From the Sector

Reset
45 results
Polartec: New High-Performance fabric with recycled materials (c) Polartec
20.03.2024

Polartec: New High-Performance fabric with recycled materials

Polartec® introduces Polartec® Power Shield™ RPM, made from recycled polyester materials and the Polartec® 200, and Micro Series recycled fleeces featuring Polartec® Shed Less™ technology.

Polartec® Power Shield™ RPM is a recycled polyester fabric that offers waterproofness, wind-proofness and breathability, and also ensures high-stretch comfort and resilience. With its high range of motion and highly durable 100% recycled polyester membrane designed for high intensity activities, Power Shield™ RPM elevates end use comfort and is made for runners, cyclists and golfers who refuse to trade performance for sustainability.

Polartec® Shed Less™ technology is an innovative process that decreases fiber fragment shedding during home laundering up to 85%* without compromising the performance or durability of the fabrics it’s applied to. Less shedding means fewer microfiber fragments end up in the oceans and waterways.

Polartec® introduces Polartec® Power Shield™ RPM, made from recycled polyester materials and the Polartec® 200, and Micro Series recycled fleeces featuring Polartec® Shed Less™ technology.

Polartec® Power Shield™ RPM is a recycled polyester fabric that offers waterproofness, wind-proofness and breathability, and also ensures high-stretch comfort and resilience. With its high range of motion and highly durable 100% recycled polyester membrane designed for high intensity activities, Power Shield™ RPM elevates end use comfort and is made for runners, cyclists and golfers who refuse to trade performance for sustainability.

Polartec® Shed Less™ technology is an innovative process that decreases fiber fragment shedding during home laundering up to 85%* without compromising the performance or durability of the fabrics it’s applied to. Less shedding means fewer microfiber fragments end up in the oceans and waterways.

Polartec® Micro™ Series is engineered to provide long-lasting comfort in a vast range of conditions and activity levels. This recycled fleece with Polartec® Shed Less™ technology is made from a lofted structure with thermal air pockets to retain warmth without inhibiting breathability. Polartec® Micro™ Series is both hydrophobic and fast drying.

Polartec® 200 Series is the modern version of the original PolarFleece®, which in 1993 became the first performance fleece knit from yarn made from recycled plastic bottles. It has a great resiliency, lightweight warmth and a fast drying time.

More information:
Polartec Shed Less Fleece polyester
Source:

Polartec

12.03.2024

Polartec: New Initiative “Beyond Begins Today”

Since inventing the first fleece crafted from recycled plastic water bottles more than three decades ago, Polartec®, a Milliken & Company brand, and the creator of innovative and more sustainable textile solutions, has upheld its pledge to protect the environment.

With its new Beyond Begins Today initiative, Polartec aims to raise awareness around the important global themes of sustainability, diversity and positive change.

Polartec is engaged to make the goal of zero waste a reality – from using 100% recycled and plant-based materials, to delivering certified waste reductions and innovative technologies that reduce the impact of its activities.

Since inventing the first fleece crafted from recycled plastic water bottles more than three decades ago, Polartec®, a Milliken & Company brand, and the creator of innovative and more sustainable textile solutions, has upheld its pledge to protect the environment.

With its new Beyond Begins Today initiative, Polartec aims to raise awareness around the important global themes of sustainability, diversity and positive change.

Polartec is engaged to make the goal of zero waste a reality – from using 100% recycled and plant-based materials, to delivering certified waste reductions and innovative technologies that reduce the impact of its activities.

Beyond Begins Today is a multifaceted campaign featuring static and multimedia content, including short films released throughout the year via multiple touchpoints and channels – the first of which will be released on Earth Day 2024 to underscore the underlying premise that the future is what we make it. Polartec’s commitment to sustainable solutions go beyond the integration of increasingly advanced manufacturing methods or the ongoing exploration of novel fibers, and continued investments in sustainable materials development.

Polartec’s promises that every product launches in 2024 will either reduce the impact on the planet, endure the test of time, or contribute to circularity processes. Beyond Begins Today looks at how Polartec fabrics are made to last, and made to be used and enjoyed from one generation to the next and beyond. It explores the innovative monomaterials, repurposed plastic and plant-based nylon membranes and fabrics that Polartec uses to set new standards for high performance materials and the ambitious climate-related objectives across the entire value chain that exceed existing mandates. This holistic strategy shall allow Polartec to stay at the forefront of its industry by producing top-notch textiles that champion environmental stewardship and pave the way for a more sustainable tomorrow.

Source:

Akimbo Communications for Polartec

Freudenberg: Fully synthetic wetlaid nonwovens for filtration (c) Freudenberg Performance Materials Holding GmbH
Freudenberg’s fully synthetic wetlaid material for reverse osmosis membranes
01.03.2024

Freudenberg: Fully synthetic wetlaid nonwovens for filtration

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Versatile and flexible manufacturing
Freudenberg’s fully synthetic wetlaid nonwovens can be made of polyester, polyolefin, polyamide and polyvinyl alcohol (PVA), using staple fibers of up to 12mm fiber length and microfibers as fine as 0.04dtex. In terms of weight, the product range spans weights of between 8g/m² and 250g/m². Freudenberg’s flexible wetlaid manufacturing line has the capability to combine various thermal and chemical bonding technologies. The materials have high precision in weight and thickness as well as a defined pore size and high porosity.

Wetlaid capabilities for various applications
In addition to its fully synthetic range, Freudenberg can also incorporate glass fibers, viscose and cellulose. General industry applications for Freudenberg wetlaid nonwovens are surfacing veils for glass-fiber reinforced plastics, compostable desiccant bags, battery separators, acoustics, heatshields, and apparel applications such as embroidery substrates.

Source:

Freudenberg Performance Materials Holding GmbH

The research group Water Engineering Innovation Photo: Aarhus University
The research group Water Engineering Innovation, led by Associate Professor Zongsu Wei, works to develop water purification technologies, especially in connection with PFAS. The group collaborates in this project with the research group Robotics from the Department of Mechanical and Production Engineering.
24.01.2024

Artificial intelligence to help remove PFAS

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

"In the project, we will design, construct and test a new, automated degradation technology for continuous PFAS degradation. We’re also going to set up an open database to identify significant and limiting factors for degradation reactions with PFAS molecules in the reactor," says Associate Professor Xuping Zhang from the Department of Mechanical and Production Engineering at Aarhus University, who is co-heading the project in collaboration with Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering.

Ever since the 1940s, PFAS (per- and polyfluoroalkyl substances) have been used in a myriad of products, ranging from raincoats and building materials to furniture, fire extinguishers, solar panels, saucepans, packaging and paints.

However, PFAS have proven to have a number of harmful effects on humans and the environment, and unfortunately the substances are very difficult to break down in nature. As a result, the substances continuously accumulate in humans, animals, and elsewhere in nature.

In Denmark, PFAS have been found in drinking water wells, in surface foam on the sea, in the soil at sites for fire-fighting drills, and in many places elsewhere, for example in organic eggs. It is not possible to remove PFAS from everything, but work is underway to remove PFAS from the groundwater in drinking water wells that have been contaminated with the substances.

Currently, the most common method to filter drinking water for PFAS is via an active carbon filter, an ion-exchange filter, or by using a specially designed membrane. All of these possibilities filter PFAS from the water, but they do not destroy the PFAS. The filters are therefore all temporary, as they have to be sent for incineration to destroy the accumulated PFAS, or they end in landfills.

The project is called 'Machine Learning to Enhance PFAS Degradation in Flow Reactor', and it aims to design and develop an optimal and permanent solution for drinking water wells and treatment plants in Denmark that constantly captures and breaks down PFAS, while also monitoring itself.

"We need to be creative and think outside the box. I see many advantages in linking artificial intelligence with several different water treatment technologies, but integrating intelligence-based optimisation is no easy task. It requires strong synergy between machine learning and chemical engineering, but the perspectives are huge," says Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering at Aarhus University.

More information:
PFAS Aarhuis University
Source:

Aarhus University
Department of Biological and Chemical Engineering
Department of Mechanical and Production Engineering

Polartec PS Photo Polartec
09.10.2023

Polartec: Plant-based nylon resulting in a 50% lower carbon footprint vs. virgin nylon

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Ramesh Kesh, Senior Vice President – Government & Defense and Polartec at Milliken & Company said, “For a long time, many thought that sustainable options meant a loss in performance, like durability, Polartec has proved that this is not the case. Challenging a technology already considered to be at the pinnacle of performance was a big ask yet the team at Polartec rose to that challenge and we believe we have created a new standard in sustainability for performance fabrics.” 

More information:
Polartec Biolon nylon
Source:

Abi Youcha (Akimbo Communication)

22.09.2023

INDA Partners & Waterloo Filtration Institute: Partnering for the FiltXPO™ 2023 Technical Program

INDA, the Association of the Nonwoven Fabrics Industry, is partnering with the Waterloo Filtration Institute to deliver the FiltXPO™ technical program on October 10-11, 2023 in Chicago, Illinois. The Waterloo Filtration Institute was instrumental in recommending program topics and world-class presenters.

Engineers, scientists, and industry professionals will gain the latest insights into the filtration and separation topics affecting the industry today and into the future. The program features presentations include: filter media technologies, advancements and opportunities in filtration machinery and equipment, innovations in clean air for homes and urban areas, standards and testing, industry trends and new developments, and filtration challenges and opportunities.

The keynote for this year’s event is “IAQ Is the New Black” presented by Suzanne Shelton, President & CEO, Shelton Group. Shelton will share the latest data around consumer views on health, safety, people, and the planet. Participants will gain an understanding of the filtration opportunities and the challenges manufacturers face in communicating the value of their products.

INDA, the Association of the Nonwoven Fabrics Industry, is partnering with the Waterloo Filtration Institute to deliver the FiltXPO™ technical program on October 10-11, 2023 in Chicago, Illinois. The Waterloo Filtration Institute was instrumental in recommending program topics and world-class presenters.

Engineers, scientists, and industry professionals will gain the latest insights into the filtration and separation topics affecting the industry today and into the future. The program features presentations include: filter media technologies, advancements and opportunities in filtration machinery and equipment, innovations in clean air for homes and urban areas, standards and testing, industry trends and new developments, and filtration challenges and opportunities.

The keynote for this year’s event is “IAQ Is the New Black” presented by Suzanne Shelton, President & CEO, Shelton Group. Shelton will share the latest data around consumer views on health, safety, people, and the planet. Participants will gain an understanding of the filtration opportunities and the challenges manufacturers face in communicating the value of their products.

A preview of the subject matter experts includes:

  • AAF Flanders – “Air Filter Standards Activity and What It Means for Innovation”
  • Ahlstrom – “Expanding Wetlaid Filtration Media Performance Through Innovation”
  • Air Techniques International – “Application of Automated Filter Tester in Quality Control Testing: Importance of Consistent Aerosol Particle Size Distribution”
  • American Truetzschler, Inc. – “How Really Good Filter Media Is Made”
  • CEREX Advanced Fabrics – “The Antimicrobial Nylon Advantage”
  • Elsner Engineering Works, Inc. – “When Does Automation Make Sense”
  • Hollingsworth & Vose – “Accelerating Membrane Adoption with ROI”
  • INDA – “Beyond Porter’s Five Forces – When Regulation Reshapes Markets”
  • MANN+HUMMEL GmbH – “Filtration for Cleaner Urban Mobility – Introducing Horizon Europe Innovation Action Aersolfd”
  • NatureWorks – “Optimizing Biopolymers to Improve Filter Performance – A Spectrum of Approaches and Opportunities”
  • Palas GmbH – “Influence of Temperature and Humidity to Filter Efficiency and Dust Holding Capacity”
  • Ptak Consulting – “Residential Filtration – Performance Against Infectious Aerosols”
  • The University of Georgia – “Recent Advances in Melt Blown Nonwovens and Filter Media Research”

New this year to FiltXPO are Lightning Talks. Lightning Talks are an opportunity to connect with new trends, products, innovations, and ideas with speakers rotating every eight minutes. Presenting companies include Ahlstrom, Elsner Engineering Works, Inc., Gottlieb Binder GmbH, TSI, and the Waterloo Filtration Institute.

The FiltXPO exhibition takes place October 10-12 and will run concurrently with the technical program.

More information:
INDA Filtxpo Conference
Source:

INDA, the Association of the Nonwoven Fabrics Industry

(c) Groz-Beckert KG
12.05.2023

Groz-Beckert presents its innovations at ITMA

Groz-Beckert will be represented at ITMA with its six product sectors and will showcase its various innovations. The presentations at the booth will be supported by augmented reality applications. This allows visitors to discover the products both live and virtually.

The Knitting product sector will be represented at the Groz-Beckert stand with its four product groups circular knitting, flat knitting, legwear and warp knitting. In the circular knitting segment, for example, two newly developed knitting systems will be on show which have been realized in collaboration with machine manufacturers. The developments focus on energy savings, extended cleaning intervals and increased process reliability.

In addition to the machines for weaving preparation, the Weaving product sector will present its recently expanded portfolio of technical weaving reeds. The new weaving reeds make it possible to supply customers who produce fabrics with high densities. The weaving reeds are used in the production of special fabrics, for example, in technical filtration, membrane technology, solar cells or touch screens.

Groz-Beckert will be represented at ITMA with its six product sectors and will showcase its various innovations. The presentations at the booth will be supported by augmented reality applications. This allows visitors to discover the products both live and virtually.

The Knitting product sector will be represented at the Groz-Beckert stand with its four product groups circular knitting, flat knitting, legwear and warp knitting. In the circular knitting segment, for example, two newly developed knitting systems will be on show which have been realized in collaboration with machine manufacturers. The developments focus on energy savings, extended cleaning intervals and increased process reliability.

In addition to the machines for weaving preparation, the Weaving product sector will present its recently expanded portfolio of technical weaving reeds. The new weaving reeds make it possible to supply customers who produce fabrics with high densities. The weaving reeds are used in the production of special fabrics, for example, in technical filtration, membrane technology, solar cells or touch screens.

Products and services for classic needling and hydroentanglement will be presented by the Felting (Nonwovens) product area. In the field of felting needles, visitors can look forward to two innovations: a new notch shape and the Groz-Beckert felting needle module. In the felting needle module, the needles are embedded as a module in a plastic mold for the first time. The needle modules are characterized by high deformation resistance and offer new dimensions in needle density.

For the production of tufted floor coverings such as carpets, bath mats or artificial turf, the Tufting product sector will be presenting its proven Gauge Part system.

Various new and further developments will also be shown by the Carding product area. For those interested in the nonwovens industry, for example, the world's finest Interlocking wire for reduced risk of crashis included. For customers of the spinning industry, the division will be presenting further developed stationary flats and revolving tops. The new revolving tops have been adapted to the processing of fine yarns, while the stationary flats have been provided with a new, resistant aluminum profile.

The Sewing product sector is focusing on the presentation of its special application needles, SANTM. The sewing machine needles of the SANTM series have been specially developed for demanding sewing operations – e.g. for sewing technical or finest textiles. The division will also be presenting its new Needle Finder. The Needle Finder is an interactive tool in the online customer portal that helps customers select the right needle.

Source:

Groz-Beckert KG

(c) adidas AG
21.04.2023

adidas TERREX and National Geographic launch hiking collection

adidas TERREX announces a multi-season collaboration with National Geographic, consisting of high-performance outdoor wear. The inaugural collection is built to celebrate the role of photography in the culture of outdoor sport - as well-equipped hikers turn their ability to explore more places, and spirit of adventure, into stunning content.

To celebrate this relationship, designers at adidas TERREX combed the National Geographic photography archives for stunning stills of some of the most remote yet moving locations on earth, integrated in unique all over prints in a bold new hiking collection. All pieces are unified by National Geographic’s iconic yellow icon.

Places celebrated in the collection include a snow-covered sandstone monocline in Comb Ridge, Utah, a 120-mile-long, north to south stretch that defines the State’s red rock landscape, as well as textured portraits of shale, - captured on the coast of Norway’s northernmost county - highlighting the sedimentary rock’s distinctive formations.

adidas TERREX announces a multi-season collaboration with National Geographic, consisting of high-performance outdoor wear. The inaugural collection is built to celebrate the role of photography in the culture of outdoor sport - as well-equipped hikers turn their ability to explore more places, and spirit of adventure, into stunning content.

To celebrate this relationship, designers at adidas TERREX combed the National Geographic photography archives for stunning stills of some of the most remote yet moving locations on earth, integrated in unique all over prints in a bold new hiking collection. All pieces are unified by National Geographic’s iconic yellow icon.

Places celebrated in the collection include a snow-covered sandstone monocline in Comb Ridge, Utah, a 120-mile-long, north to south stretch that defines the State’s red rock landscape, as well as textured portraits of shale, - captured on the coast of Norway’s northernmost county - highlighting the sedimentary rock’s distinctive formations.

The 51-piece collection includes women’s, men’s, and gender-neutral offerings – all built to equip the wearer in multi-terrain environments:

  • A part of the collection is the RAIN.RDY Jacket; a 2.5L waterproof and seam-sealed outer garment built to facilitate epic adventures. The men’s jacket features a bold print of the shell formations in the Porsanger Peninsula, Norway, while the women’s is inspired by stills of White Sands National Park in New Mexico.
  • A long sleeve shirt is finished with the bold National Geographic yellow icon and reflective details.
  • The TERREX Swift R3 GORE-TEX Hiking shoes offer the peak combination of a lightweight construction and cushioning as seen in trail running shoes with the stability of a hiking boot. Finished in a print inspired by a stunning aerial shot of Earth, the hiking shoes come with a GORE-TEX lining and membrane seal so water is kept out, and a Continental™ Rubber outsole for optimal grip in wet or dry conditions.
  • The WIND.RDY: GET SHELTERED Jacket, with wind-resistant technology and a water repellent ripstop fabric, allows explorers to feel protected and confident in many weather conditions. The men’s and women’s versions come with bold prints inspired by photography including that of sandstone and snow at Comb Ridge, Utah. Smart design features including a bungee-cord enabled adjustable hem, a lightweight fabric and reflective details. Additionally, it features a bold new lenticular logo design that alternates between Terrex and National Geographic from different perspectives – and is made in part with recycled materials.
More information:
adidas Outdoor outdoor apparel
Source:

adidas AG

(c) Toray
01.02.2023

Toray: Adipinsäure für nachhaltiges Nylon 66

Toray hat die erste Adipinsäure entwickelt, die zu hundert Prozent aus biobasierten Rohstoffen besteht. Adipinsäure ist der Grundstoff zur Herstellung von Nylon 66 (Polyamid 66). Das neue Verfahren nutzt Zucker aus Biomasse, die nicht für die Herstellung von Lebensmitteln geeignet ist. Die firmeneigene Synthesetechnik kombiniert eine mikrobielle Fermentationstechnologie mit einer chemischen Reinigungstechnologie mit Trennmembranen. Das Unternehmen wird in den kommenden Jahren eine Produktionstechnologie entwickeln und die Polymerisation von Nylon 66 testen. Anwendungen für die biobasierte Adipinsäure sollen bis etwa 2030 kommerziell einsetzbar sein.

Nylon 66 ist haltbar und fest, und wird seit vielen Jahren für Fasern, Harze und andere Anwendungen verwendet. Der Wunsch, für Nylon 66 eine nachhaltige Alternative zu entwickeln, hat in den letzten Jahren zugenommen.  

Toray hat die erste Adipinsäure entwickelt, die zu hundert Prozent aus biobasierten Rohstoffen besteht. Adipinsäure ist der Grundstoff zur Herstellung von Nylon 66 (Polyamid 66). Das neue Verfahren nutzt Zucker aus Biomasse, die nicht für die Herstellung von Lebensmitteln geeignet ist. Die firmeneigene Synthesetechnik kombiniert eine mikrobielle Fermentationstechnologie mit einer chemischen Reinigungstechnologie mit Trennmembranen. Das Unternehmen wird in den kommenden Jahren eine Produktionstechnologie entwickeln und die Polymerisation von Nylon 66 testen. Anwendungen für die biobasierte Adipinsäure sollen bis etwa 2030 kommerziell einsetzbar sein.

Nylon 66 ist haltbar und fest, und wird seit vielen Jahren für Fasern, Harze und andere Anwendungen verwendet. Der Wunsch, für Nylon 66 eine nachhaltige Alternative zu entwickeln, hat in den letzten Jahren zugenommen.  

Für das neue Verfahren nutzt Toray Mikroorganismen, die aus Zuckern ein Adipinsäure-Zwischenprodukt herstellen. Die Biochemiker haben die Gene dieser Mikroorganismen neu kombiniert und so die Effizienz des Stoffwechsels gesteigert. Dabei kamen Methoden der Bioinformatik zum Einsatz, um optimale mikrobielle Fermentationswege für die Synthese zu finden. Die Mikroorganismen steigern die Ausbeute des Zwischenprodukts bei der Synthese um mehr als das Tausendfache. Umkehrosmose-Trennmembranen reinigen das Zwischenprodukt und erhöhen die Konzentration. Dieser Ansatz ist besonders energieeffizient. Auch entsteht bei dem  Verfahren zur Herstellung von Bio-Adipinsäure im Gegensatz zu den Herstellungsverfahren aus Erdöl kein Distickstoffmonoxid.

Toray entwickelt derzeit ein Verfahren zur Herstellung von Zuckern aus Ernterückständen und anderen nicht-essbaren pflanzlichen Ressourcen. Dabei forscht das Unternehmen in zwei Projekten gemeinsam mit dem National Institute of Advanced Industrial Science and Technology und dem RIKEN, Japans größter Forschungseinrichtung. Die Projekte erhalten Mittel der New Energy and Industrial Technology Development Organization. Das erste Projekt befasst sich mit der „Entwicklung von Produktionstechniken für hochfunktionale Biomaterialien unter Verwendung von intelligenten Zellen aus Pflanzen und anderen Organismen“, das zweite laufende Projekt behandelt die „Entwicklung einer biobasierten Produktionstechnologie zur Beschleunigung des Kohlenstoffrecyclings“. 

More information:
Toray nylon Adipinsäure Membrane
Source:

Toray

30.12.2022

Toray creates Fiber that adsorbs Pathogenic Proteins in Blood

Toray Industries, Inc., announced that it has combined nanotechnology and fiber technology to create a cross-shaped polymethyl methacrylate (PMMA) nanopore fiber that efficiently adsorbs pathogenic proteins in the blood.

The company developed this fiber by employing its PMMA hollow fiber membrane spinning technology. Changing the nanopore size on the surface and inside the fiber makes it possible to control the types of protein that this material adsorbs. This could become a fundamental blood purification technology for a range of protein adsorption columns that cause diseases.

The fiber’s cross-shaped cross section has a larger surface area than fibers with round ones. This provides much better contact between the blood and fiber and significantly enhances protein adsorption efficiency.

Toray Industries, Inc., announced that it has combined nanotechnology and fiber technology to create a cross-shaped polymethyl methacrylate (PMMA) nanopore fiber that efficiently adsorbs pathogenic proteins in the blood.

The company developed this fiber by employing its PMMA hollow fiber membrane spinning technology. Changing the nanopore size on the surface and inside the fiber makes it possible to control the types of protein that this material adsorbs. This could become a fundamental blood purification technology for a range of protein adsorption columns that cause diseases.

The fiber’s cross-shaped cross section has a larger surface area than fibers with round ones. This provides much better contact between the blood and fiber and significantly enhances protein adsorption efficiency.

Toray is the only company to have commercialized a PMMA hollow-fiber membrane artificial kidney for dialysis treatment. Its new nanopore fiber benefits from PMMA’s good protein adsorption and biocompatibility. Using the structural formation of a stereocomplex from two PMMA types entangled spirally during the spinning process to form the fiber shape, Toray made it possible for the fiber itself to develop pores of several to dozens of nanometers. Depending on the pore size, large proteins cannot go inside the pores. If they are too small, they are not trapped. This enables selective adsorption of moderately sized proteins trapped in pores.

The fiber pore sizes are adjustable to the diameters of target proteins for a range of diseases. These include inflammatory proteins in sepsis, autoantibodies in autoimmune diseases, and causative proteins in chronic illnesses. Toray’s technology is thus fundamental to developing disease-causing protein adsorption columns to purify blood.

Toray’s cross-shaped cross section suppresses inter-fiber adhesion, increasing the surface area per volume and enabling highly efficient protein adsorption. For blood purification applications, higher capacity adsorption columns increase blood removal amounts from the body, which can be especially stressful for the elderly and children. The new fiber’s highly efficient protein adsorption should contribute to compact, high-performance protein adsorption columns.

Source:

Toray Industries, Inc.,

(c) ECOSENSOR™ by Asahi Kasei
18.11.2022

Asahi Kasei Group celebrates 100 years at ISPO Munich 2022

The Japanese textile brand ECOSENSOR™ by Asahi Kasei Advance continues its eco-high tech path and joins ISPO, the influential fashion and textile fair dedicated to sportwear and athleisure-wear, as part of an Asahi Kasei space within the ISPO Brandnew area, presenting its AW 2024/2025 & SS2024 collections, made of high-tech fabrics implementing new-generation values, with the aim of keeping nature, body and mind in harmony.

2022 is a special time for Asahi Kasei as it celebrates its 100th anniversary. This year at ISPO Munich (28-30th November), Asahi Kasei Group present its innovation world featuring three of its brands: ECOSENSOR™, ROICA™ and RespiGard™.
 
ECOSENSOR™ presents 47 new references that meet the needs of the contemporary consumer, such as durability, wellbeing and performance. Being capable of combining active climate control, exquisite touch, lightness and comfort with sustainable values, ECOSENSOR™ stands out as a unique eco-high-tech performance proposition in its market. The collection covers the different market applications with 3 items for INNERWEAR, 1 for OUTERWEAR, 13 for SPORT KNIT and 30 for SPORT WOVENS.

The Japanese textile brand ECOSENSOR™ by Asahi Kasei Advance continues its eco-high tech path and joins ISPO, the influential fashion and textile fair dedicated to sportwear and athleisure-wear, as part of an Asahi Kasei space within the ISPO Brandnew area, presenting its AW 2024/2025 & SS2024 collections, made of high-tech fabrics implementing new-generation values, with the aim of keeping nature, body and mind in harmony.

2022 is a special time for Asahi Kasei as it celebrates its 100th anniversary. This year at ISPO Munich (28-30th November), Asahi Kasei Group present its innovation world featuring three of its brands: ECOSENSOR™, ROICA™ and RespiGard™.
 
ECOSENSOR™ presents 47 new references that meet the needs of the contemporary consumer, such as durability, wellbeing and performance. Being capable of combining active climate control, exquisite touch, lightness and comfort with sustainable values, ECOSENSOR™ stands out as a unique eco-high-tech performance proposition in its market. The collection covers the different market applications with 3 items for INNERWEAR, 1 for OUTERWEAR, 13 for SPORT KNIT and 30 for SPORT WOVENS.

New this season is the application of the RespiGard™ by Polypore unique membrane designed for outdoor apparel. Its innovative pore structure is too small for water droplets to penetrate but features high porosity that allows for airflow and moisture evaporation.

In order to show at best the performances and possible applications of the fabrics made with RespiGard™, ECOSENSOR™ will feature at its ISPO space an ad hoc created outfit by the outerwear brand.

Furthermore, the majority of ECOSENSOR™ fabrics are made with sustainable ingredients which are certified by international certifications such as GRS and RCS through a traceable and transparent production process and supply chain.  100% of the stretch articles (representing 35% of the collection) are made with ROICA™ EF by Asahi Kasei, the recycled stretch yarn made from pre-consumer materials. Even the dyeing and finishing phases - key moments for performancewear - have been certified by international labels such as bluesign® or OEKO-TEX® Standard 100.

Source:

ECOSENSOR™ by Asahi Kasei / C.L.A.S.S..

Freudenberg´s gas diffusion layer production Photo: Freudenberg´s gas diffusion layer production.
20.10.2022

Freudenberg supplies gas diffusion layers for fuel cell stacks

Freudenberg Performance Materials (Freudenberg) has concluded a high-volume, multi-year contract with a global automotive tier one supplier to supply high-performance gas diffusion layers for the stacks forming the core of the fuel cell systems produced by the leading automotive supplier. Global target applications are mid-sized and heavy commercial vehicles as well as buses. Freudenberg is supporting the customer’s global fuel cell activities, thereby also accelerating the breakthrough of mass-produced fuel cell stacks.

Fuel cell technology is an important element of a successful energy transition. Gas diffusion layers play a key role in this context: they are indispensable for the functioning of a fuel cell and have a significant impact on the performance of a fuel cell stack.

Freudenberg Performance Materials (Freudenberg) has concluded a high-volume, multi-year contract with a global automotive tier one supplier to supply high-performance gas diffusion layers for the stacks forming the core of the fuel cell systems produced by the leading automotive supplier. Global target applications are mid-sized and heavy commercial vehicles as well as buses. Freudenberg is supporting the customer’s global fuel cell activities, thereby also accelerating the breakthrough of mass-produced fuel cell stacks.

Fuel cell technology is an important element of a successful energy transition. Gas diffusion layers play a key role in this context: they are indispensable for the functioning of a fuel cell and have a significant impact on the performance of a fuel cell stack.

A fuel cell converts the chemical energy of hydrogen and atmospheric oxygen into electricity. Functionally-optimized gas diffusion layers made of carbon-fiber based nonwoven are installed on both sides of a catalyst-coated membrane positioned in the middle of the fuel cell. The gas diffusion layers distribute hydrogen and oxygen evenly to the membrane and remove the electricity, heat and water generated by the CO2-free chemical reaction. They also protect the sensitive membrane and are optimized to suit the bipolar plate. A fuel cell stack is made up of several individual fuel cells.

Freudenberg already has more than 20 years of unique expertise in the development and production of gas diffusion layers for fuel cell applications in the mobility sector and for porous transport layers used in electrolyzers. Freudenberg is currently expanding its production capacity at its Weinheim headquarters by installing additional lines. Further investments are on the verge of implementation.

08.09.2022

Monforts at ITMA ASIA + CITME

Monforts will highlight its technologies for special technical textile applications at this year’s ITMA ASIA + CITME which takes place at the National Exhibition and Convention Center in Shanghai, China, from November 20-24.

One of Monforts' developments is the Montex 8500 XXL stenter system for the production of technical fabrics in widths of up to 6.8 metres. Among the products made on this system are treated nonwovens for the geotextiles and filter media markets, tarpaulins, advertising banners, black-out curtains, membranes and many more.

On Montex©Coat coating lines, meanwhile, the possibilities range from the single-sided application of finishing agents for outdoor clothing and adding functionality to home textiles, to the creation of materials for sophisticated lightweight construction and automotive and aerospace components.

Monforts will highlight its technologies for special technical textile applications at this year’s ITMA ASIA + CITME which takes place at the National Exhibition and Convention Center in Shanghai, China, from November 20-24.

One of Monforts' developments is the Montex 8500 XXL stenter system for the production of technical fabrics in widths of up to 6.8 metres. Among the products made on this system are treated nonwovens for the geotextiles and filter media markets, tarpaulins, advertising banners, black-out curtains, membranes and many more.

On Montex©Coat coating lines, meanwhile, the possibilities range from the single-sided application of finishing agents for outdoor clothing and adding functionality to home textiles, to the creation of materials for sophisticated lightweight construction and automotive and aerospace components.

“Many more applications are possible, such as the overdyeing of denim, the creation of double-face coated materials, fabrics awnings, tents and medical drapes and the pre-treatment of substrates for digital printing”, explains Gunnar Meyer, Monforts area sales manager for China. “A range of different doctor blades and their combinations can be supplied to meet individual requirements, including air knife, roller knife, foam, screen and magnetic roller coating. The latter option is recommended for lines with working widths of over 2.4 metres.”

In addition, Monforts can provide the necessary explosion-proof ranges for solvent-based coatings and high temperature processes up to 320°C, such as the PTFE coating of nonwoven filter material. These lines are equipped with special burners, stenter chains, and insulation.

Source:

 A. Monforts Textilmaschinen GmbH & Co. KG / AWOL Media

Photo: © 2022, Steiger Participations
11.07.2022

Swiss Textile Machinery technology and innovations for technical textiles

New ideas were exchanged, brainstormed, and discussed freely at members’ booths at the Swiss Textile Machinery Pavilion during the recent Techtextil in Frankfurt. “Customers and researchers met Swiss textile machinery companies to explore the possibility of the not-yet-invented. “We regard our Pavilion as the place where future innovations catch a spark,” says Cornelia Buchwalder, Secretary General of the Swiss Textile Machinery Association. Further developments in the field of hybrid yarns were a hot topic. One example of this involves producing a yarn which has all the typical characteristics and advantages of carbon – but which also prioritizes careful use of resources, combining carbon fibres with thermoplastics.

Technical textiles cover a vast range of applications, and it’s still growing thanks to intensive research by specialist institutes and universities. Many members of the Swiss Textile Machinery Association maintain long-standing partnership with such bodies. Innovations are often joint efforts.

New ideas were exchanged, brainstormed, and discussed freely at members’ booths at the Swiss Textile Machinery Pavilion during the recent Techtextil in Frankfurt. “Customers and researchers met Swiss textile machinery companies to explore the possibility of the not-yet-invented. “We regard our Pavilion as the place where future innovations catch a spark,” says Cornelia Buchwalder, Secretary General of the Swiss Textile Machinery Association. Further developments in the field of hybrid yarns were a hot topic. One example of this involves producing a yarn which has all the typical characteristics and advantages of carbon – but which also prioritizes careful use of resources, combining carbon fibres with thermoplastics.

Technical textiles cover a vast range of applications, and it’s still growing thanks to intensive research by specialist institutes and universities. Many members of the Swiss Textile Machinery Association maintain long-standing partnership with such bodies. Innovations are often joint efforts.

Feel-good technical fabrics
Some technical textiles feel like a second skin. A well-known example is activewear from the ‘sport tech’ field. Activewear includes breathable clothing, usually consisting of a three-layer-laminate: an inner lining, a breathable membrane in the center, and an outer fabric. The challenge is to bond the individual layers without losing breathability or softness, while meeting technical requirements such as resistance to a number of wash cycles.

Bonding solutions meeting top quality requirements, as well as ambitious standards for environmental protection and sustainability, were reinvented by the Cavitec brand from the Santex Rimar Group. This company’s hotmelt technology uses one-component polymers applied to textiles in a hot, molten state. Bonding based on hotmelts is both water- and solvent-free. Drying and exhaust air cleaning are not necessary, which is an ecological advantage. Energy consumption is also significantly lower. Cavitec hotmelt technology is also developed for laminated medical protection fabrics which are safe, high-quality and sustainable. These fabrics can be washed, sterilized, and used again.   

A second skin with added value is the result of Jakob Müller Group’s cooperation with an institute for an established outdoor fashion brand. They have devised a heating mat applied as an inner jacket. Outdoor gear with a heated inlay offers the wearer a comfortable feeling even in a cold climate. The heating mat is particularly light, breathable, flexible and adjustable to three temperature levels.

Fabrics with these advantages are now possible thanks to multi direct weaving (MDW) technology from the Jakob Müller Group. A lacquer-insulated heating strand is inserted into the base textile as a ‘meander’ using MDW technology. The technology is offered with both label weaving machines and the latest generation of ribbon weaving machines. The textile pocket calculator is another MDW based future-oriented application developed in cooperation with a textile research institute.

Safety and health
Life-saving reliability is a must for vehicle airbags. They have to fulfil high security aspects, and must remain inflated for several seconds when an accident occurs. Airbags made of flat-woven fabric – cut and seamed – can show weakness at seams during the inflation phase. Latest Jacquard technology by Stäubli enables one-piece-woven (OPW) airbags to be produced, creating shape and structure in a single process. The final product is an airbag consisting of a sealed cushion with woven seams. OPW airbag weaving reduces the number of production steps, and increases the security aspects.
Another big advantage of Stäubli’s new weaving technology is the flexibility in formats required in today’s mid- and upper-range cars, where lateral protection (in the seat or in the roof over the door) has become standard and is designed in line with the car shape. Safe airbags are woven on modern high-speed weaving machines. The warp material, the variety of fabric patterns, and the importance of precisely shaped airbags require the use of a robust and reliable Jacquard machine.

A revolution for orthopaedic patients is a knitting machine from Steiger Participations, which uses compressive yarns developed to meet the needs of the specific health market. This machine model was exclusively designed for production with inlaid elastic yarns and offers optimum performance with guaranteed final product quality.

In the orthopaedic field, many Steiger flat knitting machines have already been operating as automatic, custom-made production systems. For example, the dimensions of an injured limb are taken by the doctor and fed into a web-based application. The doctor selects the compression class in the various sections of the item and a data file created by the software automatically applies a preconfigured program. With no human intervention required, the program is generated and produced on the machine, precisely matching the patient’s dimensions. Each product is different, and generally available within 48 hours.

(c) Freudenberg Performance Materials Holding SE & Co. KG
21.06.2022

Freudenberg endorses further products with ECO-CHECK label

Freudenberg Performance Materials (Freudenberg) is endorsing further sustainable products with its ECO-CHECK label introduced last year. These products comply with various environmental criteria. With immediate effect, five more solutions bear the label making the company’s commitment to sustainability visible.

Leather goods
The newly-endorsed ECO-CHECK products include one Evolon® microfilament textile application. This is a reinforcement material for leather goods that is manufactured with no solvent and no binder. It contains up to 80 percent recycled PET and is suitable for a broad range of applications. The material is produced at Freudenberg’s facility in Colmar, France, where the manufacturing process is highly sustainable: it is certified to STeP by OEKO-TEX® and fully complies with the DETOX TO ZERO by OEKO-TEX® criteria.

Freudenberg Performance Materials (Freudenberg) is endorsing further sustainable products with its ECO-CHECK label introduced last year. These products comply with various environmental criteria. With immediate effect, five more solutions bear the label making the company’s commitment to sustainability visible.

Leather goods
The newly-endorsed ECO-CHECK products include one Evolon® microfilament textile application. This is a reinforcement material for leather goods that is manufactured with no solvent and no binder. It contains up to 80 percent recycled PET and is suitable for a broad range of applications. The material is produced at Freudenberg’s facility in Colmar, France, where the manufacturing process is highly sustainable: it is certified to STeP by OEKO-TEX® and fully complies with the DETOX TO ZERO by OEKO-TEX® criteria.

Healthcare applications
In the field of healthcare, the bio-based M 1714 wound pad with superior absorption for more challenging wounds has now been endorsed with the ECO-CHECK label. The dressing consists of a mix of bio-based fibers derived from natural sources and exhibits a smooth wound contact layer. The product has been evaluated for industrial compostability and conforms to ISO 13432.

Architectural applications
The sustainable TF 400 Eco F mesh fabric for textile architecture from Mehler Texnologies® now also bears the ECO-CHECK label. Its yarn is made of 100% recycled PET bottles and its characteristics are very similar to those of conventional mesh fabrics. In 2021, it was awarded first place by the Architectural Membrane Association (AMA) in the “product” category in recognition of its properties.

Shoes
In the shoe industry, the binder-free strobel insoles have been endorsed as particularly sustainable. They contain a high percentage of recycled green bottle flakes. Moreover, the insoles themselves are fully recyclable.

Filtration applications
The two layered, needle-punched nonwoven filter medium that has just been endorsed with the ECO-CHECK label has impressive sustainability characteristics. Made entirely of polyester, more than half the fibers consist of recycled material.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

07.06.2022

EPTA World Pultrusion Conference 2022 explores composites sustainability

The European Pultrusion Technology Association (EPTA) has published a report from its latest conference, which focuses on advances in sustainability and recycling.

More than 130 professionals from the global pultrusion community gathered at the 16th World Pultrusion Conference in Paris on 5-6 May 2022. Organised by EPTA in collaboration with the American Composites Manufacturers Association (ACMA), the event featured 25 international speakers sharing insight on market trends, developments in materials, processing and simulation technologies, and innovative pultruded applications in key markets such as building and infrastructure, transportation and wind energy.

The European Pultrusion Technology Association (EPTA) has published a report from its latest conference, which focuses on advances in sustainability and recycling.

More than 130 professionals from the global pultrusion community gathered at the 16th World Pultrusion Conference in Paris on 5-6 May 2022. Organised by EPTA in collaboration with the American Composites Manufacturers Association (ACMA), the event featured 25 international speakers sharing insight on market trends, developments in materials, processing and simulation technologies, and innovative pultruded applications in key markets such as building and infrastructure, transportation and wind energy.

‘Bio-pultrusion’:  
Composites based on natural fibres offer a number of benefits, including low density and high specific strength, vibration damping, and heat insulation. The German Institutes for Textile and Fiber Research Denkendorf (DITF) are developing pultrusion processes using bio-based resins and natural fibres. Projects include the BioMat Pavilion at the University of Stuttgart, a lightweight structure which combines ‘bamboo-like’ natural fibre-based pultruded profiles with a tensile membrane.

Applications for recycled carbon fibre (rCF):
The use of rCF in composite components has the potential to reduce their cost and carbon footprint. However, it is currently used to a limited extent since manufacturers are uncertain about the technical performance of available rCF products, how to process them, and the actual benefits achievable. Fraunhofer IGCV is partnering with the Institute for Textile Technology (ITA) in the MAI ÖkoCaP project to investigate the technical, ecological and economic benefits of using rCF in different industrial applications. The results will be made available in a web-based app.

Circularity and recycling:
The European Composites Industry Association (EuCIA) is drafting a circularity roadmap for the composites industry. It has collaborated with the European Cement Association (CEMBUREAU) on a position paper for the EU Commission’s Joint Research Centre (JRC) which outlines the benefits of co-processing end-of-life composites in cement manufacturing, a recycling solution that is compliant with the EU’s Waste Framework Directive and in commercial operation in Germany. Initial studies have indicated that co-processing with composites has the potential to reduce the global warming impact of cement manufacture by up to 16%. Technologies to allow recovery of fibre and/or resin from composites are in development but a better understanding of the life cycle assessment (LCA) impact of these processes is essential. EuCIA’s ‘circularity waterfall,’ a proposed priority system for composites circularity, highlights the continued need for co-processing.

Sustainability along the value chain:
Sustainability is essential for the long-term viability of businesses. Resin manufacturer AOC’s actions to improve sustainability include programmes to reduce energy, waste and greenhouse gas emissions from operations, the development of ‘greener’ and low VOC emission resins, ensuring compliance with chemicals legislation such as REACH, and involvement in EuCIA’s waste management initiatives. Its sustainable resins portfolio includes styrene-free and low-styrene formulations and products manufactured using bio-based raw materials and recycled PET.

Source:

European Pultrusion Technology Association EPTA

Mobile robot system for automated loading of a bobbin creel (c) STFI
12.05.2022

STFI with sustainable and digital innovations at Techtextil 2022

The Saxon Textile Research Institute (STFI) will be presenting innovative highlights from research and development at Techtextil 2022, the international trade fair for technical textiles and nonwovens. In addition to a warp-knitted textile façade greening in a modular system and textile lightweight construction elements for the building sector made from hemp as a renewable raw material, the STFI will also be showing innovations from nonwovens research. The project optiformTEX is an example of the nonwovens competence: in this project, the mass per unit area was specifically influenced for the production of semi-finished products in the automotive sector. Furthermore, the Chemnitz Institute exhibits an ecological foam coating for protective textiles. Central highlight of the STFI's presence at the fair is also a mobile robot system, which demonstrates the automated loading of a small-scale bobbin creel.

The Saxon Textile Research Institute (STFI) will be presenting innovative highlights from research and development at Techtextil 2022, the international trade fair for technical textiles and nonwovens. In addition to a warp-knitted textile façade greening in a modular system and textile lightweight construction elements for the building sector made from hemp as a renewable raw material, the STFI will also be showing innovations from nonwovens research. The project optiformTEX is an example of the nonwovens competence: in this project, the mass per unit area was specifically influenced for the production of semi-finished products in the automotive sector. Furthermore, the Chemnitz Institute exhibits an ecological foam coating for protective textiles. Central highlight of the STFI's presence at the fair is also a mobile robot system, which demonstrates the automated loading of a small-scale bobbin creel.

Highlights at Techtextil 2022
The greened façade tile is a system with which large building surfaces can be cost-effectively greened through a simple, modular segment structure. In addition to insulating the building, the system has been created to meet the design requirements of a modern city centre; low-maintenance greening is made possible through functional integration in the textile carrier layer and coordinated plant selection.

Moulded components made of natural fibre nonwovens are increasingly used in the automotive sector. Conventional nonwovens currently have uniform masses per unit area. Technical solutions for load-oriented component reinforcement and the resulting optimised use of materials represent an enormous economic potential. The basic idea of “optiformTEX” was therefore to specifically influence the mass per unit area distribution in the pile before the semi-finished product is consolidated. As a result, a textile-technological process and the corresponding plant component were successfully developed.

Future-oriented materials are offered by developments from the field of renewable raw materials in combination with bio-based resin systems: In the “Gro-Coce” project, an innovative ceiling system was developed by combining sustainable building products and methods. Currently, a high-performance hemp-based semi-finished product as well as the steps for its reproducible production by means of textile surface formation is developed by the research team. Initial application and load tests of the hemp-based semi-finished products on wooden beams confirmed the high performance potential of the natural fibre materials.

Special functional textiles are based on composite materials with coatings or membranes. The previous production of the coatings/membranes poses ecological and health risks. At STFI, solvent-free, purely aqueous coating systems and a technology for their application were therefore developed for the protective textile sector, resulting in a breathable, waterproof and wash-resistant textile coating.

The central highlight of the STFI's presence at the fair is a mobile robot system, which demonstrates the automated loading of a small-scale bobbin creel. At the STFI, the robot is part of the “textile factory of the future”, where a play mat is woven and processed step by step along the textile chain.

adidas introduces its new Terrex Mountaineering Range (c) adidas AG
01.04.2022

adidas introduces its new Terrex Mountaineering Range

  • adidas TERREX athlete Laura Dahlmeier tackles Mont Blanc’s Brouillard Pillar with Thomas and Alexander Huber in the film, United By Summits
  • The trio are kitted out in adidas TERREX’s new Techrock Mountaineering range
  • The adidas TERREX Techrock collection gives climbers the lightweight technical wear required to defy the elements mountainside

Mountaineering is about reaching personal summits. It’s about showing your mettle, finding your freedom and winning in front of no one but yourself and nature.

  • adidas TERREX athlete Laura Dahlmeier tackles Mont Blanc’s Brouillard Pillar with Thomas and Alexander Huber in the film, United By Summits
  • The trio are kitted out in adidas TERREX’s new Techrock Mountaineering range
  • The adidas TERREX Techrock collection gives climbers the lightweight technical wear required to defy the elements mountainside

Mountaineering is about reaching personal summits. It’s about showing your mettle, finding your freedom and winning in front of no one but yourself and nature.

It’s a version of success that adidas TERREX athlete Laura Dahlmeier is reacquainting herself with. A multiple Olympic and world champion, the German biathlete is used to the noise of winning in front of huge crowds. Now retired, Laura is reconnecting with the challenges of a sport that first gave her a taste of freedom as a child: climbing.
Laura sets herself a particularly formidable goal in United By Summits. In the film, she is joined by German climbing brothers Thomas and Alexander Huber for an ascent of Mont Blanc’s infamous Brouillard Pillar and the rarely-attempted Bonington Route made famous by British climber Chris Bonington in 1965.

For this, and any other climb, mountaineers require lightweight but rugged technical wear that ensures easy movement while defying the elements mountainside, allowing for complete focus on the rock and ice in front of them.

Introducing the adidas TERREX Techrock Mountaineering range – worn by Laura and the Huber brothers in United By Summits as they climb one of the Alps’ most demanding routes.

Keeping climbers dry is the adidas TERREX Techrock Light Gore-Tex Mountaineering Jacket, a lightweight, packable jacket with breathable Gore-Tex Active 3-layer membrane to repel water. Adjustable hood and cuffs are compatible with helmets and gloves.

For insulation on colder climbs, the adidas TERREX Techrock Year Round Down Jacket locks in warmth with adidas-patented HeatSeal baffle construction and PrimaLoft® Gold insulation in the shoulders and cuffs. Pertex® Diamond Fuse 20 Denier yarn provides resistance to abrasion along with a water-repellent DWR-finished fabric.

For rugged, weather-resistant legwear that keeps climbers moving freely on any ascent, adidas TERREX Techrock Mountaineering Softshell Pants balance comfort and protection. Flexible, wool-backed softshell fabric moves easily while a tough nylon surface protects against abrasion. A soft waistband helps prevent bunching under harnesses for an easy-moving silhouette – essential on those long climbing days.

Kitted out in this new adidas TERREX Techrock Mountaineering range 4,000 metres above sea level, Laura and the Huber brothers achieved their goals together.

Source:

adidas AG

(c) BioRECO2ver Project
19.01.2022

nova-Institute: BioRECO2VER project - Conversion of CO2 into chemical building blocks

CO2 as renewable carbon source
Carbon is the main element in numerous materials used in industrial processes and in our daily lives. It is currently mostly provided from fossil sources. But what if carbon could be used directly from CO2 emissions? Biotechnology shows particularly great potential for the eco-effective conversion of climate-damaging CO2 emissions into valuable basic chemicals. A consortium of 12 partners investigated this pathway in the EU-funded BioRECO2VER project, examining the conversion of CO2 emissions from refineries and the cement industry into the chemical building blocks isobutene (C4H8) and lactate (C2H6O3).

CO2 as renewable carbon source
Carbon is the main element in numerous materials used in industrial processes and in our daily lives. It is currently mostly provided from fossil sources. But what if carbon could be used directly from CO2 emissions? Biotechnology shows particularly great potential for the eco-effective conversion of climate-damaging CO2 emissions into valuable basic chemicals. A consortium of 12 partners investigated this pathway in the EU-funded BioRECO2VER project, examining the conversion of CO2 emissions from refineries and the cement industry into the chemical building blocks isobutene (C4H8) and lactate (C2H6O3).

Innovative chemo-enzymatic concept for CO2 Capture
Project partner Luleå University of Technology (LTU) focused on the first process step of capturing and concentrating CO2 from industrial point sources. Their team developed a hybrid chemo-enzymatic process consisting of a novel solvent blend and an ultrastable carbonic anhydrase (CA) enzyme. The solvent blend included an amino acid ionic liquid and a tertiary amine and displayed a good compromise between enzyme compatibility, absorption rate, capacity and desorption potential. In addition, LTU generated ultrastable enzyme mutants that showed 50% increased resistance to selected flue gas inhibitors compared to the original CA. This 3-component CO2 capture process was scaled up in a pilot rig, and the set-up further used for real off gas pre-treatment in the project.

Two unique pilots for biotechnological CO2 Conversion/Utilization
The biotechnological conversion of (captured) CO2 and the co-substrate hydrogen by microorganisms poses technical and economic challenges because it takes place in the liquid phase and the substrates are gases which are poorly soluble. The BioRECO2VER project investigated two approaches to address this: fermentation under elevated pressure and bio-electrochemistry with in situ production of hydrogen.

Pressurized fermenter
Project coordinator VITO designed a flexible and multifunctional high-pressure fermenter, customized for research activities with advanced online sensors, monitoring and control, and also including a membrane filtration unit to achieve high concentrations of the microbial biocatalysts. The set-up was broadly tested in the BioRECO2VER project both with pure CO2 and CO2-rich off-gases but can also be used for investigations involving other poorly soluble gases, such as methane, oxygen, or synthesis gas. Pressures up to 10 bar can be applied.

First solely CO2-based bio-electrochemical platform
University of Girona designed and tested a bio-electrochemical platform. The key differentiators of the pilot plant are:

  • Two parallel lines to test engineered strains and bio-electrochemical systems
  • Fully automated pilot plant capable to control key operational parameters (pCO2, pO2, pH2, pH, Temperature) to intensify the process performance
  • Solid-liquid separation unit (membrane) to recover the planktonic cells and return them into the bio-electrochemical systems.

This unique infrastructure will be used beyond the project to support further research and development activities in the broad area of CO2 capture and conversion.

Source:

nova-Institut GmbH

(c) INDA, the Association of the Nonwoven Fabrics Industry
07.09.2021

INDA Announces the 2021 RISE® Innovation Award Finalists

  • Innovations in Protection, Efficiency and Engineered Fabrics

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the prestigious RISE® Innovation Award during the 11th edition of the Research, Innovation & Science for Engineered Fabrics Conference, (RISE®) to be held virtually September 28-30, 2021.  The award recognizes novel innovations in the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics. These three finalists will present their innovative material science solutions as they compete for the RISE® Innovation Award.

  • Innovations in Protection, Efficiency and Engineered Fabrics

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the prestigious RISE® Innovation Award during the 11th edition of the Research, Innovation & Science for Engineered Fabrics Conference, (RISE®) to be held virtually September 28-30, 2021.  The award recognizes novel innovations in the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics. These three finalists will present their innovative material science solutions as they compete for the RISE® Innovation Award.

Canopy Respirator
Canopy is an innovative respirator that is fully mechanical, non-electrostatic, with a filter designed for superior breathability while offering the wearer facial transparency. The breakthrough respirator features 5.5mm water column resistance at 85 liters (3 cubic feet) per minute, 2-way filtration, and a pleated filter that contains over 500 square centimeters of surface area. The patented Canopy respirator resists fluids, and eliminates fogging of eyeglasses.  

Evalith® 1000 Series
Johns Manville’s innovative Alpha Binder is a formaldehyde-free, high bio-carbon content, toxic-free binder formulation ideal for carpet mat applications. Alpha Binder eliminates monomer and polymer synthesis, uses a bio-degradable catalyst, and requires 70% less water in manufacturing. The resulting glass mats made of Alpha Binder are named “Evalith 1000” and reduces energy consumption during manufacturing by over 70% compared to alternative petroleum-based binders. Evalith 1000 was commercialized in North America in 2020.

Fiber Coated, Heat Sealable, Breathable, Hybrid Membrane, Fabric Protection
TiGUARD protective fabric is a construction of monolithic or hybrid imperious/moisture eliminating membranes with a surface covered with micro-fiber. This nonwoven product is a multi-layer all polyester fabric specifically for chemical and microbial protective fabrics, products, and garments. It is constructed of compatible heat seal-able materials which lend themselves to high-speed heat seal-able production and ultimately automated manufacture of garments without sewing. It is a combination of a densely flocked polyester fiber surface on polyester membrane supported by polyester scrim.
Virtual RISE™ conference attendees include technology scouts and product developers in the nonwoven/engineered fabrics industry seeking new developments to advance their businesses. These attendees will electronically vote for the recipient of the 2021 RISE® Innovation Award, on Wed. Sept. 29th. The winner will be announced Thurs., Sept. 30th.

The conference program will cover timely and relevant industry topics including: Material Science Developments for Sustainable Nonwovens; Increasing Circularity in Nonwovens; Market Intelligence & Economic Insights; Promising Innovations in Nonwovens; Process Innovations in Nonwovens; Material Innovations in Nonwovens;  the full program can be viewed on the link: https://www.riseconf.net/conference.php

More information:
INDA nonwovens
Source:

INDA, the Association of the Nonwoven Fabrics Industry