From the Sector

Reset
199 results
12.04.2023

ExxonMobil showcases hygiene solutions at INDEX™23

ExxonMobil will present its portfolio of products that enable innovative solutions with sustainability benefits for hygiene and personal care applications at INDEX™23. This portfolio includes ExxonMobil™ PP, Achieve™ Advanced PP (polypropylene) and Vistamaxx™ performance polymers that can be used to create differentiated hygiene and personal care products.

ExxonMobil will present its portfolio of products that enable innovative solutions with sustainability benefits for hygiene and personal care applications at INDEX™23. This portfolio includes ExxonMobil™ PP, Achieve™ Advanced PP (polypropylene) and Vistamaxx™ performance polymers that can be used to create differentiated hygiene and personal care products.

An innovation being presented will be the model baby diaper of which the chassis is made exclusively with ExxonMobil’s extensive portfolio of products. Also on display will be a new version of the high-loft, ultra-soft, silky-smooth nonwoven solution for premium hygiene products using a blend of Vistamaxx™ performance polymers, Achieve™ Advanced PP and ExxonMobil™ PP. Developed collaboratively with Reifenhäuser Reicofil, this nonwoven solution delivers sustainability benefits by including ExxonMobil™ PP ISCC PLUS mass balance certified circular polymers using Exxtend™ technology for advanced recycling of plastic waste. Produced efficiently in one step from pellet to nonwoven via high-speed spunbond process, this soft nonwoven is ideal for use in premium diapers, pant-type diapers, feminine care and adult incontinence products.

Source:

ExxonMobil

(c) SABIC
05.04.2023

SABIC presents portfolio for healthcare and hygiene market at INDEX™23

SABIC will present its portfolio of PURECARES™ and TRUCIRCLE™ materials for the healthcare and hygiene market at INDEX™23 from April 18 to 21 in Geneva, Switzerland, under the theme of ‘Collaborating for sustainability and innovative solutions’.

At INDEX, SABIC will highlight a joint project with two market leaders, using certified circular polymers from the TRUCIRCLE portfolio in recyclable films for feminine hygiene, baby care and disposable medical applications. In all of these cases from diapers to surgical drapes and medical gowns, the sustainable materials can serve as direct drop-in alternatives with no compromise in production efficiency and product performance.

Further examples on display at the company’s booth will feature TRUCIRCLE solutions for facemasks, including an N95 design that localizes the value chain with SABIC® PURECARES PP spunbond and meltblown polymers in Saudi Arabia. SABIC provides complete solutions for facemask production as part of its localization strategy and has been a key enabler of the Saudi Made initiative. Also shown will be a closed-loop facemask developed in collaboration with industrial and research partners in Europe.

SABIC will present its portfolio of PURECARES™ and TRUCIRCLE™ materials for the healthcare and hygiene market at INDEX™23 from April 18 to 21 in Geneva, Switzerland, under the theme of ‘Collaborating for sustainability and innovative solutions’.

At INDEX, SABIC will highlight a joint project with two market leaders, using certified circular polymers from the TRUCIRCLE portfolio in recyclable films for feminine hygiene, baby care and disposable medical applications. In all of these cases from diapers to surgical drapes and medical gowns, the sustainable materials can serve as direct drop-in alternatives with no compromise in production efficiency and product performance.

Further examples on display at the company’s booth will feature TRUCIRCLE solutions for facemasks, including an N95 design that localizes the value chain with SABIC® PURECARES PP spunbond and meltblown polymers in Saudi Arabia. SABIC provides complete solutions for facemask production as part of its localization strategy and has been a key enabler of the Saudi Made initiative. Also shown will be a closed-loop facemask developed in collaboration with industrial and research partners in Europe.

The company’s PURECARES polyolefin products are based on technologies free of both tris (nonylphenyl) phosphite (TNPP) and phthalates. Consumer comfort is achieved by using SABIC polypropylene (PP) and polyethylene (PE) polymers for bi-component fibers to answer multiple needs for soft and loft handfeel nonwovens, enabling easy lamination to other building blocks on medical nonwovens or absorbent hygiene applications.

In addition, SABIC produces TRUCIRCLE certified circular polymers for its PURECARES PP and PE portfolio with feedstock based on advanced recycling of mixed and used plastic that would otherwise typically not be suitable for mechanical recycling processes. These more sustainable solutions can be adopted in downstream processes as direct drop-in alternatives to incumbent materials with no compromise in production efficiency, purity and product performance.

Source:

SABIC

24.03.2023

Carbios: Scientific publication on enzymatic degradation of plastics

Carbios announces the publication of an article entitled “Enzymes’ power for plastics degradation” in Chemical Reviews. The article is a comprehensive and critical review of research published to date on the enzymatic degradation of all types of plastics (PET, PLA, polyolefins, polyurethanes, polyamides) and includes almost 700 references. Co-authored by biotechnology researchers from Carbios and its academic partner Toulouse Biotechnology Institute (TBI), as well as two eminent professors in polymer science from the University of Bordeaux, the work brings together expertise in the fields of enzymology, polymer science and industry in order to accelerate the transition to a circular economy for plastic.

Beyond the comprehensive bibliographical study, the authors analyzed the data to discuss the scope, limitations, challenges and opportunities of enzymatic plastic recycling with a view to developing innovations and industrial processes. The article’s standpoint and added value with regard to issues surrounding plastic pollution is its critical view on technology transfer and industrial scalability.

Carbios announces the publication of an article entitled “Enzymes’ power for plastics degradation” in Chemical Reviews. The article is a comprehensive and critical review of research published to date on the enzymatic degradation of all types of plastics (PET, PLA, polyolefins, polyurethanes, polyamides) and includes almost 700 references. Co-authored by biotechnology researchers from Carbios and its academic partner Toulouse Biotechnology Institute (TBI), as well as two eminent professors in polymer science from the University of Bordeaux, the work brings together expertise in the fields of enzymology, polymer science and industry in order to accelerate the transition to a circular economy for plastic.

Beyond the comprehensive bibliographical study, the authors analyzed the data to discuss the scope, limitations, challenges and opportunities of enzymatic plastic recycling with a view to developing innovations and industrial processes. The article’s standpoint and added value with regard to issues surrounding plastic pollution is its critical view on technology transfer and industrial scalability.

To read the article in Chemical Reviews, click here.

Source:

Carbios

24.03.2023

RadiciGroup: Zeta Polimeri becomes Radici EcoMaterials Srl

A little over three years have passed since RadiciGroup announced the acquisition of Zeta Polimeri, an Italian company headquartered in Buronzo (VC) with over 30 years' experience in the recovery of pre- and post-consumer synthetic fibres and thermoplastic materials. Today, the company has become a full member of the Group with its new name Radici EcoMaterials Srl.

The new company’s long-standing know-how, combined with RadiciGroup’s as a whole, will create a virtuous production system that recovers worn-out materials (fabric, yarn and granules), or otherwise unusable materials, and processes them into raw materials available for other production cycles by taking advantage of industrial synergy.

A little over three years have passed since RadiciGroup announced the acquisition of Zeta Polimeri, an Italian company headquartered in Buronzo (VC) with over 30 years' experience in the recovery of pre- and post-consumer synthetic fibres and thermoplastic materials. Today, the company has become a full member of the Group with its new name Radici EcoMaterials Srl.

The new company’s long-standing know-how, combined with RadiciGroup’s as a whole, will create a virtuous production system that recovers worn-out materials (fabric, yarn and granules), or otherwise unusable materials, and processes them into raw materials available for other production cycles by taking advantage of industrial synergy.

Radici EcoMaterials is a strategic production site because it handles all the preliminary recovery stages: the sorting, processing and pre-treatment of materials, including those used for the production of post-consumer yarns and engineering polymers. In this sense, Radici EcoMaterials is in line with the most recent European policies on sustainable textiles, which address minimizing the share of materials destined for disposal sites, favouring instead more structured recycling solutions.

Radici EcoMaterials is also GRS certified. GRS certification ensures the complete traceability of its materials, which are made in a safe plant that meets the highest environmental and social certification standards.

The company is also equipped with a photovoltaic system and, for the portion of its energy needs not covered by the photovoltaic source, it partially relies on renewable energy. The goal is to use 100% green energy in the next few years, in accord with RadiciGroup's goals.

Source:

RadiciGroup

Photo Fibre Extrusion Technology Ltd (FET)
23.03.2023

FET prepares for INDEX 23 Exhibition in Geneva

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Source:

Fibre Extrusion Technology Ltd (FET)

(c) RadiciGroup
17.03.2023

RadiciGroup: 100% naturally sourced yarn made from castor oil

RadiciGroup presented Biofeel® Eleven, a yarn of natural origin, at the Performance Days trade fair (from March 15-16 in Munich). Biofeel® Eleven is sourced from castor oil and is suitable for obtaining bio-polymer. It can be used for fabrics and fine garments in many sectors, from fashion to sports, from automotive to home textiles.

Today, 80% of the world's castor-oil plantations are in India, particularly in the Gujarat region, due to its favourable climatic conditions. In this area, local people can earn an additional income by cultivating semi-arid land that does not compete with food production, and by applying the skills they have acquired over time to this work. Over the years, thanks to research, development and innovation in the value chain, the seeds from which the oil is produced have been selected and certified to ensure the finest quality, also in terms of end uses.

Castor beans contain around 45% oil, rich in ricinolein, from which the bio-polymer polyamide 11 is derived. This is the polymer RadiciGroup uses for its Biofeel® Eleven yarn. What remains after the first pressing is a highly effective bio-fertiliser that is returned to the soil.

RadiciGroup presented Biofeel® Eleven, a yarn of natural origin, at the Performance Days trade fair (from March 15-16 in Munich). Biofeel® Eleven is sourced from castor oil and is suitable for obtaining bio-polymer. It can be used for fabrics and fine garments in many sectors, from fashion to sports, from automotive to home textiles.

Today, 80% of the world's castor-oil plantations are in India, particularly in the Gujarat region, due to its favourable climatic conditions. In this area, local people can earn an additional income by cultivating semi-arid land that does not compete with food production, and by applying the skills they have acquired over time to this work. Over the years, thanks to research, development and innovation in the value chain, the seeds from which the oil is produced have been selected and certified to ensure the finest quality, also in terms of end uses.

Castor beans contain around 45% oil, rich in ricinolein, from which the bio-polymer polyamide 11 is derived. This is the polymer RadiciGroup uses for its Biofeel® Eleven yarn. What remains after the first pressing is a highly effective bio-fertiliser that is returned to the soil.

Biofeel® Eleven can also be solution dyed, i.e. dyed at the yarn production stage, saving a great deal of water and energy and also providing greater colour stability.

Source:

RadiciGroup

(c) Carbios
15.02.2023

Carbios: Four new Board members to strengthen international expertise

  • Carbios strengthens its Board of Directors with the appointments of Prof. Karine AUCLAIR, Sandrine CONSEILLER, Amandine DE SOUZA and Mateus SCHREINER GARCEZ LOPES
  • Carbios has reached its CSR objective of 60% independent directors ahead of 2024 target date, and has increased its female representation

Carbios‘four new members to its Board of Directors:  Prof. Karine AUCLAIR, professor of Chemistry at McGill University, Sandrine CONSEILLER, former CEO of Aigle, Amandine DE SOUZA, General Manager of LE BHV MARAIS, Eataly and Home, DIY and Leisure Purchasing at Galeries Lafayette Group, and Mateus SCHREINER GARCEZ LOPES, Global Director for Energy Transition and Investments at Raizen, have all been appointed members of Carbios’ Board of Directors.  In the new structure, Prof. Karine AUCLAIR succeeds Jacqueline LECOURTIER, Sandrine CONSEILLER succeeds Jean FALGOUX, Amandine DE SOUZA succeeds Alain CHEVALLIER, and Mateus SCHREINER GARCEZ LOPES succeeds Jean-Claude LUMARET.

  • Carbios strengthens its Board of Directors with the appointments of Prof. Karine AUCLAIR, Sandrine CONSEILLER, Amandine DE SOUZA and Mateus SCHREINER GARCEZ LOPES
  • Carbios has reached its CSR objective of 60% independent directors ahead of 2024 target date, and has increased its female representation

Carbios‘four new members to its Board of Directors:  Prof. Karine AUCLAIR, professor of Chemistry at McGill University, Sandrine CONSEILLER, former CEO of Aigle, Amandine DE SOUZA, General Manager of LE BHV MARAIS, Eataly and Home, DIY and Leisure Purchasing at Galeries Lafayette Group, and Mateus SCHREINER GARCEZ LOPES, Global Director for Energy Transition and Investments at Raizen, have all been appointed members of Carbios’ Board of Directors.  In the new structure, Prof. Karine AUCLAIR succeeds Jacqueline LECOURTIER, Sandrine CONSEILLER succeeds Jean FALGOUX, Amandine DE SOUZA succeeds Alain CHEVALLIER, and Mateus SCHREINER GARCEZ LOPES succeeds Jean-Claude LUMARET.

Three of the new members have strong, proven expertise in various industries covering fashion, retail and energy, as well as business development and senior executive management in high-growth markets and sectors around the world.  The new scientific expertise will also help enhance and advance Carbios’ research into biological solutions for the life cycle of plastics and textiles.  In addition, a sensitivity to CSR issues and proven results in this field was also a key selection factor to join the Board.  The new members’ combined strategic vision, solid industry experience and CSR commitments will support Carbios in its industrial and commercial plans.
 
Prof. Karine AUCLAIR is Professor of Chemistry at McGill University and holds the Tier 1 Canada Research Chair in Antimicrobials and Green Enzymes.  She has received numerous awards over the years, including the Clara Benson Award of the Canadian Society of Chemistry, the McGill Tomlinson Professorship, the Leo Yaffe Teaching Award, and the McGill Fessenden Professorship, to name a few. She is an internationally recognized bioorganic chemist with significant scientific contributions to the fields of antimicrobial resistance, biocatalysis and enzymology. Her research led to several patents notably in the clean enzymatic depolymerization of untreated, high crystallinity PET plastics for closed-loop recycling.  Her work has been published in nearly 100 peer-reviewed publications in high-impact journals, and often highlighted by the media.  As a recognized leader in her field, she is often invited to speak at industrial and academic conferences around the world, and to review theses and grant applications for worldwide institutions.
 
Sandrine CONSEILLER is former Chief Executive Officer of Aigle (the emblematic French brand committed to sustainable fashion).  Prior to joining Aigle, Sandrine was Group Marketing & Branding Executive Vice-President at Lacoste (another historic French fashion brand) from 2011 to 2015.  She contributed to the Lacoste maison turnaround with strong growth and numerous professional awards including several Cannes Lions Awards.  She was also Member of the Executive Board.  Sandrine began her career at Unilever and spent 20 years leading global businesses within various divisions, mainly in Personal Care, in Latin America, Europe, and Asia.  Sandrine is also Member of the Board of Phildar (the iconic French knitwear brand), Member of the Board of Raise Sherpa (the first philantropic endowment fund dedicated to start-ups) and is a funding partner of NEO FOUNDERS (a venture fund mentoring impact start-ups).
 
Amandine DE SOUZA is General Manager of LE BHV MARAIS (French retail, decoration and fashion department stores), Eataly (an Italian gastronomy concept franchise) and Home, DIY and Leisure Purchasing at Galeries Lafayette Group since 2018.  She has been a Member of its Executive Committee since 2020.  Amandine has 17 years’ experience in different types of companies of various sizes: from family business, to start-up,  and multinational.  She was General Manager for France at Westwing (an e-commerce start-up) from 2015 to 2018.  From 2009 to 2015, she was International Merchandise Director at Casino Group (food and non-food retail distribution).  Prior to this, she worked as a strategic consultant at Bain & Company within their Distribution and Consumer Goods Division in France and internationally.
 
Mateus SCHREINER GARCEZ LOPES is Global Director for Energy Transition and Investments at Raizen (global leader in bioenergy from Brazil), leading technology, new business development and intellectual property at the company.  He was previously Global Manager for Innovation and Business Development in Renewable Chemicals at Braskem (the largest producer of thermoplastic resins in the Americas and the world’s largest producer of biopolymers).  Before his transition to the corporate world, Mateus held several researcher and lecturer positions on Synthetic Biology and metabolic Engineering at Universities in Mexico, Germany, United States and Brazil.  He is also a Board Member of Iogen Energy Corporation, Vice-Chairman of the Board of the Brazilian Association of Bio Innovation, and Advisory Committee Member from the MIT Energy Initiative.

More information:
Carbios
Source:

Carbios

09.02.2023

Oerlikon: More services for customers in the USA

The American subsidiary of the Swiss Oerlikon Group, Oerlikon Textile Inc., is expanding and moving into new, modern premises tailored to future needs just a few kilometers away from its previous location in Charlotte, North Carolina. A new service center for the polymer processing industry will be created on approximately 4500 m² of office and commercial space latest by the middle of this year.
Oerlikon expands service offering for customers in the USA

"We are the preferred technology partner in the field of man-made fiber production in the USA and not only want to remain so, but also to further expand our services for our customers. However, the previous premises no longer offered any opportunities for expansion," explains Chip Hartzog, President of Oerlikon Textile Inc., the logical step.

The American subsidiary of the Swiss Oerlikon Group, Oerlikon Textile Inc., is expanding and moving into new, modern premises tailored to future needs just a few kilometers away from its previous location in Charlotte, North Carolina. A new service center for the polymer processing industry will be created on approximately 4500 m² of office and commercial space latest by the middle of this year.
Oerlikon expands service offering for customers in the USA

"We are the preferred technology partner in the field of man-made fiber production in the USA and not only want to remain so, but also to further expand our services for our customers. However, the previous premises no longer offered any opportunities for expansion," explains Chip Hartzog, President of Oerlikon Textile Inc., the logical step.

All processes will be optimized in the new buildings. Incoming goods, warehouse and dispatch will be merged, inventory control will be strengthened. On top, the range of services in the repair area will be expanded. "In addition to our services in the area of filament and carpet yarn systems, we will also be able to offer our customers repair services for staple fiber components such as crimpers or nonwoven systems in the future," says Chip Hartzog. This will further strengthen the market position for the Oerlikon Barmag, Oerlikon Neumag and Oerlikon Nonwoven brands.

Oerlikon Textile Inc. has been active in the manmade fibers business in the USA for over 55 years. In addition to the sale of Staple Fiber, BCF, IDY, POY, FDY and texturing plants, the product portfolio also includes upgrades and modernization of old plants, service and training offers as well as repair services and spare parts supplies.

(c) FET Ltd
17.01.2023

FET looks forward following sucessful year

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

FET is now looking forward to 2023 with a record order book. The company’s newly opened Fibre Development Centre features over £1.5 million investment in customer laboratory systems that will further enable fibre trials and product R&D. Three new polymer types were developed with clients in 2022 and several more are lined up in 2023, which is expected to bring the total of different polymer types to more than 40 in multifilament, monofilament and nonwoven formats.

FET will be exhibiting at two major exhibitions in 2023; INDEX 23, a leading Nonwovens show at Geneva in April; and ITMA, Milan, an international textile and garment technology exhibition in June.

Source:

FET Ltd

Photo CHT Gruppe
16.01.2023

CHT TEXTILE SOLUTIONS - Smart approaches to energy cost reduction and climate protection

Within its TEXTILE SOLUTIONS, the CHT Group has developed solution approaches for manufacturing companies in the textile value chain that have to use a lot of energy for their production. This is intended to compensate high energy costs and make a positive contribution to climate protection.Application specialists work with customers to develop individual savings potentials that are specifically tailored to the production facilities and requirements. Thus, depending on the process, fabric and machine, energy savings of up to 30% can be achieved with the use of innovative CHT textile auxiliaries, dyes/pigments and the corresponding process optimisations. In addition, the numerous concepts and optimally matched products can minimise water consumption or shorten the process time.


Energy-efficient cold bleaching instead of pad-steam bleaching processes in continuous pretreatment and the 4SUCCESS process for energy-efficient and resource-saving pretreatment and dyeing of cotton help to save energy. Likewise, the use of polymer binders, which do not require energy-intensive fixation, saves energy.

Within its TEXTILE SOLUTIONS, the CHT Group has developed solution approaches for manufacturing companies in the textile value chain that have to use a lot of energy for their production. This is intended to compensate high energy costs and make a positive contribution to climate protection.Application specialists work with customers to develop individual savings potentials that are specifically tailored to the production facilities and requirements. Thus, depending on the process, fabric and machine, energy savings of up to 30% can be achieved with the use of innovative CHT textile auxiliaries, dyes/pigments and the corresponding process optimisations. In addition, the numerous concepts and optimally matched products can minimise water consumption or shorten the process time.


Energy-efficient cold bleaching instead of pad-steam bleaching processes in continuous pretreatment and the 4SUCCESS process for energy-efficient and resource-saving pretreatment and dyeing of cotton help to save energy. Likewise, the use of polymer binders, which do not require energy-intensive fixation, saves energy.

Efficient pretreatment with the new polymer technology CPT (Comb Polymer Technology) achieves good cleaning effects even with low liquor ratios and thus less water to heat up. To save costs for energy-consuming heating, there is also the gentle low-temperature fixation in the easy care finishing. The OrganIQ EMS Jeans system enables jeans finishing with a reduced application temperature compared to standard processes.

With TIME BOOST, a process for fast polyester dyeing processes, not only significant energy but also time savings are achieved by omitting pre-washing and by shortening heating and migration times. SHORT CUT also leads to shorter process times when dyeing polyamide.

To avoid cost-intensive intermediate drying, the CHT Group offers the SCREEN-2-SCREEN with PRINTPERFEKT S2S which facilitates printing in a wet-on-wet technology.

In addition to numerous other products, the CHT Group also offers its customers digital tools to optimally support process optimizations. The "BEZAKTIV Soaping Advisor" calculation program within the CHT Textile Dyes app can be used to evaluate and improve dyeing and soaping processes in a simple and target-oriented way.

Source:

CHT Group

(c) Fraunhofer ICT
06.01.2023

Fraunhofer CPM develop programmable material for ergonomic lying position

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Materials and microstructuring
Materials for applications requiring specific changes to stiffness or shape are being developed by researchers from Fraunhofer CPM, which is formed of six core institutes with the aim of designing and producing programmable materials. So, how can we program materials? “Essentially, there are two key areas where adjustments can be made: the base material – thermoplastic polymers in the case of mattresses and metallic alloys for other applications, including shape memory alloys – and, more specifically, the microstructure,” explains Dr. Heiko Andrä, spokesperson on the topic at the Fraunhofer Institute for Industrial Mathematics ITWM, one of the Fraunhofer CPM core institutes. “The microstructure of these metamaterials is made up of unit cells that consist of structural elements such as small beams and thin shells.” While the size of each unit cell and its structural elements in conventional cellular materials, like foams, vary randomly, the cells in the programmable materials are also variable – but can be precisely defined, i.e., programmed. This programming can be made, for example, in such a way that pressure on a particular position will result in specific changes at other regions of the mattress, i.e., increase the size of the contact surface and provide optimal support to certain areas of the body.

Materials can also react to temperature or humidity
The change in shape that the material should exhibit and the stimuli to which it reacts - mechanical stress, heat, moisture or even an electric or magnetic field - can be determined by the choice of material and its microstructure.

The journey to application
A single piece of material can take the place of entire systems of sensors, regulators and actuators. The goal of Fraunhofer CPM is to reduce the complexity of systems by integrating their functionalities into the material and reducing material diversity. We always have industrial products in mind when developing the programmable materials. As such, we take mass production processes and material fatigue into account, among other things,” says Franziska Wenz, deputy spokesperson on the topic at the Fraunhofer Institute for Mechanics of Materials IWM, another core institute of Fraunhofer CPM. The initial pilot projects with industry partners are also already underway. The research team expects that initially, programmable materials will act as replacements for components in existing systems or be used in special applications such as medical mattresses, comfortable chairs, variable damping shoe soles and protective clothing. “Gradually, the proportion of programmable materials used will increase,” says Andrä. Ultimately, they can be used everywhere – from medicine and sporting goods to soft robotics and even space research.

Source:

Fraunhofer ITWM

(c) Devan Chemicals NV
03.01.2023

Devan launches new allergen control technology at Heimtextil

Belgian textile innovator Devan Chemicals will launch Purissimo® NTL, a biobased and readily biodegradable allergen control technology, at the upcoming Heimtextil trade show in Frankfurt (January 10-13, 2023). It is based on probiotic encapsulation technology and can be applied to textiles during the finishing stage of the textile manufacturing process. Purissimo® NTL cleans up pet dander, pollen and house dust mite allergens in textiles throughout the home.

Purissimo® NTL is based on Devan’s already well-established probiotics, incorporated into a new microcapsule shell. The shell is based on a natural crosslinked biobased polymer, which results in microcapsules that are up to 97% biobased and readily biodegradable (OECD 301B).

Belgian textile innovator Devan Chemicals will launch Purissimo® NTL, a biobased and readily biodegradable allergen control technology, at the upcoming Heimtextil trade show in Frankfurt (January 10-13, 2023). It is based on probiotic encapsulation technology and can be applied to textiles during the finishing stage of the textile manufacturing process. Purissimo® NTL cleans up pet dander, pollen and house dust mite allergens in textiles throughout the home.

Purissimo® NTL is based on Devan’s already well-established probiotics, incorporated into a new microcapsule shell. The shell is based on a natural crosslinked biobased polymer, which results in microcapsules that are up to 97% biobased and readily biodegradable (OECD 301B).

Firstly, dormant probiotic bacteria (spores) are encapsulated. The microcapsule product is then integrated into textiles. Friction opens the capsules and releases the spores. The spores absorb humidity, self-activate and start to multiply. The probiotic bacteria start to consume the allergens that cause allergic reactions and asthma. Due to lower allergen concentration, individuals with respiratory allergies such as house dust mite matter, pet allergens and pollen allergens will have milder to no symptoms and hence a better well-being feeling.

Purissimo® NTL can be used on a wide range of textiles such as mattresses, pillows, bedcovers, blankets but also upholstered furniture, carpets, curtains and public transportation and pet items, such as bedding. It is Oeko-tex® compliant, has a long-lasting effect and a wash durability up to 30 washes is achievable.

Source:

Devan Chemicals NV

(c) EFI GmbH
30.12.2022

EFI Reggiani with textile printing solutions at India ITME 2022

Textile companies could take full advantage of expanded print opportunities with EFI™ Reggiani textile solutions presented at the 8-13 December India ITME Exhibition in Greater Noida.

The EFI Reggiani TERRA Silver printer was shown at ITME 2022: a solution to enter the industrial printing segment with a short, smart and green process. The EFI Reggiani TERRA Solution eliminates the need for steaming or washing on direct-to-textile applications, using a greener, more efficient polymerisation process that takes place as the printed textile goes through the printer’s on-board dryer. As a result, users can achieve superior printing results while using less time, water, and energy.

The EFI Reggiani exhibit at ITME was also promoting:

Textile companies could take full advantage of expanded print opportunities with EFI™ Reggiani textile solutions presented at the 8-13 December India ITME Exhibition in Greater Noida.

The EFI Reggiani TERRA Silver printer was shown at ITME 2022: a solution to enter the industrial printing segment with a short, smart and green process. The EFI Reggiani TERRA Solution eliminates the need for steaming or washing on direct-to-textile applications, using a greener, more efficient polymerisation process that takes place as the printed textile goes through the printer’s on-board dryer. As a result, users can achieve superior printing results while using less time, water, and energy.

The EFI Reggiani exhibit at ITME was also promoting:

  •  EFI Reggiani HYPER printer, a scanning printer available in 1.8-metre, 2.4-metre or 3.4-metre widths that prints at up to 20 linear metres per minute peak speed, making it the fastest textile scanning printer on the market;
  • Mezzera Concord, the continuous rope washing line from the specialist in washing solutions that transports fabric by overflow for tensionless running with an independent squeezing mangle for each channel;
  • One of the industry’s broadest line-ups of high-end, superior-quality textile inks, including EFI Reggiani AQUA and EFI Reggiani Diamond reactive, IRIS dye-sublimation, ARIA direct disperse, FUOCO acid, and GEA and TERRA pigment inks; and
  • Inèdit, recently acquired by EFI Reggiani, a developer of raster image processors (RIPs) and related software for digital industrial textile printing with their product portfolio that features proven, highly advanced workflow solutions for textile profiling, calibration, design integration and much more.
Source:

EFI GmbH

30.12.2022

Carbios hosts PET Biorecycling Summit

  • Scientific researchers from 10 countries, including North America, UK, Japan and Germany
  • Bertrand Piccard, Solar Impulse Foundation, as Keynote Speaker
  • Speakers from strategic partnerships: L’Oréal, Salomon, and McKinsey

Carbios hosted the first PET Biorecycling Summit from 7 to 8 December 2022 in Paris. The event attracted over 100 international participants from the scientific, academic, and industrial worlds to exchange on the advances in the field of biological recycling, and how to bring these innovations for a circular economy to market.

  • Scientific researchers from 10 countries, including North America, UK, Japan and Germany
  • Bertrand Piccard, Solar Impulse Foundation, as Keynote Speaker
  • Speakers from strategic partnerships: L’Oréal, Salomon, and McKinsey

Carbios hosted the first PET Biorecycling Summit from 7 to 8 December 2022 in Paris. The event attracted over 100 international participants from the scientific, academic, and industrial worlds to exchange on the advances in the field of biological recycling, and how to bring these innovations for a circular economy to market.

The two-day conference gathered scientists from various academic institutions to share their latest research on PET enzymatic depolymerization.  Bertrand Piccard, Initiator and Chairman of the Solar Impulse Foundation[1], joined as the Keynote Speaker for the last session focused on PET circularity, and praised Carbios’ contribution to reducing plastic pollution. The Summit concluded with a visit of Carbios’ demonstration plant in Clermont-Ferrand. The demonstration plant was inaugurated in September 2021 and brings Carbios’ technology one step closer to industrialization. Following the demonstration plant’s success, Carbios is on track to build and operate the world’s first industrial-scale enzymatic PET recycling plant (with a processing capacity of 50.000 tons of PET waste per year) in France (Longlaville) by 2025[2], and to start licensing its technology throughout the world.


[1] To address sustainability challenges while enabling economic growth, Bertrand Piccard and the Solar Impulse Foundation have identified 1000+ clean and profitable solutions. More details available on the official website.

[2] Cf. Press release dated 23 February 2022.

Source:

Carbios

20.12.2022

Carbios publishes first Sustainability Report

Carbios published its first Sustainability Report using 2021 as the baseline year. The report outlines Carbios’ commitment to developing environmental, social and governance (ESG) initiatives that go beyond the industrial development of its innovative plastics biorecycling technologies. Although not subject to the regulatory requirement of the Non-Financial Reporting Directive (NFRD), Carbios has nonetheless structured its report in accordance with the requirements of the European directive on Extra-Financial Performance Statements.

Carbios’ sustainability strategy is based on three pillars (governance and ethics, the environment, social and societal issues) divided into 22 priority material challenges. Carbios’ Sustainability Report reflects the company’s dedication to transparency in action and highlights its efforts in areas such as environmental sustainability; employee relations, diversity and inclusion; and corporate governance.

Within its 2021 Sustainability Report, Carbios has formalized several targets including:

ENVIRONMENTAL OBJECTIVES

Carbios published its first Sustainability Report using 2021 as the baseline year. The report outlines Carbios’ commitment to developing environmental, social and governance (ESG) initiatives that go beyond the industrial development of its innovative plastics biorecycling technologies. Although not subject to the regulatory requirement of the Non-Financial Reporting Directive (NFRD), Carbios has nonetheless structured its report in accordance with the requirements of the European directive on Extra-Financial Performance Statements.

Carbios’ sustainability strategy is based on three pillars (governance and ethics, the environment, social and societal issues) divided into 22 priority material challenges. Carbios’ Sustainability Report reflects the company’s dedication to transparency in action and highlights its efforts in areas such as environmental sustainability; employee relations, diversity and inclusion; and corporate governance.

Within its 2021 Sustainability Report, Carbios has formalized several targets including:

ENVIRONMENTAL OBJECTIVES

  • Use the Life Cycle Assessment (LCA) method to maximize circularity and aim for the lowest carbon impact
  • Commit to depolymerizing 60 tons of PET in 2023 at the Demonstration Plant in Clermont-Ferrand: the equivalent of about 3.2 million plastic bottles or 4 million food trays

SOCIAL OBJECTIVES

  • Contribute to local economic development in France: the world’s first industrial-scale enzymatic PET recycling plant in Longlaville will create 150 direct and indirect jobs
  • In a context of strong growth, promote employee well-being and safety by developing training, and ensuring the management and prevention of psycho-social risks
  • Strengthen commitment to supporting international research through academic partnerships and scientific publications

GOVERNANCE OBJECTIVES

  • Achieve 40% female members of the Board of Directors by end 2023, and 40% on Executive Committee by end 2024
  • Achieve 60% independent members of the Board of Directors by end 2024
  • Structure CSR governance with the creation of a CSR committee and integrate sustainability objectives into Executive’s compensation starting fiscal year 2023
Source:

Carbios

(c) FET
Business Secretary Grant Shapps discusses FET’s wet spinning system with Mark Smith, FET R&D Manager
16.12.2022

FET extrusion system features in UK Business Secretary’s visit

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

“R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country. Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.”

The Henry Royce Institute was established in 2015 with an initial £235 million government investment through the Engineering and Physical Sciences Research Council and the latest £95 million sum represents the second phase of the investment.

Opportunities being investigated by Royce include lightweight materials and structures, biomaterials and materials designed for reuse, recycling and remanufacture. Advanced materials are critical to the UK future in various industries, such as health, transport, energy, electronics and utilities.

(c) SANITIZED AG
Dr. Martin Čadek, CTO SANITIZED AG
02.12.2022

SANITIZED AG stärkt Innovationskompetenz mit neuem CTO

Swiss-based SANITIZED AG is increasing its innovation expertise by appointing a new CTO, Dr. Martin Čadek, who will oversee global technological activities for the specialist antimicrobial hygiene brand. Dr. Čadek will lead the company’s Competence Centre for Technology Innovation and will focus on breaking new ground to develop innovations in sustainability.

Dr. Čadek is a graduate physicist with a master’s degree in polymer science with many years’ experience in the industry working with polymers, fibres, industrial textiles, and extruded polymers. He is joining SANITIZED AG from his most recent role as Managing Director for German subsidiary the Flint Group. His previous roles include the Global Head of Innovation for Energy and Polymer Systems at Evonik/Orion, the Head of Extrusion Technology Business Unit in Europe for Emerell AG, and work with the SGL Group.

Swiss-based SANITIZED AG is increasing its innovation expertise by appointing a new CTO, Dr. Martin Čadek, who will oversee global technological activities for the specialist antimicrobial hygiene brand. Dr. Čadek will lead the company’s Competence Centre for Technology Innovation and will focus on breaking new ground to develop innovations in sustainability.

Dr. Čadek is a graduate physicist with a master’s degree in polymer science with many years’ experience in the industry working with polymers, fibres, industrial textiles, and extruded polymers. He is joining SANITIZED AG from his most recent role as Managing Director for German subsidiary the Flint Group. His previous roles include the Global Head of Innovation for Energy and Polymer Systems at Evonik/Orion, the Head of Extrusion Technology Business Unit in Europe for Emerell AG, and work with the SGL Group.

The Competence Centre for Technology & Innovation will provide services to all three of SANITIZED’s business units: Textiles, Polymer Additives, and Coatings and Preservation. It will be built on top of SANITIZED’s TecCenter for Analytics, Microbiology and Applications and its regulatory department.

More information:
Sanitized AG CTO Hygiene
Source:

SANITIZED AG

Photo: OCSiAl
24.11.2022

OCSiAl: Graphene nanotubes expand textiles’ functionality

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 
In applications where multifunctionality of textile is required, graphene nanotubes overcome the limitations of other conductive materials such as unstable anti-static properties; degradation of strength, or chemical or fire resistance; complicated manufacturing processes; dusty production; carbon contamination on the material’s surface; or limited color options. Recent developments show that graphene nanotubes provide ESD protection to textiles in full compliance with safety standards and without degrading the textile’s resistance to harsh environments, greatly enhancing the value of textiles.
 
One such example is textiles coated with fluoroelastomer (a polymer that is highly resistant to chemicals) augmented with graphene nanotubes from OCSiAl. Nanotubes provide the material with surface resistivity of 10^6–10^8 Ω/sq compliant with EN, ISO, and ATEX standards for personal protective equipment. This new technology opens the door for the fabric to be used in high-level protective suits, combining exceptional protection from chemicals with electrostatic discharge protection.
 
Another example is how graphene nanotube technology is being acknowledged as a replacement for metal yarns in fireproof and anti-static textiles, protecting against sparks, splashes of molten metal, high temperatures, and the risk of sudden electrostatic discharge. While metal yarns require a specific knitting process and storage conditions, incorporating nanotubes in a fabric does not require any changes in the manufacturing process as the water-based dispersion is introduced into the fabric at the fluoro-organic treatment stage. The fabric with OCSiAl’s graphene nanotubes has been proven to maintain the pre-set level of ESD protection (surface resistance of 10^7 Ω) after numerous washes.
 
Permanent and stable electrical conductivity, facilitated by graphene nanotubes, is not only a matter of safety but brings additional value in augmenting dust-repellent properties and touchscreen compatibility for comfort and time savings. At the same time, the ultralow nanotube concentrations result in maintained manufacturing processes and mechanical properties, and improve product aesthetics by making it possible to use a wide range of colors. Altogether, these benefits allow textile manufacturers to create next-generation special textiles with expanded functionality.

 

FET-200LAB wet spinning system Photo: Fibre Extrusion Technology Limited (FET)
21.11.2022

FET wet spinning system selected for major fibre research programme

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

FET-200 Series wet spinning systems complement FET’s renowned range of melt spinning equipment. The FET-200LAB is a laboratory scale system, which is especially suitable for the early stages of formulation and process development. It is used for processing new functional textile materials in a variety of solvent and polymer combinations.

In particular, the FET-200LAB will be utilised in trials for a family of fibres made from wood pulp, a sustainable resource rather than the usual fossil fuels. Bio-based polymers are produced from biomass feedstocks such as cellulose and are commonly used in the manufacture of high end apparel. The key to cellulose and other materials like lyocell and viscose is that they can be recycled, treated and fed back into the wet spinning system for repeat manufacture.

Established in 1998, FET is a leading supplier of laboratory and pilot melt spinning systems with installations in over 35 countries and has now successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

Source:

DAVID STEAD PROJECT MARKETING LTD

Graphic NatureWorks
16.11.2022

CJ Biomaterials and NatureWorks: Joint commercialization of novel biopolymer solutions

  • Future plans for the nonwovens market

The two companies will develop sustainable materials solutions based on CJ Biomaterials’ PHACT™ PHA and NatureWorks’ Ingeo™ PLA technologies NTR and CJ Biomaterials

CJ Biomaterials, Inc., a division of South Korea-based CJ CheilJedang and leading producer of polyhydroxyalkanoate (PHA), and NatureWorks, an advanced materials company that is the world’s leading producer of polylactic acid (PLA), have signed a Master Collaboration Agreement (MCA) that calls for the two organizations to collaborate on the development of sustainable materials solutions based on CJ Biomaterials’ PHACT™ Biodegradable Polymers and NatureWorks’ Ingeo™ biopolymers. The companies will develop high-performance biopolymer solutions that will replace fossil-fuel based plastics in applications ranging from compostable food packaging and food serviceware to personal care, films, and other end products.

  • Future plans for the nonwovens market

The two companies will develop sustainable materials solutions based on CJ Biomaterials’ PHACT™ PHA and NatureWorks’ Ingeo™ PLA technologies NTR and CJ Biomaterials

CJ Biomaterials, Inc., a division of South Korea-based CJ CheilJedang and leading producer of polyhydroxyalkanoate (PHA), and NatureWorks, an advanced materials company that is the world’s leading producer of polylactic acid (PLA), have signed a Master Collaboration Agreement (MCA) that calls for the two organizations to collaborate on the development of sustainable materials solutions based on CJ Biomaterials’ PHACT™ Biodegradable Polymers and NatureWorks’ Ingeo™ biopolymers. The companies will develop high-performance biopolymer solutions that will replace fossil-fuel based plastics in applications ranging from compostable food packaging and food serviceware to personal care, films, and other end products.

The initial focus of this joint agreement will be to develop biobased solutions that create new performance attributes for compostable rigid and flexible food packaging and food serviceware. The new solutions developed will also aim to speed up biodegradation to introduce more “after-use” options consistent with a circular economy model. The focus on compostable food packaging and serviceware will create more solutions for keeping methane-generating food scraps out of landfills, which are the third largest source of methane emissions globally, according to World Bank. Using compostable food packaging and serviceware, we can divert more food scraps to composting where they become part of a nutrient-rich, soil amendment that improves soil health through increased biodiversity and sequestered carbon content.

CJ Biomaterials and NatureWorks plan to expand their relationship beyond cooperative product development for packaging to create new applications in the films and nonwoven markets.  For these additional applications, the two companies will enter into strategic supply agreements to support development efforts.

More information:
NatureWorks Biopolymere packaging
Source:

NatureWorks