From the Sector

Reset
4 results
05.03.2024

Denim Expert's Goal: 100% wastewater recycling

The announcement of a new effluent treatment plant (ETP) marks a milestone in Denim Expert's journey towards sustainability. This upcoming facility is a testament to the company's dedication to reducing its ecological footprint and safeguarding local ecosystems through advanced water management techniques.

The new Effluent Treatment Plant (ETP) being developed by Denim Expert strives for 100% wastewater recycling. As the ETP rises from concept to reality, Denim Expert embarks on a transition towards its next horizon: aligning with the Zero Discharge of Hazardous Chemicals (ZDHC) Wastewater Guidelines Version 2.0.

The announcement of a new effluent treatment plant (ETP) marks a milestone in Denim Expert's journey towards sustainability. This upcoming facility is a testament to the company's dedication to reducing its ecological footprint and safeguarding local ecosystems through advanced water management techniques.

The new Effluent Treatment Plant (ETP) being developed by Denim Expert strives for 100% wastewater recycling. As the ETP rises from concept to reality, Denim Expert embarks on a transition towards its next horizon: aligning with the Zero Discharge of Hazardous Chemicals (ZDHC) Wastewater Guidelines Version 2.0.

Denim Expert's proactive approach to sustainability has been recognized on a global scale. The company has been named 'New Champion' by the World Economic Forum and has partnered with organizations such as the Sustainable Apparel Coalition (SAC), the United Nations Framework Convention on Climate Change (UNFCCC), and the Ellen MacArthur Foundation's Jeans Redesign program. As one of the first factories to join the Partnership for Cleaner Textile (PaCT) and in the process of implementing the 3E program, Denim Expert is dedicated to achieving 100% water reuse and full reliance on solar energy, further solidifying its commitment to driving positive environmental change.

(c) Perstorp
15.02.2023

Perstorp: Reduction targets for water and waste

Sustainable solutions provider Perstorp has added new corporate sustainability targets, for water and waste, to its sustainability strategy. Its long-term sustainability ambition is to become Finite Material Neutral, which involves water and waste, along with raw materials, energy and catalysts. In 2021 the company set its first 2030 targets, for greenhouse gas emissions (using approved science-based targets) and (eco) toxic impact. Now Perstorp has added new sustainability targets that will address its long-term ambition.

These new 2030 corporate targets (all measured using 2019 as the base year) are:

Sustainable solutions provider Perstorp has added new corporate sustainability targets, for water and waste, to its sustainability strategy. Its long-term sustainability ambition is to become Finite Material Neutral, which involves water and waste, along with raw materials, energy and catalysts. In 2021 the company set its first 2030 targets, for greenhouse gas emissions (using approved science-based targets) and (eco) toxic impact. Now Perstorp has added new sustainability targets that will address its long-term ambition.

These new 2030 corporate targets (all measured using 2019 as the base year) are:

  • 30% absolute reduction of freshwater consumption
  • 30% absolute reduction of hazardous waste directed to disposal
  • 30% absolute reduction of non-hazardous waste directed to disposal

"Fresh water consumption and waste are two areas of big importance in reducing our environmental impact and working toward increased circularity," says Anna Berggren, Vice President Sustainability at Perstorp Group. "Fresh water scarcity is already a fact around the world, and we have a responsibility to reduce our consumption and utilize alternative water sources. We must also minimize waste generation and find new circular solutions of reusing and recycling the waste streams into new products, either ourselves or so that a third party can use them as raw material. We have set ambitious and absolute sustainability targets, that are to be achieved regardless of production growth. To be able to reach these targets we have several large projects planned that will contribute significantly."

All Perstorp production plants use water for multiple purposes, including, for example: for cooling, as a solvent for chemical reactions, as a carrier for products, and as a heat-transfer medium. One way to reduce fresh water consumption is to purify and recycle wastewater. Perstorp sees this as an important core technology and is planning to invest in wastewater recycling projects at several of its production sites.

A key to reducing waste directed to disposal is to develop circular solutions that use waste streams as raw materials for new products. One example is Project Air, in which captured carbon dioxide together with residue streams from Perstorp's production plant in Stenungsund, Sweden, will serve as raw material for production of sustainable methanol that will replace all the virgin fossil methanol used by Perstorp in Europe.

13.09.2022

New technology purifies wastewater from textile dyeing by using graphene

The substance graphene can become increasingly important as a component in textile catalysts when purifying water from textile dyeing as has been shown in a recently completed doctoral project at the University of Borås.

In his project, Milad Asadi, a new doctor in Textile Technology, has modified conventional yarn by encapsulating iron particles in graphene and developed a multifunctional smart e-textile. The focus was on developing a method for purifying wastewater from textile dyeing. The smart e-textile acts as a catalyst that causes the substance hydrogen peroxide to be formed, which is needed in order to break down pollutants in wastewater.

The project has generated a complete textile reactor for the treatment of wastewater through the so-called electro-Fenton technology, which is mainly used industrially to purify wastewater. The novelty of the technology is to use the properties of both graphene and iron, which is the main catalyst.

The substance graphene can become increasingly important as a component in textile catalysts when purifying water from textile dyeing as has been shown in a recently completed doctoral project at the University of Borås.

In his project, Milad Asadi, a new doctor in Textile Technology, has modified conventional yarn by encapsulating iron particles in graphene and developed a multifunctional smart e-textile. The focus was on developing a method for purifying wastewater from textile dyeing. The smart e-textile acts as a catalyst that causes the substance hydrogen peroxide to be formed, which is needed in order to break down pollutants in wastewater.

The project has generated a complete textile reactor for the treatment of wastewater through the so-called electro-Fenton technology, which is mainly used industrially to purify wastewater. The novelty of the technology is to use the properties of both graphene and iron, which is the main catalyst.

“Previous research has mainly been about the treatment of wastewater by using chemicals to break down the textile dyes. My project is the first where graphene, which is electrically conductive, is used to encapsulate iron. The e-textile can also be used several times, unlike when chemicals are used and which are then rinsed off. The challenge in the project was to scale up the technology so that the treated yarn can be fed into automatic knitting machines”, explained Milad Asadi.

The e-textile catalyst can be reused and hydrogen peroxide is formed internally inside the reactor, which reduces the use of biological catalysts, making the technology more sustainable compared to chemical methods.

Source:

University of Borås - The Swedish School of Textiles

Foto: Pixabay
26.07.2021

Lenzing invests GBP 20 mn in wastewater treatment at Grimsby site

  • Full utilization of production capacity possible at the site
  • New EU environmental requirements will be fully and promptly satisfied starting in 2024

The Lenzing Group, a global provider of wood-based specialty fibers for the textile and nonwoven industries, is investing GBP 20 mn (equal to EUR 23.3 mn) to build a new, state-of-the-art wastewater treatment plant at its site in Grimsby, United Kingdom. The investment is part of the company’s plans to reduce wastewater emissions by 2022.

Once it has implemented this project, Lenzing will have biological wastewater treatment plants that meet the best available techniques (BAT) quality standard at all its production sites. The plant design, which will employ a new technology developed as part of a research project, is fully aligned with the UK regulator and supported by the local authorities.

  • Full utilization of production capacity possible at the site
  • New EU environmental requirements will be fully and promptly satisfied starting in 2024

The Lenzing Group, a global provider of wood-based specialty fibers for the textile and nonwoven industries, is investing GBP 20 mn (equal to EUR 23.3 mn) to build a new, state-of-the-art wastewater treatment plant at its site in Grimsby, United Kingdom. The investment is part of the company’s plans to reduce wastewater emissions by 2022.

Once it has implemented this project, Lenzing will have biological wastewater treatment plants that meet the best available techniques (BAT) quality standard at all its production sites. The plant design, which will employ a new technology developed as part of a research project, is fully aligned with the UK regulator and supported by the local authorities.

The site’s current wastewater situation complies fully with the EU Water Framework Directive as well as all local laws and regulations. The investment has been approved by the Supervisory Board, ensuring that construction can start this year and the plant will be commissioned well before the UK-ratified EU directive1 goes into effect. This will be the largest investment since opening this lyocell site, which manufactures premium products for technical and innovative market segments, among other things.

Responsible water use
After modernizing the wastewater treatment plant at the company’s Purwakarta site in Indonesia, the construction of the new plant in Grimsby marks another big step toward reducing the Group’s wastewater emissions 20 percent by 2022 (against a 2014 baseline). Responsible water use is one of the core elements of Lenzing’s “Naturally positive” sustainability strategy and is largely executed by using water efficiently in manufacturing and employing state-of-the-art water treatment technologies.