From the Sector

Reset
75 results
FET: New Senior Materials and Process Scientist (c) FET
R&D Manager Dr Jonny Hunter (left) welcomes Dr Kristoffer Kortsen, Senior Materials and Process Scientist
28.02.2024

FET: New Senior Materials and Process Scientist

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has appointed Dr Kristoffer Kortsen as Senior Materials and Process Scientist. He will report directly to R&D Manager, Dr Jonny Hunter, who joined FET in early 2023 in a growing Research and Development team.

Kortsen’s main area of work is in Gel Spinning of UHMWPE (Ultra-High Molecular Weight Polyethylene). His contribution will help provide gel spinning expertise and equipment in the near future to a range of industries including medical, aerospace, defence aerospace and marine.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has appointed Dr Kristoffer Kortsen as Senior Materials and Process Scientist. He will report directly to R&D Manager, Dr Jonny Hunter, who joined FET in early 2023 in a growing Research and Development team.

Kortsen’s main area of work is in Gel Spinning of UHMWPE (Ultra-High Molecular Weight Polyethylene). His contribution will help provide gel spinning expertise and equipment in the near future to a range of industries including medical, aerospace, defence aerospace and marine.

He completed a Master’s in chemistry at KU Leuven, graduating magna cum laude in 2018. For his Master’s placement, he worked on the production of impact modifier additives for PVC at Kaneka Belgium. Continuing a partnership with this international chemical manufacturing company, he joined the Howdle group at the University of Nottingham for a PhD project looking into the industrial potential of scCO2 dispersion polymerisations for additive production. After graduating, he worked in the Shaver group at the University of Manchester, developing a holistic approach to plastics recycling and sustainability across the many stakeholders in the field.

Source:

Fibre Extrusion Technology Ltd (FET)

Graphic Toray
20.12.2023

Recycled carbon fiber: When a Boeing 787 turns into a Lenovo ThinkPad

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

TORAYCA™ is an established aerospace material known for its high strength, stiffness, and lightweighting properties. These qualities have led to its adoption in other applications such as electrical and electronic equipment housings, sports equipment, and other industrial applications.

A key advantage of carbon fiber is the ability to retain its primary mechanical properties even after the recycling process. Toray is actively advancing recycling technologies and establishing a strategic business model for rCF. Given that the carbon footprint of rCF is lower than that of virgin carbon fiber, Toray is proactively recommending the adoption of rCF to reduce the environmental impact of customers’ products. This commitment aligns with Toray’s dedication to fostering a circular economy, thereby reducing landfill waste.

Source:

Toray Industries

Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right. Source: ITMF
Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right.
01.12.2023

Faster and cheaper carbon fibre production with CarboScreen

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Both types of damage cannot be optimally detected by current means or only become apparent after production, to name just two examples. This leads to higher production costs. In an emergency, faulty production can even lead to plant fires. For this reason, and to ensure good production quality, the system is run at 15 m/min below its production capacity for safety reasons. However, 30 m/min or more would be possible. With the sensor-based online monitoring of CarboScreen, the production capacity can be doubled to 30 /min. This would lead to higher production, resulting in lower manufacturing costs and wider use of carbon fibres in mass markets such as automotive, aerospace and wind energy.

More information:
carbon fibers sensors Startup
Source:

ITA – Institut für Textiltechnik of RWTH Aachen University
 

Gerhard Lettl (AVK Board Member, C.F. Maier Europlast GmbH & Co. KG), Felix Pohlmeyer (ITA), Prof. Dr Jens Ridzewski (AVK Board Member, IMA Materialforschung und Anwendungstechnik GmbH), Tim Röding (ITA), from left to right © AVK
Gerhard Lettl (AVK Board Member, C.F. Maier Europlast GmbH & Co. KG), Felix Pohlmeyer (ITA), Prof. Dr Jens Ridzewski (AVK Board Member, IMA Materialforschung und Anwendungstechnik GmbH), Tim Röding (ITA), from left to right
23.11.2023

CarboScreen: Sensor monitoring for complex carbon fibre production

Felix Pohlkemper and Tim Röding from Institut für Textiltechnik (ITA) of RWTH Aachen University are developing a technology with their start-up CarboScreen GmbH that makes complex carbon fibre production controllable through sensor monitoring. With the help of CarboScreen technology, it should be possible to double the production speed from the current 15 m/min to 30 m/min in the medium term. The doubling of production speed alone could result in an increase in turnover of up to €37.5 million per year and production plant. Felix Pohlkemper and Tim Röding were awarded third place in the AVK Innovation Award 2023 in the Processes and Procedures category for this ground-breaking development. The award ceremony took place during the JEC Roof Forum in Salzburg, Austria.

Felix Pohlkemper and Tim Röding from Institut für Textiltechnik (ITA) of RWTH Aachen University are developing a technology with their start-up CarboScreen GmbH that makes complex carbon fibre production controllable through sensor monitoring. With the help of CarboScreen technology, it should be possible to double the production speed from the current 15 m/min to 30 m/min in the medium term. The doubling of production speed alone could result in an increase in turnover of up to €37.5 million per year and production plant. Felix Pohlkemper and Tim Röding were awarded third place in the AVK Innovation Award 2023 in the Processes and Procedures category for this ground-breaking development. The award ceremony took place during the JEC Roof Forum in Salzburg, Austria.

The production of carbon fibres is highly complex. In the current state of the art, however, the manufacturing process is only monitored manually by semi-skilled workers. However, even minimal fibre damage during production leads to a reduction in the quality of the carbon fibre. In extreme cases, it can also lead to plant fires. To ensure production quality, the production speed is currently limited to a maximum of 15 m/min. In fact, the production speed of the systems could be higher. The sensor-based online monitoring of Carbo-Screen makes it possible to increase the production speed to 30 m/min in the medium term. As a result of the increased production volume per system, the specific production costs of the carbon fibre are reduced, which can result in lower prices.

A reduced sales price would make it possible to use carbon fibres and their composite materials even more widely in traditional markets such as aerospace technology and wind energy, as well as for mass production in the automotive industry.

The CarboScreen online monitoring system is currently being developed for industrial use. It is to be validated at an industrial plant in 2024. CarboScreen GmbH was founded as part of EXIST funding and offers AI-supported sensor systems for carbon fibre production. The sensor technology continuously monitors the fibre throughout the entire production process. Deviations are detected automatically.

The winners of the AVK Innovation Award are honoured annually by the AVK Industrievereinigung Verstärkte Kunststoffe. Companies, institutes and their partners are honoured in three categories: products and applications, processes and procedures, and research and science.

Bac Mono Photo Hypetex
22.09.2023

Hypetex: Coloured carbon fibre replacing paint coating

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

Hypetex’s paint-replacement technology retains the visible weave, allowing for a bold design and a choice of colours without technical compromises, perfectly aligning with BAC’s initiatives to maximise performance whilst creating bespoke supercars. Paint generally adds 138 grams per metre squared, whereas Hypetex adds just 17 grams for the same area, offering an 8x weight saving.
This bespoke version of BAC’s single-seater Mono R was subject to BAC’s renowned BAC Bespoke programme, which ensures that no two Monos are the same. The client, a US-based collector, worked with BAC’s design team to design the car to their personal taste.   

Born out of Formula 1 technology, Hypetex offers manufacturers sustainable aesthetic materials with technical and efficiency benefits. This collaboration is an all-British success story, with the Hypetex carbon fibre body built by Formaplex, a leading UK-based manufacturing company who manufacture lightweight engineered solutions for top tier customers in Automotive, Aerospace and Defence markets. BAC’s supply chain is 95% UK-based.  

Hypetex continues to expand its growing portfolio of the use of coloured carbon fibre to add personalisation to the automotive field, with its material recently featured on the 2024 Ford Mustang Dark Horse.  

 

More information:
HYPETEX® carbon fibers
Source:

Hypetex

30.08.2023

VIATT 2024’s prospects highlighted at Intertextile Apparel press conference

Harnessing the synergy of the Texpertise Network of Messe Frankfurt and its global apparel flagship, the co-organisers of the Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) recently held a joint press conference on 28 August 2023, the first day of Intertextile Shanghai Apparel Fabrics – Autumn Edition. Discussing the inaugural fair’s comprehensive, business-friendly nature, representatives of both Messe Frankfurt  and VIETRADE spoke in glowing terms about the potential of ASEAN’s new platform for the entire textile industry. Set to launch the spring sourcing season, the fair will take place from 28 February – 1 March 2024 at the Saigon Exhibition and Convention Center (SECC), Ho Chi Minh City.

Harnessing the synergy of the Texpertise Network of Messe Frankfurt and its global apparel flagship, the co-organisers of the Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) recently held a joint press conference on 28 August 2023, the first day of Intertextile Shanghai Apparel Fabrics – Autumn Edition. Discussing the inaugural fair’s comprehensive, business-friendly nature, representatives of both Messe Frankfurt  and VIETRADE spoke in glowing terms about the potential of ASEAN’s new platform for the entire textile industry. Set to launch the spring sourcing season, the fair will take place from 28 February – 1 March 2024 at the Saigon Exhibition and Convention Center (SECC), Ho Chi Minh City.

For its first edition, the fair is expected to attract over 500 exhibitors and around 35,000 visitors to an 18,000 sqm exhibition space. Ms Wendy Wen, Managing Director of Messe Frankfurt (HK) Ltd, considered the show’s importance on a worldwide scale: “Serving as a supplementary trade fair to our existing events in China, VIATT will effectively extend our market reach into South East Asia. We’ve designed it to reinforce our global Texpertise Network, spanning the entire textile value chain. The network, which links over half a million textile professionals globally and organises more than 50 international textile trade fairs across 11 different countries, will lend its full support to the fair.”
 
She continued: “In line with this commitment, we will harness our more than 30 years of experience organising Intertextile in China, and extend to the fast-growing textile sector in Vietnam. Intertexile has grown to be by far the most influential series within our Texpertise Network, covering a broad range of resources in apparel fabrics, home and contract textiles."
 
With Vietnam’s largest international airport and seaport, and its proximity to other textile producing countries and regions, Ho Chi Minh City is strategically located to hold an event of this nature. The city attracts 35%[1] of Vietnam’s foreign direct investment projects, and is the venue of choice for a significant portion of the country’s trade fairs.
 
Discussing the event’s potential, Mr Vu Ba Phu, Director General of Vietnam Trade Promotion Agency (VIETRADE), said: “Vietnam has emerged as one of the leading textiles exporting countries worldwide, with particularly high growth in the past 10 years, ranging from 15% to 20% yearly. As companies seek to diversify supply chains, and Vietnam introduces lucrative trade agreements, the market is predicted to attract even more investments. A big importer of textile machinery, fabrics, and yarns and fibres, green production and durable goods have become increasingly important. VIATT 2024 will be an important hub helping suppliers and buyers in all categories to meet, source and unleash the full potential of this market.”
 
A comprehensive Vietnam-based textile fair is an attractive proposition for manufacturers and sourcing professionals alike. Exhibitors from around the world will showcase a full spectrum of apparel fabrics, yarns and fibres, and garments; the latest innovations in technical textiles and nonwovens, textile processing, and printing technology; as well as a wide range of home and contract textiles.
 
Apparel fabrics, yarns and fibres, and garments

This sector will contain quality exhibitors from Vietnam, ASEAN, and beyond, providing buyers with numerous, diverse sourcing options in apparel textile sub-categories such as accessories, casualwear, denim, lace and embroidery, ladieswear, pattern designs, shirting, sportswear, suiting, and many more.
 
Technical textiles and nonwovens, textile processing, and printing technology
With application areas that include everything from automotive, aerospace and shipping, to construction, healthcare and safety, products on display will include innovative machinery, as well as some of the latest developments in smart textiles, such as wearable technology, sensors, and advanced materials.
 
Home textiles
Exhibitors will feature high-quality bed linens, towels, curtains, and much more, suitable for visitors sourcing for both residential and commercial applications. The diverse collections of home textiles will be enhanced by globally on-trend interior designs and in-demand, organic materials.
 
The Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) is organised by Messe Frankfurt (HK) Ltd and the Vietnam Trade Promotion Agency (VIETRADE). Covering the entire textile industry value chain, the inaugural edition will be held from 28 February – 1 March 2024 at the Saigon Exhibition and Convention Center (SECC), Ho Chi Minh City.

[1] ‘Investing in Ho Chi Minh City’, October 2022, Vietnam Briefing, retrieved August 2023, https://www.vietnam-briefing.com/news/investing-in-ho-chi-minh-city-why-the-megacitys-industry-economy-and-policy-are-key-to-developmen.html/

Source:

Messe Frankfurt (HK) Ltd

Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz Hanns-Voith-Stiftung, Oliver Voge
Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz
11.07.2023

Future cost reduction through ultra-thin PE carbon fibres

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

The use of carbon fibres in highly stressed lightweight construction solutions, such as today's growth applications of wind turbines or pressure tanks, has become indispensable due to their excellent mechanical properties and low density. High manufacturing costs of conventional PAN precursor-based carbon fibres make the material very cost-intensive. In addition, it is not sufficiently available. New manufacturing approaches that develop alternative raw materials and manufacturing processes can be a key and growth engine for further industrial composites applications.

The aim of the work was to develop a new and cost-effective manufacturing process for high-quality ultra-thin carbon fibres using a polyethylene precursor. For this purpose, the sulphonisation process, which is time-consuming today, was to be significantly shortened. As a result, Mr. Marter Diniz produced novel ultra-thin polyethylenebased carbon fibres with a filament diameter < 3 μm with an excellent surface quality of the fibres without detectable structural defects. The fibre diameter is 2-3 times smaller than that of conventional PANbased CF. This provides the basis for mechanically high-quality material properties. At the same time, Mr. Marter Diniz was able to reduce the sulphonisation time by 25 percent. The developed material and technology set important milestones on the way to cheaper carbon fibres. With PE-based precursors, the price of CF can be reduced by 50 percent compared to conventional PAN-based CF.  

A total of five other young scientists were awarded in six categories (Drive Technology, Innovation & Technology/Artificial Intelligence, New Materials, Paper, Hydropower and Economic Sciences. This year, for the 10th time, the Hanns Voith Foundation awarded the Hanns Voith Prize to outstanding young scientists.

Source:

ITA Institut für Textiltechnik of RWTH Aachen University

03.11.2022

SGL Carbon: Positive business development in all business units

  • Positive business development in all four business units
  • Sales increases by 14.8% to €853.9 million
  • Adjusted EBITDA improves by 25.4% to €136.1 million
  • Successful refinancing of the 2018 convertible bonds

After €270.9 million in Q1 2022 and €278.9 million in Q2, SGL Carbon increased its consolidated sales to €304.1 million in Q3 2022. After nine months, this corresponds to a significant sales growth of 14.8% to a total of €853.9 million (9M 2021: €743.5 million). The positive business development is also reflected in the company's adjusted EBITDA, which improved by 25.4% year-on-year to €136.1 million (9M 2021: €108.5 million). All four business units contributed to the operating success.

Outlook
Due to the positive business development, the management increased the forecast for the full year on 6 September 2022. For the financial year 2022, Group sales of approx. €1.2 billion (previously: approx. €1.1 billion) and adjusted EBITDA of €170 to 190 million (previously: €130 to 150 million) are expected.

  • Positive business development in all four business units
  • Sales increases by 14.8% to €853.9 million
  • Adjusted EBITDA improves by 25.4% to €136.1 million
  • Successful refinancing of the 2018 convertible bonds

After €270.9 million in Q1 2022 and €278.9 million in Q2, SGL Carbon increased its consolidated sales to €304.1 million in Q3 2022. After nine months, this corresponds to a significant sales growth of 14.8% to a total of €853.9 million (9M 2021: €743.5 million). The positive business development is also reflected in the company's adjusted EBITDA, which improved by 25.4% year-on-year to €136.1 million (9M 2021: €108.5 million). All four business units contributed to the operating success.

Outlook
Due to the positive business development, the management increased the forecast for the full year on 6 September 2022. For the financial year 2022, Group sales of approx. €1.2 billion (previously: approx. €1.1 billion) and adjusted EBITDA of €170 to 190 million (previously: €130 to 150 million) are expected.

Consequently, an adjusted EBIT of €110 to 130 million (previously: €70 to 90 million) is forecasted. The expectations for return on capital employed (ROCE) of originally 7% to 9% are raised to 10% to 12% in line with the development of earnings. The estimate for free cash flow (significantly below the previous year's level of €111.5 million) remains unchanged.

Source:

SGL CARBON SE

(c) BRÜCKNER
The project team of BRÜCKNER and HEATHCOAT in BRÜCKNER’s Technology Centre in Leonberg
04.10.2022

BRÜCKNER: New finishing line for British company HEATHCOAT FABRICS

HEATHCOAT FABRICS partnered again with BRÜCKNER Textile Technologies and their sales partner ADVANCED DYEING SOLUTIONS to install a finishing line for industrial textiles. HEATHCOAT FABRICS specializes in the production of technical textiles in the fields of texturising, weaving and warp knitting as well as dyeing and finishing. The prroducts are manufactured for use in the automotive, healthcare, defence, and aerospace industries

Mrs. Regina Brückner, CEO and owner of the BRÜCKNER Group stated: "To meet the complex re-quirements of HEATHCOAT is not easy because of the great variety of technical textiles produced. Our line has to finish light as well as heavy articles, so the design, control and the whole line layout have to be flexible, functional and still easy to operate. Fortunately, the team at HEATHCOAT FABRICS is very innovative and open-minded, and together we worked hard to develop the right technology and han-dling. We are very happy that we could convince this customer, whom we appreciate very much, with the productivity of our line and of course with our technological know-how."

HEATHCOAT FABRICS partnered again with BRÜCKNER Textile Technologies and their sales partner ADVANCED DYEING SOLUTIONS to install a finishing line for industrial textiles. HEATHCOAT FABRICS specializes in the production of technical textiles in the fields of texturising, weaving and warp knitting as well as dyeing and finishing. The prroducts are manufactured for use in the automotive, healthcare, defence, and aerospace industries

Mrs. Regina Brückner, CEO and owner of the BRÜCKNER Group stated: "To meet the complex re-quirements of HEATHCOAT is not easy because of the great variety of technical textiles produced. Our line has to finish light as well as heavy articles, so the design, control and the whole line layout have to be flexible, functional and still easy to operate. Fortunately, the team at HEATHCOAT FABRICS is very innovative and open-minded, and together we worked hard to develop the right technology and han-dling. We are very happy that we could convince this customer, whom we appreciate very much, with the productivity of our line and of course with our technological know-how."

The direct gas heated BRÜCKNER POWER-FRAME stenter with its staggered heating source arrangement every half zone provides best available temperature consistency across the length and the width of the stenter. The unit is equipped with a low-lub, horizontally returning combined pin / clip chain and several fabric paths, especially designed for the different fabrics being processed. Together with HEATHCOAT FABRICS technologists, the BRÜCKNER design team developed a special delivery end of the stenter with different edge trimming and slitting possibilities. Depending on the kind of products, the fabrics can be batched on large diameter A-frames, wound on cardboard tubes or plaited into trolleys.

Source:

Brückner Trockentechnik GmbH & Co. KG

08.09.2022

Monforts at ITMA ASIA + CITME

Monforts will highlight its technologies for special technical textile applications at this year’s ITMA ASIA + CITME which takes place at the National Exhibition and Convention Center in Shanghai, China, from November 20-24.

One of Monforts' developments is the Montex 8500 XXL stenter system for the production of technical fabrics in widths of up to 6.8 metres. Among the products made on this system are treated nonwovens for the geotextiles and filter media markets, tarpaulins, advertising banners, black-out curtains, membranes and many more.

On Montex©Coat coating lines, meanwhile, the possibilities range from the single-sided application of finishing agents for outdoor clothing and adding functionality to home textiles, to the creation of materials for sophisticated lightweight construction and automotive and aerospace components.

Monforts will highlight its technologies for special technical textile applications at this year’s ITMA ASIA + CITME which takes place at the National Exhibition and Convention Center in Shanghai, China, from November 20-24.

One of Monforts' developments is the Montex 8500 XXL stenter system for the production of technical fabrics in widths of up to 6.8 metres. Among the products made on this system are treated nonwovens for the geotextiles and filter media markets, tarpaulins, advertising banners, black-out curtains, membranes and many more.

On Montex©Coat coating lines, meanwhile, the possibilities range from the single-sided application of finishing agents for outdoor clothing and adding functionality to home textiles, to the creation of materials for sophisticated lightweight construction and automotive and aerospace components.

“Many more applications are possible, such as the overdyeing of denim, the creation of double-face coated materials, fabrics awnings, tents and medical drapes and the pre-treatment of substrates for digital printing”, explains Gunnar Meyer, Monforts area sales manager for China. “A range of different doctor blades and their combinations can be supplied to meet individual requirements, including air knife, roller knife, foam, screen and magnetic roller coating. The latter option is recommended for lines with working widths of over 2.4 metres.”

In addition, Monforts can provide the necessary explosion-proof ranges for solvent-based coatings and high temperature processes up to 320°C, such as the PTFE coating of nonwoven filter material. These lines are equipped with special burners, stenter chains, and insulation.

Source:

 A. Monforts Textilmaschinen GmbH & Co. KG / AWOL Media

(c) AkzoNobel
12.07.2022

AkzoNobel announces €20 million investment and creates new jobs in France

A €20 million investment has been announced by AkzoNobel to increase and improve production at two of its sites in France. Around 30 new jobs will be created.

A total of €15 million will be spent on the company’s aerospace coatings facility in Pamiers, which was taken over following the Mapaero acquisition in 2019. Production capacity is being boosted by 50%, while the funds will also be used to reduce environmental impact and improve safety processes and working conditions.

The other €5 million will be spent on improving production flexibility at the decorative paints site in Montataire, which is one of the company’s most important manufacturing locations for wall paints in Europe.

The plans for Pamiers include the construction of two extensions, one for storage and one for cleaning and waste treatment. The project will also enable the company to relocate the production of exterior polyurethane paints for aircraft widely used in Europe from its Waukegan plant in the US.

Building work is expected to start by the end of 2023, with the new installations at both locations due to be operational in early 2025.

A €20 million investment has been announced by AkzoNobel to increase and improve production at two of its sites in France. Around 30 new jobs will be created.

A total of €15 million will be spent on the company’s aerospace coatings facility in Pamiers, which was taken over following the Mapaero acquisition in 2019. Production capacity is being boosted by 50%, while the funds will also be used to reduce environmental impact and improve safety processes and working conditions.

The other €5 million will be spent on improving production flexibility at the decorative paints site in Montataire, which is one of the company’s most important manufacturing locations for wall paints in Europe.

The plans for Pamiers include the construction of two extensions, one for storage and one for cleaning and waste treatment. The project will also enable the company to relocate the production of exterior polyurethane paints for aircraft widely used in Europe from its Waukegan plant in the US.

Building work is expected to start by the end of 2023, with the new installations at both locations due to be operational in early 2025.

AkzoNobel employs nearly 1,500 people in France and operates four production facilities, in Montataire (decorative paints), Dourdan (powder coatings), Limoges (adhesive markings) and Pamiers (aerospace coatings).

More information:
AkzoNobel Coatings aerospace
Source:

AkzoNobel

18.05.2022

Hexcel at JEC World 2022

  • Hexcel Composite Innovations for Aerospace Applications on Display at JEC World 2022: Hall 5, Stand J41

In late 2021, Hexcel announced an agreement with Fairmat, a deep technology startup, to build the capability to recycle carbon fiber prepreg from Hexcel European operations for reuse in composite panels sold into commercial markets, giving a second life to recovered carbon fiber. To do so, Fairmat has developed a virtuous recycling process, and a sample of its newly recycled material will be available to view at JEC World 2022. Hexcel will present an array of product innovations for aerospace and urban air mobility customer applications during JEC World 2022 in Paris on May3-5. These latest innovations demonstrate the company’s leadership in developing advanced composites technology for the aerospace market.

  • Hexcel Composite Innovations for Aerospace Applications on Display at JEC World 2022: Hall 5, Stand J41

In late 2021, Hexcel announced an agreement with Fairmat, a deep technology startup, to build the capability to recycle carbon fiber prepreg from Hexcel European operations for reuse in composite panels sold into commercial markets, giving a second life to recovered carbon fiber. To do so, Fairmat has developed a virtuous recycling process, and a sample of its newly recycled material will be available to view at JEC World 2022. Hexcel will present an array of product innovations for aerospace and urban air mobility customer applications during JEC World 2022 in Paris on May3-5. These latest innovations demonstrate the company’s leadership in developing advanced composites technology for the aerospace market.

  • Sustainability Focus on Recycling and Reuse
  • HiTape® and HiMax® Reinforcements for OoA Processing
  • Innovative HiFlow™ Resins for Continuous and Shorter Cycle Injection Processes
  • HexPly® Prepregs for Primary Structure and Engine Applications
  • HexTow® High Modulus Fibers HM63 and HM54
  • Thermoplastics and Processing Innovations for Primary and Secondary Structures
  • Lightweight PrimeTex® Reinforcements Solutions for Urban Air Mobility (UAM)
(c) Hexcel Corporation
29.04.2022

Hexcel Composite Solutions for the Automotive, Marine, Wind Energy and Recreation Markets at JEC World 2022

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

G-Vent Technology for Marine Structures
Hexcel has developed a new technology for out-of-autoclave (OoA) processing that delivers a game-changing reduction in process time and cost for marine manufacturers without compromising mechanical performance. Hexcel has leveraged its experience in aerospace and wind energy to develop its new G-Vent technology for OoA processing of highly loaded, thick section marine structures such as masts, foils, and wind-assisted ship propulsion (WASP) components. A full range of Hexcel marine prepregs are now available with integrated G-Vent technology, reducing the requirement for debulking steps and ensuring extremely low porosity (<1%) regardless of the laminate thickness. Leading marine non-destructive testing specialists Q.I. Composites recently confirmed that the thick section G-Vent panels they had evaluated had void contents and laminate quality in line with state-of-the-art autoclaved prepreg components. Visitors to the Hexcel stand will see a unique 400mm carbon cube cured in a single stage using 695 layers of HexPly M79 carbon fiber UD600 prepreg with G-Vent technology.

New HexPly® Nature Range Sustainable Prepregs
HexPly® Nature Range prepregs feature proven resins such as HexPly M49, M78 and M79 with bio-derived epoxy resin content. Created for use in all industrial markets, HexPly Nature Range materials can be seamlessly integrated into existing production processes, maintaining consistent mechanical performance and processing properties. A dedicated sustainability corner of the Hexcel stand will detail Nature Range products optimized for automotive, marine, wind energy and winter sport applications. The display will include an alpine ski produced by leading manufacturer Tecnica Group Ski Excellence Center which produces skis for Blizzard and for Nordica using HexPly Nature M78.1 UD flax prepreg material. In addition to the reduced environmental impact of the sustainably grown reinforcement, the flax fiber laminates also improve impact resistance and vibration damping in the ski.

HexPly® XF Surface Technology for Improved Part Surface Finish Quality
HexPly XF is a lightweight, semi-preg material that replaces traditional in-mold gel coat. It eliminates time-consuming refinishing work typically required to obtain a paint-ready surface and produces lighter, more consistent parts with shorter cycle times and a cleaner working environment. Visitors to the stand will see a composite panel illustrating a high-quality painted surface enabled with XF technology in a diverse range of industrial applications such as super yacht roof parts, Class A surface automotive panels, and both prepreg and infused wind turbine blades.

HexPly® M49 Prepreg for Automotive Visual Carbon Parts
HexPly M49 is easy to process and is especially suitable for visual carbon fiber-look applications such as the Brabus hood scoop on display on the Hexcel stand at JEC.

HexPly® Prepregs and HiMax® Reinforcements for Performance Marine Structures
Using a scale model of a Gunboat 68 performance sailing catamaran, Hexcel will illustrate how its HexPly and HiMax materials provide manufacturers with a complete set of lightweight composite solutions for high-performance marine structures. HexPly prepreg was selected for critical structural parts of the Gunboat 68 and provides very high mechanical performance including high dry and wet Tg.

Heavyweight HiMax reinforcements offer high deposition rates and remain easy to handle after cutting, making them highly suitable for industrial applications. In combination with a lightweight PrimeTex® woven fabric, the package of carbon fiber HiMax materials developed for the Gunboat 68 enabled consistent resin flow during infusion with reduced surface print-through.

Hexcel Fibers and Reinforcements for Lightweight Sporting Equipment
Sporting equipment manufacturers rely on Hexcel composite materials to deliver the ultimate performance at the lowest possible weight. Hexcel will exhibit a number of the latest high-performance sporting equipment applications such as a Bauer hockey stick featuring PrimeTex 98 gsm AS4C 3K fabric and a Corima tri-spoke cycling wheel made with lightweight Hexcel carbon fiber UD tape. Hexcel will also demonstrate how its HexTow® carbon fibers are used in key leisure and marine applications by displaying an AEROrazr solid carbon rigging component manufactured by spar and rigging manufacturer Future Fibres for the 36th America’s Cup.

 

Source:

Hexcel Corporation / 100% Marketing

Photo: JEC Group
26.04.2022

The Winners of the 2022 JEC Composites Innovation Awards

Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composites industry. The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

The ceremony took place on April 26th in Paris. Highlighted by the presence of jury members, finalists and winners but most importantly, as it was livestreamed, the gathering of many people all around the world to watch the awaited results.

The enthusiasm for the Innovation Awards, exactly 7 days prior to JEC World, is a good sign of the industry’s eagerness to get back together and ensure the future of composites innovation.

Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composites industry. The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

The ceremony took place on April 26th in Paris. Highlighted by the presence of jury members, finalists and winners but most importantly, as it was livestreamed, the gathering of many people all around the world to watch the awaited results.

The enthusiasm for the Innovation Awards, exactly 7 days prior to JEC World, is a good sign of the industry’s eagerness to get back together and ensure the future of composites innovation.

  • Aerospace Application
    Diab (Sweden): 100% thermoplastic panel for cabin interiors
  • Aerospace – Process
    MTorres Disenos Industriales S.A.U. (Spain): Innovative Infusion Airframe Manufacturing System
  • Automotive & road transportation – Structural
    Jaguar Land Rover Limited (UK): TUCANA
  • Automotive & road transportation – Surfaces
    AUDI AG (Germany): Seamless Integration of Flexible Solar Film in FRP
  • Building & Civil Engineering
    Windesheim (Netherlands): Structural Re-Use of Thermoset Composites
  • Design, Furniture and Home
    Kairos (France): Kairlin®, a new recyclable & compostable material
  • Equipment and Machinery
    Fibraworks GmbH (Germany): Winding the future – fibraforce technology
  • Maritime Transportation & Shipbuilding
    Voith Composites SE & Co. KG (Germany): Marine Rotor Blades made of Voith ‘Carbon4Stack’
  • Renewable Energy
    Siemens Gamesa Renewable Energy (Denmark): RecyclableBlade
  • Sports, Leisure & Recreation
    Bcomp Ltd. (Switzerland): Eco-joint from thermoset race and thermoplast road
Source:

JEC Group

(c) Sicomin
22.04.2022

Sicomin: Upcycled Carbon Fibre from Airbus with GreenPoxy to create Surfboards

Sicomin has confirmed that eco-surfboard specialist NOTOX will use GreenPoxy 56 in its latest line of R-CARBON boards. The new NOTOX R-CARBON boards are the first to use 100% upcycled carbon fibre fabrics recovered from a production waste stream at Airbus.

NOTOX, founded in 2006 and based in Basque, France, has partnered with Sicomin to use GreenPoxy bio-resins in several earlier flax, cork, and bamboo reinforced boards. In a quest to now produce the most sustainable carbon fibre reinforced boards possible, NOTOX has signed a formal agreement with Airbus Nantes to purchase defective carbon fabrics that were destined for landfill.

Sicomin has confirmed that eco-surfboard specialist NOTOX will use GreenPoxy 56 in its latest line of R-CARBON boards. The new NOTOX R-CARBON boards are the first to use 100% upcycled carbon fibre fabrics recovered from a production waste stream at Airbus.

NOTOX, founded in 2006 and based in Basque, France, has partnered with Sicomin to use GreenPoxy bio-resins in several earlier flax, cork, and bamboo reinforced boards. In a quest to now produce the most sustainable carbon fibre reinforced boards possible, NOTOX has signed a formal agreement with Airbus Nantes to purchase defective carbon fabrics that were destined for landfill.

The new NOTOX technology gives a second life to Airbus carbon fabrics that are declared unusable for aerospace applications due to short roll lengths, an inability to be pre-formed, or other defects. The upcycled materials are combined with Sicomin GreenPoxy 56 and Surf Clear hardener, producing an extremely clear, high gloss laminate with high mechanical properties. NOTOX use a precisely controlled wet lamination process with vacuum bag consolidation to wet out the upcycled woven carbon fabrics and minimise resin consumption in the manufacturing process.

In addition to selecting a high bio-content resin – GreenPoxy 56 derives 56% of its carbon content from plant sources – NOTOX has also sourced the most sustainable carbon fibre fabrics. Full life cycle analysis by NOTOX has shown that using waste carbon fabrics from Airbus is significantly more energy efficient than using other recycled short fibre carbon, confirming the importance of upcycling this key raw material.

More information:
Sicomin carbon fibers Upcycling NOTOX
Source:

Sicomin / 100% Marketing

(c) COBRA International
12.04.2022

COBRA International showcases its portfolio for vehicle systems at AUVSI XPONENTIAL 2022

Cobra International will showcase its portfolio of design and manufacturing solutions for the unmanned vehicle systems sector when the company exhibits alongside long-term partner HiveGround at the AUVSI XPONENTIAL 2022 conference.

Taking centre stage on the Cobra stand will be a fully assembled Swiftlet UAV. This compact tactical fixed wing UAV platform has a 5.5m wingspan and was developed by the Royal Thai Air Force and National Science and Technology Development Agency (NSTDA) for a broad range of survey, monitoring and search and rescue (SAR) operations. Cobra manufactured the 30kg Swiftlet composite airframe using a combination of CNC cut carbon sandwich internal structure and PVC foam sandwich skins using both high grade glass fibre and carbon fibre reinforcements.

Visitors to the Cobra stand will also see the VETAL, a twin rotor vertical take-off and landing (VTOL) drone with a composite airframe manufactured by Cobra for HiveGround, the Thailand based developer of UAV surveying and robotics systems.

Cobra International will showcase its portfolio of design and manufacturing solutions for the unmanned vehicle systems sector when the company exhibits alongside long-term partner HiveGround at the AUVSI XPONENTIAL 2022 conference.

Taking centre stage on the Cobra stand will be a fully assembled Swiftlet UAV. This compact tactical fixed wing UAV platform has a 5.5m wingspan and was developed by the Royal Thai Air Force and National Science and Technology Development Agency (NSTDA) for a broad range of survey, monitoring and search and rescue (SAR) operations. Cobra manufactured the 30kg Swiftlet composite airframe using a combination of CNC cut carbon sandwich internal structure and PVC foam sandwich skins using both high grade glass fibre and carbon fibre reinforcements.

Visitors to the Cobra stand will also see the VETAL, a twin rotor vertical take-off and landing (VTOL) drone with a composite airframe manufactured by Cobra for HiveGround, the Thailand based developer of UAV surveying and robotics systems.

At AUVSI XPONENTIAL, Cobra will also illustrate how the company leverages innovation and expertise developed in its water sports and automotive business to enhance its product offering to the UAV sector. Products on display include a Fliteboard electric foiling surfboard, pre-preg hydrofoil parts, lightweight medical prosthetics, flax and forged carbon parts, as well as a full set of visual carbon and painted automotive trims, each demonstrating the company’s high volume production capacity for ultra-light carbon composite structures.

The show will take place from the 25 to 28 April at the Orange County Convention Center, Orlando, Florida.

Source:

COBRA International / 100% Marketing

Hexcel Introduces G-Vent Technology into Marine Market (c) Hexcel
New technology for marine composites proven to reduce time and cost in manufacturing through out-of-autoclave processing
30.03.2022

Hexcel Introduces G-Vent Technology into Marine Market

  • New technology for marine composites proven to reduce time and cost in manufacturing through out-of-autoclave processing

Hexcel Corporation (NYSE: HXL) has developed a new technology for out-of-autoclave (OoA) processing that delivers a game-changing reduction in process time and cost for marine manufacturers without compromising mechanical performance. Hexcel has leveraged its experience in aerospace and wind energy to develop its new G-Vent technology for OoA processing of highly loaded, thick section marine structures such as masts, foils, and wind-assisted ship propulsion (WASP) components. Hexcel’s full range of marine prepregs are now available with integrated G-Vent technology, reducing the requirement for debulking steps and ensuring extremely low porosity (<1%) irrespective of the laminate thickness.

  • New technology for marine composites proven to reduce time and cost in manufacturing through out-of-autoclave processing

Hexcel Corporation (NYSE: HXL) has developed a new technology for out-of-autoclave (OoA) processing that delivers a game-changing reduction in process time and cost for marine manufacturers without compromising mechanical performance. Hexcel has leveraged its experience in aerospace and wind energy to develop its new G-Vent technology for OoA processing of highly loaded, thick section marine structures such as masts, foils, and wind-assisted ship propulsion (WASP) components. Hexcel’s full range of marine prepregs are now available with integrated G-Vent technology, reducing the requirement for debulking steps and ensuring extremely low porosity (<1%) irrespective of the laminate thickness.

To evaluate the new technology, Hexcel completed a test program with Q.I. Composites, a world leader in non-destructive testing in performance marine applications. The program evaluated HexPlyÒ 40- layer prepreg samples prepared with G-Vent technology. Carbon fiber panels made with no debulking revealed approximately three times less porosity than those using a typical 10-minute debulk with every second ply. Ultrasonic and CT scan analysis by Q.I. Composites confirmed the void content results with porosity levels in line with state-of-the-art autoclaved carbon prepreg foils. Key tensile, compressive and interlaminar shear strength results were also higher for the G-Vent panels.

“We evaluated the quality of thick laminates produced with G-Vent and found that they are comparable to laminates made in an autoclave as per best practice in the market,” said Stefano Beltrando, CEO, Q.I. Composites. “Even more impressive, they were achieved with no debulking.” Tom James, Business Development Manager at Hexcel, said, “We are absolutely delighted with the feedback from Q.I. that confirms our own test data and positions G-Vent technology as a leading OoA process enabler for high-performance thick laminate structures. G-Vent provides a faster and more cost-effective manufacturing route for large marine structures with absolutely no compromise in mechanical performance.”

Source:

100percentmarketing

Expansion begins at Hexcel Engineered Core Operations Plant in Morocco (c) Hexcel Corporation
15.03.2022

Expansion begins at Hexcel Engineered Core Operations Plant in Morocco

Hexcel Corporation hosted customers and public officials at its manufacturing site in the Midparc Free Trade Zone in Casablanca as the company broke ground on an expansion that will double the size of its existing engineered core manufacturing operation in Morocco to meet increased demand from aerospace customers for lightweight advanced composites.

The expansion, announced in September 2021, is expected to be completed in early 2023. The plant size will double to 24,000 square meters and employment is expected to increase from 120 to 400 people when the expansion is completed.

The Casablanca facility was built as part of Hexcel’s ongoing worldwide investment to create a diversified and robust global supply chain to support aerospace customers’ growing demand for engineered core. At the plant, Hexcel transforms lightweight honeycomb materials into engineered core parts to reinforce structures in the aerospace industry, particularly for aircraft, engine nacelles, and helicopter blades.

Hexcel Corporation hosted customers and public officials at its manufacturing site in the Midparc Free Trade Zone in Casablanca as the company broke ground on an expansion that will double the size of its existing engineered core manufacturing operation in Morocco to meet increased demand from aerospace customers for lightweight advanced composites.

The expansion, announced in September 2021, is expected to be completed in early 2023. The plant size will double to 24,000 square meters and employment is expected to increase from 120 to 400 people when the expansion is completed.

The Casablanca facility was built as part of Hexcel’s ongoing worldwide investment to create a diversified and robust global supply chain to support aerospace customers’ growing demand for engineered core. At the plant, Hexcel transforms lightweight honeycomb materials into engineered core parts to reinforce structures in the aerospace industry, particularly for aircraft, engine nacelles, and helicopter blades.

At the event, Thierry Merlot, Hexcel President – Aerospace for Europe, MEA/AP & Industrial, said, “We are pleased to celebrate this milestone with our customers and with the local community. The increased demand for lightweight, aerodynamic, advanced composites is growing, and our customers including Safran, Airbus, Airbus Atlantic, Boeing and Spirit AeroSystems have shown confidence in our ability to meet that demand. We appreciate the support from them as well as from the Ministry and everyone in the local community who continue providing us with the opportunity to further our investment in Morocco. The very successful establishment of Hexcel, the qualification of the workforce, the support of the state and the proximity of our customers have been real assets to launch this extension of our site in Casablanca.”

Source:

Hexcel Corporation

03.02.2022

The 2022 JEC Composites Innovation Awards: Official Finalists line up

Première Vision - Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composite industry.
The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

After pre-selection of the finalists, one winner is selected in each category:

  • Aerospace – Application
  • Aerospace – Process
  • Automotive & road transportation – surface
  • Automotive & road transportation – structural
  • Building & Civil Engineering
  • Design, Furniture & Home
  • Equipment & Machinery
  • Maritime Transportation & Shipbuilding
  • Sports, Leisure & Recreation
  • Renewable Energy

The international jury representing the entire composites value chain includes:

Première Vision - Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composite industry.
The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

After pre-selection of the finalists, one winner is selected in each category:

  • Aerospace – Application
  • Aerospace – Process
  • Automotive & road transportation – surface
  • Automotive & road transportation – structural
  • Building & Civil Engineering
  • Design, Furniture & Home
  • Equipment & Machinery
  • Maritime Transportation & Shipbuilding
  • Sports, Leisure & Recreation
  • Renewable Energy

The international jury representing the entire composites value chain includes:

  • Michel COGNET, Chairman of the Board, JEC Group
  • Christophe BINETRUY, Professor of Mechanical Engineering, EC Nantes
  • Kiyoshi UZAWA, Professor/Director, Innovative Composite Center, Kanazawa Institute of Technology
  • Jiming Sung HA, Professor, Hanyang University
  • Brian KRULL, Global Director of Innovation, Magna Exteriors Inc
  • Karl-Heinz FULLER, Manager Future Outside Materials, Mercedes Benz AG
  • Deniz KORKMAZ, CTO, Kordsa Teknik Tekstil AS
  • Henry SHIN, Head of Center, K-CARBON
  • Véronique MICHAUD, Associate Professor/ Director, EPFL – Laboratory for Processing of Advanced Composites
  • Alan BANKS, Lightweight Innovations Manager, Ford Motor Company
  • Enzo CRESCENTI, Technical Authority and Composite Expert, Airbus

Discover the finalists in each category here.

Source:

JEC Group

24.01.2022

JEC World 2022 postponed

After thorough consultation with the exhibitors and partners of the event, JEC Group has decided to postpone the 2022 edition of JEC World. The world’s leading composites event will now take place from May 3rd to 5th, 2022, at the same venue Paris Nord Villepinte, as well as online via the JEC World Connect digital platform.

JEC World gathers the whole value chain of the composite materials industry in Paris, France every year and is “the place to be” for composites professionals from all over the world. The event brings together not only all major global companies, but also innovative startups in the field of composites and advanced materials, experts, academics, scientists, and R&D leaders. JEC World is also the “festival of composites”, offering a unique showcase of what composites can offer to various application sectors, from aerospace to marine, from construction to automotive, and an unlimited source of inspiration for participants from these industries.

After thorough consultation with the exhibitors and partners of the event, JEC Group has decided to postpone the 2022 edition of JEC World. The world’s leading composites event will now take place from May 3rd to 5th, 2022, at the same venue Paris Nord Villepinte, as well as online via the JEC World Connect digital platform.

JEC World gathers the whole value chain of the composite materials industry in Paris, France every year and is “the place to be” for composites professionals from all over the world. The event brings together not only all major global companies, but also innovative startups in the field of composites and advanced materials, experts, academics, scientists, and R&D leaders. JEC World is also the “festival of composites”, offering a unique showcase of what composites can offer to various application sectors, from aerospace to marine, from construction to automotive, and an unlimited source of inspiration for participants from these industries.

“We are fully dedicated to supporting the composites industry and to fostering its development via our events and media activities. Exhibitors and partners are strongly supporting JEC World, their leading event and want to meet in person in 2022 to activate business, share knowledge and highlight innovations. Postponing from March to May is a way to offer improved conditions to satisfy the industry requirements for such a trade fair as JEC World”, says Eric Pierrejean, CEO of JEC Group.

The JEC World team has decided to postpone the event after conducting a survey of its exhibitors and partners, confirming that a large majority is in favour of the new dates in May. As already planned, for three days, the event will offer for the first time a digital platform, JEC World Connect, in parallel to the in-person event in Paris for an augmented digital experience. Even after the show, via the JEC Web TV, unique content will be available to extend the reach of the event.

“Our main concern is to create the best possible conditions for our participants for successful networking, inspiration and business success. With a postponement of eight weeks we can enable this and offer to the industry the event it deserves. Taking the decision now, after consultation of all exhibitors, was necessary to give them planning and preparation visibility,” adds Thomas Lepretre, VP Events, Sales and Operations.

Source:

JEC Group