e. V. in cooperation with the FGK - Forschungsgesellschaft Kunststoffe e.V. in Berlin organised for the first time an international, English-language conference on flame retardancy.

In 18 compact lectures, more than 20 experts informed nearly 80 participants about new developments, requirements and innovations regarding specific flame retardant properties of components made of fibre-reinforced plastics/composites for the transport sector.

Among others, there were presentations by industry representatives from Saertex, BÜFA, Clariant, Diehl Aviation and Airbus, but also from institutes such as the Fraunhofer Institutes or the Federal Institute for Materials Research and Testing. Presentations on the topics of standardisation, raw materials, automotive or recycling were on the agenda, but also flame retardants for connectors and battery housings for electric vehicles or fire-retardant systems for rail vehicles or fire-retardant CFRP made from recycled CF nonwoven were presented.

More information:
AVK Composites flame retardant
Source:

AVK

06.04.2023

Autoneum: Acquisition of Borgers Automotive successfully completed

The acquisition of the automotive business of Borgers, announced in January 2023, has been completed with effect from April 1, 2023, following receipt of all antitrust approvals. As a result, Autoneum now operates 67 production facilities worldwide and employs around 16 100 people in 24 countries. With the acquisition of the long-established German company, Autoneum is further expanding its global market leadership in sustainable acoustic and thermal management of vehicles. For the planned capital increase of around CHF 100 million for the long-term financing of the acquisition, the shareholders approved the creation of a capital band.

The purchase agreement signed on January 6, 2023, to acquire the assets of the insolvent Borgers companies by Autoneum could be completed. As a result, Autoneum will take over the assets of the Borgers companies in Germany and the shares in the subsidiaries in France, Poland, Sweden, Spain, the Czech Republic, the United Kingdom and the USA as well as in the company in Shanghai, China, with effect from April 1, 2023. As already communicated, the enterprise value paid amounts to EUR 117 million.

The acquisition of the automotive business of Borgers, announced in January 2023, has been completed with effect from April 1, 2023, following receipt of all antitrust approvals. As a result, Autoneum now operates 67 production facilities worldwide and employs around 16 100 people in 24 countries. With the acquisition of the long-established German company, Autoneum is further expanding its global market leadership in sustainable acoustic and thermal management of vehicles. For the planned capital increase of around CHF 100 million for the long-term financing of the acquisition, the shareholders approved the creation of a capital band.

The purchase agreement signed on January 6, 2023, to acquire the assets of the insolvent Borgers companies by Autoneum could be completed. As a result, Autoneum will take over the assets of the Borgers companies in Germany and the shares in the subsidiaries in France, Poland, Sweden, Spain, the Czech Republic, the United Kingdom and the USA as well as in the company in Shanghai, China, with effect from April 1, 2023. As already communicated, the enterprise value paid amounts to EUR 117 million.

The product and customer range of Borgers Automotive, the specialist for textile acoustics protection, insulation and trim for vehicles, ideally complements Autoneum’s sustainable product portfolio. Particularly with the wheel arch liner and trunk lining product lines as well as the truck business, Autoneum’s global presence offers further potential for profitable growth also outside Europe. In addition, Borgers has more than 150 years of experience in recycling textile materials. In the 2022 financial year, the Borgers Group – excluding the mechanical engineering division which was already sold in the summer of 2022 – generated expected annual revenue of around EUR 700 million and employed around 4 500 employees worldwide. Autoneum has agreed new pricing and delivery terms with Borgers’ customers, which will ensure both sustainable profitability and the further development of technologies and processes.

From April 1, the former Borgers sites in Germany will be part of Autoneum Germany GmbH, which has been in existence for many years. The other subsidiaries worldwide will gradually be renamed Autoneum.

More information:
Autoneum Borgers
Source:

Autoneum Management AG

12.12.2022

ANDRITZ recycling line for agricultural plastic waste nets

RecyOuest, France, has successfully started up the world's first recycling line for agricultural plastic waste nets at its mill in Argentan. The innovative recycling line featuring a unique dry-cleaning system was delivered, installed and commissioned by the international technology group ANDRITZ in August 2022.

RecyOuest, based in Argentan, France, is a green economy company that handles the recycling contaminated filamentary thermoplastics such as round bale nets and twines. With its recycling process, RecyOuest is part of a circular economy approach.

The ANDRITZ recycling line can process up to 8,000 tons of waste and produce recycling fibers for nonwoven applications and also for pellets made of waste from agricultural single-use plastic nets and twines. These pellets are then returned to the plastics industry by mixing both recycled and virgin raw materials, thus reducing the amount of virgin plastic used.

RecyOuest, France, has successfully started up the world's first recycling line for agricultural plastic waste nets at its mill in Argentan. The innovative recycling line featuring a unique dry-cleaning system was delivered, installed and commissioned by the international technology group ANDRITZ in August 2022.

RecyOuest, based in Argentan, France, is a green economy company that handles the recycling contaminated filamentary thermoplastics such as round bale nets and twines. With its recycling process, RecyOuest is part of a circular economy approach.

The ANDRITZ recycling line can process up to 8,000 tons of waste and produce recycling fibers for nonwoven applications and also for pellets made of waste from agricultural single-use plastic nets and twines. These pellets are then returned to the plastics industry by mixing both recycled and virgin raw materials, thus reducing the amount of virgin plastic used.

This line, inspired by the techniques from textile wastes recycling, is equipped with a unique mechanical dry-cleaning system that allows resource savings by avoiding the use of water and chemicals. This state-of-the-art ANDRITZ equipment allows RecyOuest to produce recycling fibers for nonwoven applications and also pellets for ever new eco-designed nets and twines for the agricultural sector, with the lowest possible environmental impact.

Source:

ANDRITZ AG

Bild: Fraunhofer IAO
29.09.2022

Projekt CYCLOMETRIC: Rezyklierfähige Bauteile für das Automobil der Zukunft

Bauteile im Automobil müssen nicht mehr nur technologisch höchsten Ansprüchen genügen, sondern auch nachhaltig und rezyklierbar sein. Zukünftig müssen Ingenieurinnen und Ingenieure bei der Entwicklung nicht nur das fertige Produkt, sondern auch das Ende dessen Lebenszyklus im Blick haben. Künstliche Intelligenz soll helfen, in solchen Zyklen zu denken. dabei helfen. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) sind einer der Projektpartner im Forschungsprojekt CYCLOMETRIC, das durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert und vom Projektträger Karlsruhe (PTKA) betreut wird. Entwickelt wird ein Tool, das schon während der Produktplanung Verbesserungsvorschläge macht.

Bauteile im Automobil müssen nicht mehr nur technologisch höchsten Ansprüchen genügen, sondern auch nachhaltig und rezyklierbar sein. Zukünftig müssen Ingenieurinnen und Ingenieure bei der Entwicklung nicht nur das fertige Produkt, sondern auch das Ende dessen Lebenszyklus im Blick haben. Künstliche Intelligenz soll helfen, in solchen Zyklen zu denken. dabei helfen. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) sind einer der Projektpartner im Forschungsprojekt CYCLOMETRIC, das durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert und vom Projektträger Karlsruhe (PTKA) betreut wird. Entwickelt wird ein Tool, das schon während der Produktplanung Verbesserungsvorschläge macht.

Recycling von Hochleistungsmaterialien scheitert häufig daran, dass sich die Werkstoffe nicht in ihre ursprünglichen Bestandteile trennen lassen. CYCLOMETRIC soll dafür sorgen, dass dieses Problem nicht erst am Ende des Lebenszyklus eines Produkts gelöst werden muss. Mit den derzeitigen Methoden und Werkzeugen werden Auswirkungen auf die Umwelt oft erst gegen Ende der Entwicklung oder sogar erst nach Produktionsbeginn untersucht – obwohl die relevantesten Entscheidungen über Produkteigenschaften deutlich früher getroffen werden. Das neue System hilft, während der Entwicklung die richtigen Entscheidungen zu treffen. Dazu werden Daten, Informationen, Wissen über alle Entwicklungsphasen und Schnittstellen hinweg analysiert und bewertet. Dabei kommen Forschungsansätze des Advanced Systems Engineerings und Model-based Systems Engineerings in Verbindung mit Methoden der Ökobilanzierung sowie die Geschäftsmodellanalyse zum Einsatz.

Produktentwicklung muss täglich komplexe Parameter wie Produzierbarkeit, Rezyklierfähigkeit, Wiederverwendbarkeit, CO2-Emissionen und Kosten im Blick behalten. Nicht zuletzt müssen die Erwartungen und Gewohnheiten der Kundinnen und Kunden mitgedacht werden. Das Tool berechnet die Auswirkungen bei der Auswahl des Materials ebenso wie bei der Planung von Produktionsschritten und macht Verbesserungsvorschläge.

Als Anwendungsbeispiel für das digitale Werkzeug dient im Projekt CYCOMETRIC eine Mittelkonsolenverkleidung. Sie besteht aus nachhaltigen Textilmaterialien und verfügt über in das Textil integrierte smarte Funktionen. Das fertige Tool ist dennoch nicht auf die Automobilbranche beschränkt. Es kann in allen Industriefeldern eingesetzt werden.

Aufgabe der DITF ist die Auswahl und Prüfung geeigneter Materialien. Das Team erarbeitet die passenden Fertigungs- und Verarbeitungsprozesse und erstellt einen Prototyp. An den Prüflaboren werden Testläufe zu Funktions-, Alltags-, Langzeit- und Extremtauglichkeit der textilen Strukturen und Faserverbundwerkstoffen durchgeführt, die bei der späteren Anwendung reproduzierbar sind. Für die smarten Funktionen der Konsole werden Konzepte für Sensoren und Aktoren entwickelt.

Die DITF bringen als Partner im Forschungscampus ARENA2036 umfangreiche Erfahrungen im Leichtbau durch Funktionsintegration bei Automobilen mit. Nach Abschluss des Projekts werden die Denkendorfer Forscherinnen und Forscher Unternehmen beraten, wie Textilien verstärkt im Fahrzeuginterieur eingesetzt werden können.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

Susan Gabler und Johannes Leis vom STFI bei Untersuchungen zum Recycling smarter Textilien. Foto: Sächsisches Textilforschungsinstitut e.V. (STFI)
Susan Gabler und Johannes Leis vom STFI bei Untersuchungen zum Recycling smarter Textilien.
20.09.2022

SmartERZ-Projekt zum Recycling von Smart Composites

Im Automobilbau, dem Schiffsbau und der Luftfahrtindustrie sowie bei Windenergieanlagen steigen die Materialanforderungen zusehends. Die verwendeten Werkstoffe sollen leicht, ressourcenschonend und gleichzeitig hochbelastbar sein. Faserverstärkte Kunststoffe (Composites) rücken immer mehr in den Vordergrund, da deren Eigenschaften in Kombination mit Glas- oder Carbonfasern metallischen Materialien oftmals überlegen sind. Mit Fokus auf die klimaneutrale Herstellung und Nutzung von Produkten wächst auch der Bedarf an Recyclinglösungen. Im SmartERZ-Projekt TRICYCLE arbeiten Unternehmen gemeinsam an geeigneten skalierbaren und wirtschaftlich tragfähigen Prozessen zum Recycling von Smart Composites. Momentan gibt es dafür keine Anbieter oder Konzepte am Markt.

Im Automobilbau, dem Schiffsbau und der Luftfahrtindustrie sowie bei Windenergieanlagen steigen die Materialanforderungen zusehends. Die verwendeten Werkstoffe sollen leicht, ressourcenschonend und gleichzeitig hochbelastbar sein. Faserverstärkte Kunststoffe (Composites) rücken immer mehr in den Vordergrund, da deren Eigenschaften in Kombination mit Glas- oder Carbonfasern metallischen Materialien oftmals überlegen sind. Mit Fokus auf die klimaneutrale Herstellung und Nutzung von Produkten wächst auch der Bedarf an Recyclinglösungen. Im SmartERZ-Projekt TRICYCLE arbeiten Unternehmen gemeinsam an geeigneten skalierbaren und wirtschaftlich tragfähigen Prozessen zum Recycling von Smart Composites. Momentan gibt es dafür keine Anbieter oder Konzepte am Markt.

Smart Composites bestehen aus Werkstoffen, deren Funktionalisierung durch die Integration oder Applikation elektrisch leitfähiger Komponenten, z. B. Sensoren oder Mikroprozessoren, erreicht wird. Dazu zählen zum Beispiel smarte Textilien, die elektronisch wärmen, Lichtsignale geben oder zur Datenübertragung genutzt werden können. Das breite Anwendungsspektrum und die vielseitigen Einsatzgebiete dieser intelligenten Verbundwerkstoffe und Multimaterialverbunde werden perspektivisch zu einem wachsenden Bedarf und einer stärkeren Nachfrage führen.

Die funktionale und vielschichtige Verbindung verschiedener Materialien wie Kunststoff, Metall und Textil wirft beim Thema Recycling Nachhaltigkeitsfragen auf. Im Erzgebirge werden dafür bereits heute Lösungen entwickelt. Im Rahmen des WIR!-Projektes SmartERZ ist das Verbundprojekt TRICYCLE entstanden. Mit dem Fokus auf den Strukturwandel im Erzgebirge haben sich acht ortsansässige Partner aus Wissenschaft und Wirtschaft zusammengetan, um ein Recyclingkonzept aufzustellen und die Grobplanung für ein erzgebirgisches Recycling Center zu entwickeln. Das Ende des Produktlebenszyklus und die Nachnutzung bzw. Wiederaufbereitung stehen dabei im Mittelpunkt des Entwicklungsprozesses. Im Ergebnis sollen effektive und maßgeschneiderte Maßnahmen für eine möglichst hochwertige Wiederverwendung entstehen. Diese sollen dem steigenden Aufkommen an Abfällen aus diesem wachsenden Bereich der deutschen Industrie begegnen und anwendungsbereit sein.

Klassische Herausforderungen für die Projektbeteiligten sind die irreversiblen Verbindungstechniken (z. B. Kleben, Faser-Matrix-Haftung), die Integration vieler verschiedener Materialien in geringen Mengen sowie Form und Größe der Bauteile. Eigene Untersuchungen sowie Feedback von Partnerunternehmen bestätigen die Notwendigkeit sowie den Nutzen eines passgenauen Recyclingprozesses für Smart Composites und intelligente Multimaterialverbünde. Das Projekt soll dazu beitragen, den Wirtschaftsstandort Erzgebirge attraktiver und zukunftsfähiger zu gestalten.

Am 1. September 2021 gestartet, kann TRICYCLE erste Ergebnisse vorweisen. Zunächst wurden die Bedarfe bei mittelständischen Unternehmen in der Region Erzgebirge abgefragt, um die aktuellen Gegebenheiten und den Status quo in Bezug auf technologische Recyclingkonzepte bestmöglich abzubilden. Für ein fundiertes Recyclingkonzept hat das TRICYCLE-Team drei Referenzbauteile für den vorgesehenen Prozess ermittelt, die in der erzgebirgischen Wirtschaft Verwendung finden, und folgenden Bereichen zugeordnet: Automotive, Technische Textilien mit applizierter Zusatzfunktion und Technische Textilien mit integrierter Zusatzfunktion.

Basierend auf dieser Auswahl, analysiert das Projektteam momentan die Herstellungs- und bisherigen Recyclingprozesse der Referenzbauteile. Das beinhaltet auch die Planung praktischer Versuche zum Recycling. Dabei fokussieren sich die Projektpartner auf ihr Know-how in verschiedenen chemischen, thermischen und mechanischen Prozessen zur Separierung, Rückführung und Wiederverwendung der eingesetzten Materialien. Um die Produkte den Recyclingtechnologien zugänglich zu machen, wurde die Herangehensweise innerhalb des Projekts angepasst, da insbesondere Textil aufgrund von Form und Struktur (z. B. endlose Struktur) herausfordernd sein kann.

Obwohl die Materialien selbst recycelbar sind, müssen diese dennoch für den Prozess optimal vorbereitet bzw. fachgerecht aufbereitet werden. Die Expertise und die Technologiekompetenz, die hierfür benötigt werden, ist bei den beteiligten Projektpartnern durch jahrzehntelange Erfahrung und zahlreiche Innovationen vorhanden. Das Zusammenspiel aller Beteiligten im Projekt TRICYCLE stellt bereits jetzt die Weichen für das geplante Recycling Center, um dieses später zum Drehkreuz zwischen regionalen Produktionsunternehmen und dem Recycling weiterzuentwickeln. Dieses soll als „Open Factory“ aufgebaut werden, um den Unternehmen des SmartERZ-Bündnisses bzw. perspektivisch der Region Erzgebirge eine gemeinsame Nutzung zu ermöglichen.

„Die Wiederverwendung der eingesetzten Ressourcen ist sowohl aus ökonomischer als auch aus ökologischer Sicht zwingend geboten. Momentan gibt es weder Anlagenbauer noch Dienstleistungsanbieter mit den entsprechenden Kompetenzen zum Recycling von Smart Composites oder Multimaterialverbünden am Markt,“ stellt Johannes Leis, der Verbundkoordinator vom Sächsischen Textilforschungsinstitut e.V. (STFI) in Chemnitz fest.Unter Leitung des STFI als Verbundkoordinator mit seiner über 30-jährigen Erfahrung in der Textilbranche und speziellem Know-how im Recycling von Carbonabfällen haben sich weitere Unternehmen und Forschungseinrichtungen zusammengefunden. Dazu zählen das Textilunternehmen Curt Bauer GmbH, die Professur Fabrikplanung und Fabrikbetrieb der TU Chemnitz, das Ingenieurbüro Matthias Weißflog, der Hersteller für Faserverbundbauteile Cotesa GmbH, der Spezialvlieshersteller Norafin Industries (Germany) GmbH, das Recyclingunternehmen Becker Umweltdienste GmbH und die Hörmann Rawema Engineering & Consulting GmbH. Am Ende der Projektlaufzeit sollen ein einsatzfähiges, technologisches Recyclingkonzept für die zukünftigen entstehenden smarten Produkte sowie die in der Produktion entstehenden Abfälle (bspw. durch fehlerhafte Bauteile und Randbeschnitte) und ein Konzept für den Aufbau eines Recycling Centers vorliegen, das im Erzgebirge entstehen soll.

(c) PURE LOOP
07.09.2022

PURE LOOP: High-strength synthetic nonwoven made with a recycled content of 10 percent

Geosynthetics have become an indispensable part of the construction industry. PP nonwovens, for example - mechanically bonded continuous fibres made from specially UV-stabilised polypropylenes - are often used in blanket form as barriers, screens and filters, and their strength extends the service life of construction projects. Whether for road construction, or as barrier on glaciers or against weeds - there are myriad applications.

TenCate Geosynthetics uses the PURE LOOP ISEC evo technology to recycle this type of PP nonwoven. The European company, with locations in Austria, France and the Netherlands, is specialised in the development and production of geotextiles for modern civil engineering applications. The edge trimmings and production rejects generated during manufacturing used to be recycled at the Linz site, but not fed back into the company's own production process.

Geosynthetics have become an indispensable part of the construction industry. PP nonwovens, for example - mechanically bonded continuous fibres made from specially UV-stabilised polypropylenes - are often used in blanket form as barriers, screens and filters, and their strength extends the service life of construction projects. Whether for road construction, or as barrier on glaciers or against weeds - there are myriad applications.

TenCate Geosynthetics uses the PURE LOOP ISEC evo technology to recycle this type of PP nonwoven. The European company, with locations in Austria, France and the Netherlands, is specialised in the development and production of geotextiles for modern civil engineering applications. The edge trimmings and production rejects generated during manufacturing used to be recycled at the Linz site, but not fed back into the company's own production process.

"The demands on us were high," recalls Patrick Wiesinger, project manager at PURE LOOP. "The PP nonwoven is highly tear resistant, which means its a very challenging recycling process. Our ISEC evo machine conserves the quality of the production waste really well during recycling, so we were able to achieve the specified increase in quality for the recyclates."

Another advantage of PURE LOOP technology is the wide range of shapes in which the production scrap can be delivered for processing. "Our ifeed technology with double feed ram system and singleshaft shredder offers the ideal conditions for direct processing of these large rolls - and without the need for prior preparation of the input material by employees before the material is fed into the recycling process", emphasizes Patrick Wiesinger. With the ISEC evo recycling machine TenCate can now manufacture its high-strength PP nonwoven product with a recyclate content of up to 10 percent.

Source:

PURE LOOP, EREMA Group GmbH

03.08.2022

Sustainable Developments in Absorbent Hygiene & Personal Care at Hygienix™

  • INDA Announces Full Program and Opens Registration for Premier Event in New Orleans

With reusable and recyclable products and new inputs offering growth opportunities in absorbent hygiene and personal care products, Hygienix™ will provide an insightful view into the market’s future this November in New Orleans.

Industry participants from around the world and throughout the supply chain will convene and connect for the eighth edition of the premier event for the fast-growing segment on November 14-17, at The Roosevelt New Orleans Hotel.

The in-person conference will highlight the segment’s continued growth and new opportunities with presentations by more than 20 industry experts on sustainable inputs, natural fibers, product transparency, reusable menstrual products, recyclable diapers and more as well as the latest market forecasts and insights into consumer buying trends.

  • INDA Announces Full Program and Opens Registration for Premier Event in New Orleans

With reusable and recyclable products and new inputs offering growth opportunities in absorbent hygiene and personal care products, Hygienix™ will provide an insightful view into the market’s future this November in New Orleans.

Industry participants from around the world and throughout the supply chain will convene and connect for the eighth edition of the premier event for the fast-growing segment on November 14-17, at The Roosevelt New Orleans Hotel.

The in-person conference will highlight the segment’s continued growth and new opportunities with presentations by more than 20 industry experts on sustainable inputs, natural fibers, product transparency, reusable menstrual products, recyclable diapers and more as well as the latest market forecasts and insights into consumer buying trends.

Hygienix also will offer two specialized workshops, and a myriad of business connection opportunities including a welcome reception on Nov. 14 and a first-time attendee mentorship program.
Participants will discover innovative products in absorbent hygiene and personal care at tabletop exhibits with evening receptions on Nov. 15-16, providing opportunities for 60 companies to showcase their unique offerings.

Three finalists will each present their innovative and technically sophisticated disposable absorbent hygiene products as they vie for the prestigious Hygienix Innovation Award™. Nominations are open until August 29. Demonstrating the interest in sustainability, last year’s award recipient was Kudos Diaper Subscription featuring its 100% cotton disposable diaper.

Hygienix Highlights
Absorbent hygiene – the single largest nonwoven end‐use category (by square meters) – is expected to continue its strong growth over the next four years, creating market opportunities in this thriving area driven by growing consumer interest for environmentally-friendly options in material inputs and end-of-life options.

Participants will hear the latest data and forecasts from analysts during presentations by Robert Fry, Jr., Ph.D., Principal of Robert Fry Economics LLC on the Global Economy – What we Can Expect in 2023; Pricie Hanna, Managing Partner, and Colin Hanna, Director of Market Research, Price Hanna Consultants on Disposables versus Reusables; and Simon Preisler, Vice President of Logistics, Central National Gottesman delivering a Logistic Market Update.

A panel of entrepreneurs will discuss the challenges, biases and taboos to bringing innovations into the marketplace. Experts sharing their insights will be Mia Abbruzzese and Alexandra Fennell, co-founders of Grace; Amrita Saigal, founder and CEO, Kudos; and Cindy Santa Cruz, President of ParaPatch.

A session on Next-Generation Menstrual Products and their Users will feature Liying Qian, Research Analyst, Euromonitor International providing market data on disposable and reusable period products; Frantisek Riha-Scott, Founder, Confitex discussing reusable products; and Greta Meyer, Co-Founder and CEO, Sequel on Reengineering the Tampon.
Also focusing on period products will be a presentation by Danielle Keiser, Managing Director, Impact, Madami on Changing the Conversation with Consumersmoderated by Heidi Beatty, Chief Executive Officer, Crown Abbey, LLC.

Other intriguing not-to-be-missed presentations centered on sustainability trends include:

  • Assessing Sustainable Fiber Options in the Context of Disposable Hygienic Products – Richard Knowlson, Principal, RPK Consulting LLC
  • Five Generations of Hygiene + Sustainability – Matt Schiering, Professor of Marketing, Dominican University
  • Recycling Approaches for Disposable Diaper Waste – Jeannine Cardin, Quality and R&D, RecycPHP Inc.

Hygienix will provide additional focused learning opportunities with two essential short courses (with separation registration fees) on Nov. 14 focused on Absorption Systems for Absorbent Hygiene Products, from 1 to 3:30 p.m. and Global Diaper Trends from 3:45 to 6 p.m.

More information:
Hygienix INDA
Source:

INDA

15.07.2022

ANDRITZ at CINTE 2022 in China

ANDRITZ will be presenting its innovative nonwovens production solutions at CINTE 2022 in Shanghai, China (September 6–8). ANDRITZ will show its broad product portfolio covering state-of-the-art nonwovens and textile production technologies such as air-through bonding, airlay, needlepunch, spunlace, spunbond, wetlaid/WetlaceTM, converting, textile finishing, recycling, and natural fiber processing.

SUSTAINABILITY IS KEY
ANDRITZ supports nonwovens producers in the move to sustainability with the aim of reducing or eliminating plastic components while maintaining the high quality of the desired product properties. This applies to all types of sustainable wipes, such as flushable, biodegradable, bio-sourced, carded pulp or standard carded wipes. The latest development in this field is the ANDRITZ neXline wetlace CP line, which integrates the carded-pulp (CP) process. This is a fully engineered production line combining the benefits of drylaid and wetlaid technologies to produce a new generation of biodegradable wipes.

ANDRITZ will be presenting its innovative nonwovens production solutions at CINTE 2022 in Shanghai, China (September 6–8). ANDRITZ will show its broad product portfolio covering state-of-the-art nonwovens and textile production technologies such as air-through bonding, airlay, needlepunch, spunlace, spunbond, wetlaid/WetlaceTM, converting, textile finishing, recycling, and natural fiber processing.

SUSTAINABILITY IS KEY
ANDRITZ supports nonwovens producers in the move to sustainability with the aim of reducing or eliminating plastic components while maintaining the high quality of the desired product properties. This applies to all types of sustainable wipes, such as flushable, biodegradable, bio-sourced, carded pulp or standard carded wipes. The latest development in this field is the ANDRITZ neXline wetlace CP line, which integrates the carded-pulp (CP) process. This is a fully engineered production line combining the benefits of drylaid and wetlaid technologies to produce a new generation of biodegradable wipes.

NEXLINE WETLAID AXCESS TARGETS SMALLER AND MEDIUM PRODUCTION VOLUMES
The neXline wetlaid aXcess targets smaller and medium production volumes and has been devised for new and existing lines. The compact line provides an entrance to the growing wetlaid market, with a variety of final applications and options.

ANDRITZ AXCESS DEVELOPED FOR MEDIUM CAPACITIES IN WUXI, CHINA
The aXcess range was specially developed at ANDRITZ (China) Ltd. Wuxi Branch to handle medium capacities. The facility in Wuxi has an experienced platform for production and service specially geared to serve the Asian nonwovens industry. It designs and manufactures cutting-edge lines to complement the ANDRITZ aXcess product range, which includes complete lines and individual machines for air-through bonding, needlepunch and spunlace processes. With the aXcess range, ANDRITZ has developed a hybrid line combining European and Chinese machines, which is the ideal combination to obtain the best added value from each component in the line and be very flexible to accommodate different business cases.

The service organization was set up to provide prompt delivery and excellent customer support, even during the COVID-19 pandemic. A team of technicians and process experts can be deployed quickly to customer sites requiring full-range assistance. The ANDRITZ facilities include a roll service center with state of-the-art grinding equipment and a test stand for various types of rolls.

In addition, our aXcess range manufactured in Europe also offers technologies for spunlaid and wetlaid processes. Increasing production speeds and widths, compact and reliable design, and affordable investment costs are what customers look for in a competitive market environment. To meet these requirements ideally, we recently enhanced our nonwoven calender and dryer ranges.

Tearing Line Foto: Andritz
20.05.2022

ANDRITZ at TECHTEXTIL 2022

International technology group ANDRITZ will be presenting its innovative nonwovens production and textile solutions at Techtextil in Frankfurt from June 21 to 24. The ANDRITZ product portfolio covers state-of-the-art nonwovens and textile production technologies, such as air-through bonding, airlay, needlepunch, spunlace, spunbond, wetlaid/WetlaceTM, converting, textile finishing, recycling, and natural fiber processing. For Techtextil, special focus lies on technologies for textile recycling, needlepunch, airlay, wetlaid glass fibers and textile calendering.

International technology group ANDRITZ will be presenting its innovative nonwovens production and textile solutions at Techtextil in Frankfurt from June 21 to 24. The ANDRITZ product portfolio covers state-of-the-art nonwovens and textile production technologies, such as air-through bonding, airlay, needlepunch, spunlace, spunbond, wetlaid/WetlaceTM, converting, textile finishing, recycling, and natural fiber processing. For Techtextil, special focus lies on technologies for textile recycling, needlepunch, airlay, wetlaid glass fibers and textile calendering.

TEXTILE RECYCLING TECHNOLOGIES BASED ON TEARING
With the acquisition of ANDRITZ Laroche SAS, ANDRITZ has expanded its product portfolio to include airlay and recycling technology as well as bast fiber processing technologies. Complete recycling lines for post-consumer and industrial textile waste to produce fibers for re-spinning and/or nonwoven end-uses are one focus of this product range. Customer awareness and regulations are forcing clothing brands to recycle their textile waste in their own products. Recycled fibers can also be used in the nonwovens industry for various applications, for example in the automotive industry, for insulation, mattresses, and furniture felts.

ANDRITZ Laroche offers a complete process range of tearing lines from 50 up to 3,000 kg/h, which can be used for almost all types of pre/post-consumer textile waste. The aim is to preserve the character of the original fibers, for example cotton, by maximizing fiber length, strength and feel.

Source:

Andritz AG

18.05.2022

Hexcel at JEC World 2022

  • Hexcel Composite Innovations for Aerospace Applications on Display at JEC World 2022: Hall 5, Stand J41

In late 2021, Hexcel announced an agreement with Fairmat, a deep technology startup, to build the capability to recycle carbon fiber prepreg from Hexcel European operations for reuse in composite panels sold into commercial markets, giving a second life to recovered carbon fiber. To do so, Fairmat has developed a virtuous recycling process, and a sample of its newly recycled material will be available to view at JEC World 2022. Hexcel will present an array of product innovations for aerospace and urban air mobility customer applications during JEC World 2022 in Paris on May3-5. These latest innovations demonstrate the company’s leadership in developing advanced composites technology for the aerospace market.

  • Hexcel Composite Innovations for Aerospace Applications on Display at JEC World 2022: Hall 5, Stand J41

In late 2021, Hexcel announced an agreement with Fairmat, a deep technology startup, to build the capability to recycle carbon fiber prepreg from Hexcel European operations for reuse in composite panels sold into commercial markets, giving a second life to recovered carbon fiber. To do so, Fairmat has developed a virtuous recycling process, and a sample of its newly recycled material will be available to view at JEC World 2022. Hexcel will present an array of product innovations for aerospace and urban air mobility customer applications during JEC World 2022 in Paris on May3-5. These latest innovations demonstrate the company’s leadership in developing advanced composites technology for the aerospace market.

  • Sustainability Focus on Recycling and Reuse
  • HiTape® and HiMax® Reinforcements for OoA Processing
  • Innovative HiFlow™ Resins for Continuous and Shorter Cycle Injection Processes
  • HexPly® Prepregs for Primary Structure and Engine Applications
  • HexTow® High Modulus Fibers HM63 and HM54
  • Thermoplastics and Processing Innovations for Primary and Secondary Structures
  • Lightweight PrimeTex® Reinforcements Solutions for Urban Air Mobility (UAM)