From the Sector

Reset
14 results
INDA remembers CK Wong (c) INDA
03.04.2024

INDA remembers CK Wong

INDA is warmly remembering CK Wong, a veteran of the nonwovens industry for more than five decades and long-time member of INDA’s Board of Directors and Executive Committee. Wong passed away on March 22, 2024 at the age of 86.

Wong recognized the importance of the emerging nonwovens industry in the early 1970s. He began his career in the 1980s as a marketing consultant and, one year later, Wong set up his corporate headquarters in Hong Kong to convert nonwoven roll goods into disposable medical and industrial protection products. Over the past 35 years, Wong’s business grew to include household, beauty salon, sports applications, and other value-added products.

In 1994 Wong’s company officially became U.S. Pacific Nonwovens Industry Limited. His business expanded with a new converting plant in Dongguan, China, and in 2007 he invested in an adjacent building to handle his growing business. In 2018 Wong’s business broadened to include manufacturing PLA nonwovens. In addition to converted products, Wong’s business provided sales, service, and training for nonwovens equipment.

INDA is warmly remembering CK Wong, a veteran of the nonwovens industry for more than five decades and long-time member of INDA’s Board of Directors and Executive Committee. Wong passed away on March 22, 2024 at the age of 86.

Wong recognized the importance of the emerging nonwovens industry in the early 1970s. He began his career in the 1980s as a marketing consultant and, one year later, Wong set up his corporate headquarters in Hong Kong to convert nonwoven roll goods into disposable medical and industrial protection products. Over the past 35 years, Wong’s business grew to include household, beauty salon, sports applications, and other value-added products.

In 1994 Wong’s company officially became U.S. Pacific Nonwovens Industry Limited. His business expanded with a new converting plant in Dongguan, China, and in 2007 he invested in an adjacent building to handle his growing business. In 2018 Wong’s business broadened to include manufacturing PLA nonwovens. In addition to converted products, Wong’s business provided sales, service, and training for nonwovens equipment.

Wong was an active member at INDA since the late 90s. He served as Vice Chair of Finance on the Board of Directors for many years before becoming an Appointee on INDA’s Executive Committee. Wong was instrumental in helping INDA set up partnerships with key contacts and associations in China. He was also the Honorable Chairman for the Guangdong Nonwovens Association (GDNA) and the China Nonwovens & Industrial Textiles Association (Spunbond Division).

More information:
INDA nonwovens
Source:

INDA, the Association of the Nonwoven Fabrics Industry

Winners of AVK Innovation Award 2023 (c) AVK
Winners of AVK Innovation Award 2023
25.10.2023

Winners of AVK Innovation Award 2023

The winners of the prestigious Innovation Award for Fibre-Reinforced Plastics of the AVK, the German Federation of Reinforced Plastics, were presented in Salzburg this year. This award always goes to businesses, institutions and their partners for outstanding innovations in composites the three categories Products & Applications, Processes & Methods and Research & Science. Projects are submitted in all three categories and are evaluated by a jury of experts in engineering and science as well as trade journalists, who look at each project in terms of their levels of innovation, implementation and sustainability.

Products & Applications category
First place: “Insulating Coupling Shaft for Rail Vehicles” – Leichtbauzentrum Sachsen GmbH, partner: KWD Kupplungswerk Dresden GmbH

Second place: “Electric Car Battery Housing Components Based on Innovative Continuous Fibre-Reinforced Phenolic Resin Composites” – SGL Carbon

The winners of the prestigious Innovation Award for Fibre-Reinforced Plastics of the AVK, the German Federation of Reinforced Plastics, were presented in Salzburg this year. This award always goes to businesses, institutions and their partners for outstanding innovations in composites the three categories Products & Applications, Processes & Methods and Research & Science. Projects are submitted in all three categories and are evaluated by a jury of experts in engineering and science as well as trade journalists, who look at each project in terms of their levels of innovation, implementation and sustainability.

Products & Applications category
First place: “Insulating Coupling Shaft for Rail Vehicles” – Leichtbauzentrum Sachsen GmbH, partner: KWD Kupplungswerk Dresden GmbH

Second place: “Electric Car Battery Housing Components Based on Innovative Continuous Fibre-Reinforced Phenolic Resin Composites” – SGL Carbon

Third place: “High Performance Recycled Carbon Fibre Materials (HiPeR)” – Composites Technology Center GmbH (CTC GmbH), partners: Faserinstitut Bremen e. V, Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; partners Japan: Faserinstitut Bremen e.V., Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; Partner Japan: CFRI Carbon Fiber Recycle Industry Co., Ltd., IHI Logistics and Machinery Corporation, ICC Kanazawa Institute of Technology

Innovative Processes & Methods category
First place: “Chopped Fibre Direct Processing (CFP)” – KraussMaffei Technologies GmbH, partner: Wirthwein SE

Second place: “CIRC - Complete Inhouse Recycling of Thermoplastic Compounds” – Fraunhofer Institute for Production Engineering and Automation (IPA), partners: Schindler Handhabetechnik GmbH, Vision & Control GmbH

Third place: “CarboScreen – Sensor-Based Monitoring of Carbon-Fibre Production” – CarboScreen GmbH, partner: Institute of Textile Technology at RWTH Aachen University

Research & Science category
First place: “Development of a Stereocomplex PLA Blend on a Pilot Plant Scale” – Faserinstitut Bremen e. V.

Second place: “Fibre-Reinforced Salt as a Robust Lost Core Material” – Technical University of Munich, Chair of Carbon Composites, partners: Apppex GmbH, Haas Metallguss GmbH

Third place: “VliesSMC – Recycled Carbon Fibres with a Second Life in the SMC Process” – Sächsisches Textilforschungsinstitut e.V. (STFI), partner: Fraunhofer Institute for Chemical Technology (ICT)

 

Entries for the next Innovation Award 2024 can be submitted from January 2024 onwards.

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V.

Graphic Carbios
02.03.2023

Carbios doubles number of granted patents in two years

  • At end 2022, Carbios has 336 titles worldwide divided into 53 patent families for its innovation in enzymatic recycling of PET plastics and fibers, and its PLA biodegradation technology
  • Carbios’ team of Intellectual Property experts is dedicated to protecting its innovations

 
Carbios has doubled its number of issued patents since the last review published at the end of 2020. Carbios (and its subsidiary Carbiolice) currently holds 336 titles worldwide divided into 53 patent families.  In 2022, several titles protecting the proprietary PET-degrading enzymes were granted in countries of interest such as the United States and also in Asian countries including Indonesia, South Korea, China, Japan and India.  Carbios has also obtained grants within its patent families protecting the biodegradable plastics production process, notably the masterbatch containing the enzyme or its production process.
 
Carbios is expanding its intellectual property portfolio in regions and countries where there is strong demand for its disruptive technologies, notably :

  • At end 2022, Carbios has 336 titles worldwide divided into 53 patent families for its innovation in enzymatic recycling of PET plastics and fibers, and its PLA biodegradation technology
  • Carbios’ team of Intellectual Property experts is dedicated to protecting its innovations

 
Carbios has doubled its number of issued patents since the last review published at the end of 2020. Carbios (and its subsidiary Carbiolice) currently holds 336 titles worldwide divided into 53 patent families.  In 2022, several titles protecting the proprietary PET-degrading enzymes were granted in countries of interest such as the United States and also in Asian countries including Indonesia, South Korea, China, Japan and India.  Carbios has also obtained grants within its patent families protecting the biodegradable plastics production process, notably the masterbatch containing the enzyme or its production process.
 
Carbios is expanding its intellectual property portfolio in regions and countries where there is strong demand for its disruptive technologies, notably :

  • in Europe: 40 European titles, which could be granted in the 39 member states of the European Patent Organization
  • in North America: 41 titles in the United States and 23 in Canada
  • in Asia: 152 titles, including 37 in China, 27 in Japan and 24 in India

Carbios also has 14 patent applications that may be extended to other countries or regions of the world in the coming years.

“Over the past two years, we have mainly focused on strengthening the protection of our PET biorecycling process and its proprietary enzymes,” commented Lise LUCCHESI, Director of Intellectual Property at Carbios. “For the coming years, we will continue to consolidate the protection of this process, and that of our PLA biodegradation process, by filing new patent applications. We will also actively follow up on our filed patent applications in order to obtain granted patents.”
 
“Since the beginning of Carbios, the R&D and Intellectual Property departments have worked hand in hand to ensure maximum protection of our enzymes and processes,” commented Alain Marty, Chief Scientific Officer at Carbios.  “These continued efforts to obtain extensive international protection are crucial to safeguard our innovations and ensure the industrial deployment of our technologies.”

 

24.02.2023

Kelheim Fibres und SUMO: Absorbent pads for washable diapers

Kelheim Fibres and SUMO are presenting their high-performance absorbent pads for the reusable Sumo diaper at this year's Cellulose Fibres Conference. The Sumo diaper is a sustainable and washable cloth diaper made entirely from biobased materials, offering high performance and innovative design.

The Sumo diaper offers a reusable alternative, consisting of a waterproof shell and absorbent pads. To enhance the performance of the pads, Sumo collaborated with Kelheim Fibres, a leading viscose specialty fibre manufacturer with decades of experience in the hygiene sector.

Together with the Saxon Textile Research Institute STFI, Sumo and Kelheim Fibres have developed a high-performance absorbent pad that is free of fossil-based materials and has already been awarded the Techtextil Innovation Award. The basis for the innovative construction are Kelheim's functionalized specialty viscose fibres with modified cross-sections, which ensure particularly high absorbency and extremely low rewet values.

Kelheim Fibres and SUMO are presenting their high-performance absorbent pads for the reusable Sumo diaper at this year's Cellulose Fibres Conference. The Sumo diaper is a sustainable and washable cloth diaper made entirely from biobased materials, offering high performance and innovative design.

The Sumo diaper offers a reusable alternative, consisting of a waterproof shell and absorbent pads. To enhance the performance of the pads, Sumo collaborated with Kelheim Fibres, a leading viscose specialty fibre manufacturer with decades of experience in the hygiene sector.

Together with the Saxon Textile Research Institute STFI, Sumo and Kelheim Fibres have developed a high-performance absorbent pad that is free of fossil-based materials and has already been awarded the Techtextil Innovation Award. The basis for the innovative construction are Kelheim's functionalized specialty viscose fibres with modified cross-sections, which ensure particularly high absorbency and extremely low rewet values.

To ensure the washability of the product, needle-punched/thermally bonded nonwovens were chosen, consisting of a mixture of specialty viscose and PLA bicomponent fibres. By combining nonwovens, typically used in single-use applications, with reusable products, the partners have chosen a new approach.

Natalie Wunder, project manager at Kelheim Fibres, and Luisa Kahlfeldt, founder and designer of SUMO, explain in their joint presentation at the Cellulose Fibre Conference how open innovation has led to successful development collaboration, how this response to current consumer needs has emerged, and what steps are planned for the future.

Source:

Kelheim Fibres GmbH

(c) NatureWorks
15.02.2023

New Ingeo™️ PLA Biopolymer Manufacturing Facility in Thailand

NatureWorks, the manufacturer of low-carbon polylactic acid (PLA) biopolymers made from renewable resources, hosted a cornerstone laying ceremony to celebrate construction of their new Ingeo™️ PLA manufacturing complex in Thailand. The ceremony which took place on February 1st, 2023 commemorated the progress made to date on the new fully integrated biopolymer facility. The day also featured a ceremonial groundbreaking that mirrored the ceremony held in Blair, Nebraska, USA in 2000 when NatureWorks began construction on the world’s first commercial scale PLA manufacturing facility.

The new manufacturing facility located on the Nakhon Sawan Biocomplex (NBC) in Nakhon Sawan Province, Thailand is designed to be fully integrated including production sites for lactic acid, lactide, and polymer. With completion expected in the second half of 2024, the manufacturing site will have an annual capacity of 75,000 tons and will produce the full portfolio of Ingeo biopolymer grades.

NatureWorks, the manufacturer of low-carbon polylactic acid (PLA) biopolymers made from renewable resources, hosted a cornerstone laying ceremony to celebrate construction of their new Ingeo™️ PLA manufacturing complex in Thailand. The ceremony which took place on February 1st, 2023 commemorated the progress made to date on the new fully integrated biopolymer facility. The day also featured a ceremonial groundbreaking that mirrored the ceremony held in Blair, Nebraska, USA in 2000 when NatureWorks began construction on the world’s first commercial scale PLA manufacturing facility.

The new manufacturing facility located on the Nakhon Sawan Biocomplex (NBC) in Nakhon Sawan Province, Thailand is designed to be fully integrated including production sites for lactic acid, lactide, and polymer. With completion expected in the second half of 2024, the manufacturing site will have an annual capacity of 75,000 tons and will produce the full portfolio of Ingeo biopolymer grades.

The expanded global production of Ingeo biopolymer will support growth in markets including 3D printing and hygiene as well as compostable coffee capsules, tea bags, flexible packaging, and food serviceware that demand sustainable, low-carbon biomaterials and require the high-performance attributes that Ingeo is uniquely suited to deliver.

“This ceremony is a meaningful milestone for the entire NatureWorks team,” said Rich Altice, president and CEO of NatureWorks. “For the last three decades, we have not only been building a company and manufacturing facilities, but also a whole new industry and market for low-carbon, renewable biomaterials that are revolutionizing the sustainability and safety of packaging and product materials used in our everyday lives.”

More information:
NatureWorks PLA biopolymer
Source:

NatureWorks

Graphic NatureWorks
16.11.2022

CJ Biomaterials and NatureWorks: Joint commercialization of novel biopolymer solutions

  • Future plans for the nonwovens market

The two companies will develop sustainable materials solutions based on CJ Biomaterials’ PHACT™ PHA and NatureWorks’ Ingeo™ PLA technologies NTR and CJ Biomaterials

CJ Biomaterials, Inc., a division of South Korea-based CJ CheilJedang and leading producer of polyhydroxyalkanoate (PHA), and NatureWorks, an advanced materials company that is the world’s leading producer of polylactic acid (PLA), have signed a Master Collaboration Agreement (MCA) that calls for the two organizations to collaborate on the development of sustainable materials solutions based on CJ Biomaterials’ PHACT™ Biodegradable Polymers and NatureWorks’ Ingeo™ biopolymers. The companies will develop high-performance biopolymer solutions that will replace fossil-fuel based plastics in applications ranging from compostable food packaging and food serviceware to personal care, films, and other end products.

  • Future plans for the nonwovens market

The two companies will develop sustainable materials solutions based on CJ Biomaterials’ PHACT™ PHA and NatureWorks’ Ingeo™ PLA technologies NTR and CJ Biomaterials

CJ Biomaterials, Inc., a division of South Korea-based CJ CheilJedang and leading producer of polyhydroxyalkanoate (PHA), and NatureWorks, an advanced materials company that is the world’s leading producer of polylactic acid (PLA), have signed a Master Collaboration Agreement (MCA) that calls for the two organizations to collaborate on the development of sustainable materials solutions based on CJ Biomaterials’ PHACT™ Biodegradable Polymers and NatureWorks’ Ingeo™ biopolymers. The companies will develop high-performance biopolymer solutions that will replace fossil-fuel based plastics in applications ranging from compostable food packaging and food serviceware to personal care, films, and other end products.

The initial focus of this joint agreement will be to develop biobased solutions that create new performance attributes for compostable rigid and flexible food packaging and food serviceware. The new solutions developed will also aim to speed up biodegradation to introduce more “after-use” options consistent with a circular economy model. The focus on compostable food packaging and serviceware will create more solutions for keeping methane-generating food scraps out of landfills, which are the third largest source of methane emissions globally, according to World Bank. Using compostable food packaging and serviceware, we can divert more food scraps to composting where they become part of a nutrient-rich, soil amendment that improves soil health through increased biodiversity and sequestered carbon content.

CJ Biomaterials and NatureWorks plan to expand their relationship beyond cooperative product development for packaging to create new applications in the films and nonwoven markets.  For these additional applications, the two companies will enter into strategic supply agreements to support development efforts.

More information:
NatureWorks Biopolymere packaging
Source:

NatureWorks

(c) Carbios
20.10.2022

Carbios publishes results of consumer research study about plastic circularity

  • Carbios’ biorecycling and biodegradation technologies internationally recognized by consumers as promising answers to their top environmental concerns
  • Carbios’ innovations considered one of the best for solving recycling effectively and achieving a real plastic circularity
  • Consumer research including qualitative and quantitative fields was conducted between March and August 2022. The research institute, Strategic Research, conducted 6000 interviews in Europe and USA

Carbios’ biorecycling and biodegradation technologies acclaimed by consumers
During the first research field study, respondents were exposed to Carbios’ biorecycling process; a new enzyme-based biotechnology that enables biological recycling of all types of PET plastic waste (including bottles, packaging and textiles), and pushes the boundaries of recycling in terms of the number of cycles.

  • Carbios’ biorecycling and biodegradation technologies internationally recognized by consumers as promising answers to their top environmental concerns
  • Carbios’ innovations considered one of the best for solving recycling effectively and achieving a real plastic circularity
  • Consumer research including qualitative and quantitative fields was conducted between March and August 2022. The research institute, Strategic Research, conducted 6000 interviews in Europe and USA

Carbios’ biorecycling and biodegradation technologies acclaimed by consumers
During the first research field study, respondents were exposed to Carbios’ biorecycling process; a new enzyme-based biotechnology that enables biological recycling of all types of PET plastic waste (including bottles, packaging and textiles), and pushes the boundaries of recycling in terms of the number of cycles.

The research results demonstrated that European and US respondents find Carbios’ biorecycling technology more unique and innovative than traditional PET recycling (i.e. thermo-mechanical recycling), as well as more relevant in its ability to address their concerns and challenges regarding recycling.

In the second research study, conducted in the US, respondents were also exposed to Carbios’ biodegradation technology: an innovative enzymatic solution by which an enzyme is incorporated into plastics during the production process of bio-sourced PLA plastics (corn, sugar cane). This approach makes the material made from plants 100% compostable at ambient temperatures and degradable like plants with the built-in enzyme biologically breaking the bioplastic down in less than eight weeks without microplastics or toxic residues; creating a fully organic circularity.

Similarly to Carbios’ biorecycling technology, Carbios’ PLA biodegradation innovation caught US respondents’ attention with 64% overall liking it. Additionally, 93% of the respondents sampled described the concept as innovative, unique, easy to understand (49%), and believable (43%). Up to 82% of the most environmentally engaged respondents declared they would definitely buy more products made with Carbios’ fully circular biodegradable bioplastic.

Consumers: No other choice but to make plastic fully circular
The research says 99% of the respondents consider it important to protect the environment, while plastic pollution is now ranked the third most-concerning environmental issues after climate change and ocean pollution.

This awareness brings most of these consumers to be environmentally active when it comes to purchasing goods and sorting. For the US respondents, eco-friendly packaging comes in the fourth place in terms of purchase drivers for packaged goods and 65% of them declare sorting plastic from general waste on a regular basis, which makes plastic the most sorted type of waste.

Nevertheless, for a vast majority of the respondents across geographies, even if they would like to reduce their plastic consumption most of the time there is no suitable alternative that is as convenient, light, and cost-efficient as plastics. Hence in an ideal world, consumers would like all plastic waste in landfills and oceans to be collected, cleaned, reused and recycled.

More information:
Carbios study circularity plastics
Source:

Carbios

(c) INDA
07.10.2022

INDA: Highlights of the 12th edition of RISE®

  • DiaperRecycle Wins RISE® Innovation Award for Technology that Transforms Used Diapers into Cat Litter

Product development and innovators in nonwovens & engineered materials gained expert insights on material science innovation and sustainability at the 12th edition of RISE® — Research, Innovation & Science for Engineered Fabrics conference, organized by INDA, the Association of the Nonwoven Fabrics Industry, and The Nonwovens Institute, North Carolina State University, Sept. 27-28 at North Carolina State University in Raleigh, NC.

More than 20 industry, academic, and government experts from across the globe presented technical developments in sessions focused on circularity and sustainable inputs from such sources as Polylactic Acid Polymers (PLA), natural fibers, biofibers, and waste products.

  • DiaperRecycle Wins RISE® Innovation Award for Technology that Transforms Used Diapers into Cat Litter

Product development and innovators in nonwovens & engineered materials gained expert insights on material science innovation and sustainability at the 12th edition of RISE® — Research, Innovation & Science for Engineered Fabrics conference, organized by INDA, the Association of the Nonwoven Fabrics Industry, and The Nonwovens Institute, North Carolina State University, Sept. 27-28 at North Carolina State University in Raleigh, NC.

More than 20 industry, academic, and government experts from across the globe presented technical developments in sessions focused on circularity and sustainable inputs from such sources as Polylactic Acid Polymers (PLA), natural fibers, biofibers, and waste products.

Highlights included presentations on Achieving Supply Chain Circularity, by Kat Knauer, Ph.D., Program Manager – V Research, National Renewable Energy Laboratory, NREL; The Global Plastic Crisis: Winners/Losers in the Marketplace, by Bryan Haynes, Ph.D., Senior Technical Director, Global Nonwovens, Kimberly-Clark Corporation; Sustainable Fibers – Development and the Future by Jason Locklin, Ph.D. Director, University of Georgia – New Materials Institute; PLA & PLA Blends: Practical Aspects of Extrusion by Behnam Pourdeyhimi, Ph.D., William A. Klopman Distinguished Professor, and Executive Director, The Nonwovens Institute, North Carolina State University; and Mitigation of Quat Incompatibility with Cotton and other Cellulosic-based Substrates, by Doug Hinchliffe, Ph.D., Research Molecular Biologist, USDA-ARS.

RISE® Innovation Award Winner
DiaperRecycle was awarded the RISE® Innovation Award for its innovative technology to recycle used diapers into absorbent and flushable cat litter. The annual award recognizes innovation in areas within and on the periphery of the nonwovens industry that use advanced science and engineering principles to develop unique or intricate solutions to problems and advance  nonwovens usage.

By diverting used diapers from households and institutions, and separating the plastic and fiber, DiaperRecycle strives to decrease the climate-changing emissions of diapers from landfills.  “I am thrilled and grateful to win this award — as it proves we are on the right track,” said Cynthia Wallis Barnicoat, CEO of DiaperRecycle.

Other award finalists included Binder BioHook® by Gottlieb Binder GmbH & Co. KG and Sero® hemp fibers from Bast Fibre Technologies, Inc. (BFT).

The 13th edition of RISE® — Research, Innovation & Science for Engineered Fabrics conference will be held Sept. 12-13, 2023 at North Carolina State University in Raleigh, NC.

Source:

INDA

(C) INDA
17.08.2022

RISE® – Research, Innovation & Science for Engineered Fabrics Conference in September

  • Focus on Rethinking, Reusing and Recycling Nonwovens this September
  • Industry Experts Present Material Science Innovations & Sustainability

More than 20 industry experts will present their views on how material science innovations can create a more sustainable future for the nonwovens industry at the Research, Innovation & Science for Engineered Fabrics (RISE®) Conference, Sept. 27-28 in Raleigh, at North Carolina State University, co-organized by INDA and The Nonwovens Institute at North Carolina State University.

Starting with responsible sourcing of nonwoven inputs to developing realistic end-of-life options and circularity opportunities, RISE will focus on rethinking, reusing and recycling nonwovens and engineered materials at the Talley Student Union in Raleigh.    

Participants will learn what’s coming next with sessions on the following six themes: Towards a More Circular Industry; Advancement in Sustainable Inputs; Development in Natural Fibers; Sustainable Inputs: Fibers and Biofibers; Waste Not, Want Not, Sustainable Inputs from Waste Products; and Economic Insights and Market Intelligence.

  • Focus on Rethinking, Reusing and Recycling Nonwovens this September
  • Industry Experts Present Material Science Innovations & Sustainability

More than 20 industry experts will present their views on how material science innovations can create a more sustainable future for the nonwovens industry at the Research, Innovation & Science for Engineered Fabrics (RISE®) Conference, Sept. 27-28 in Raleigh, at North Carolina State University, co-organized by INDA and The Nonwovens Institute at North Carolina State University.

Starting with responsible sourcing of nonwoven inputs to developing realistic end-of-life options and circularity opportunities, RISE will focus on rethinking, reusing and recycling nonwovens and engineered materials at the Talley Student Union in Raleigh.    

Participants will learn what’s coming next with sessions on the following six themes: Towards a More Circular Industry; Advancement in Sustainable Inputs; Development in Natural Fibers; Sustainable Inputs: Fibers and Biofibers; Waste Not, Want Not, Sustainable Inputs from Waste Products; and Economic Insights and Market Intelligence.

The 12th edition of RISE® will bring together thought leaders in product development, materials science, and new technologies to connect and convene for the industry’s premier nonwovens science and technology conference.

Expert speakers will address the latest trends and innovations around circularity – an important component of sustainability strategies that aims to return a product into the supply chain, instead of the landfill, after users are done consuming it.

RISE® session highlights include:

  • The Global Plastic Crisis: Who Will Be the Winners/Losers in The Marketplace?
    Bryan Haynes, Ph.D., Senior Technical Director, Global Nonwovens, Kimberly-Clark Corporation
  • Sustainable Fibers – Developments and the Future
    Jason Locklin, Ph.D., Director, University of Georgia, New Materials Institute and David Grewell, Ph.D., Center Director, Center for Bioplastics and Biocomposites
  • Thinking Differently: In a Changing World What’s Next for NatureWorks and Polylactic Acid Polymers (PLA)
    Liz Johnson, Ph.D., Vice President of Technology, NatureWorks LLC
  • PLA and PLA Blends: Practical Aspects of Extrusion
    Behnam Pourdeyhimi, Ph.D., William A. Klopman Distinguished Professor and Executive Director, The Nonwovens Institute, North Carolina State University
  • Hemp is Strong – Are You?
    Olaf Isele, Strategic Product Development Director, Trace Femcare, Inc.
  • Exploring Natural Fibers in Nonwovens
    Paul Latten, Director of Research and Development & New Business, Southeast Nonwovens, Inc.
  • Potential Nonwoven Applications of Tree-Free Fibers Made from Microbial Cellulose –
    Heidi Beatty, Chief Executive Officer, Crown Abbey, LLC
  • Ultra Fine Fibers Made from Recycled Materials
    Takashi Owada, General Manager, Teijin Frontier (U.S.A.), Inc.

The event also will feature the presentation of the RISE® Innovation Award, a special opportunity to tour the Nonwovens Institute’s state-of-the-art facilities with advance registration required, and poster presentations by North Carolina State University graduate students.

Source:

INDA, Association of the Nonwoven Fabrics Industry

02.03.2022

Sumo & Kelheim Fibres: Sustainable and high-performance absorbent washable diaper pad

Up to the age of three, a baby uses around 5,000 diapers. Despite the convenient handling of common disposable diapers, parents are increasingly looking for a healthy and sustainable alternative to these products to avoid waste. In Germany alone, 10 million diapers are disposed of every day.

Ways to solve this dilemma, would be disposable products that are made from bio-based or biodegradable materials, or reusable products with a longer life span replace disposable products.

Founding team Luisa Kahlfeldt and Caspar Böhme combine both with their "Sumo Diapers." These cloth diapers are made entirely of sustainable materials while offering high performance and innovative design.

The Sumo Diaper is a fitted cloth diaper that consists of a waterproof cover and absorbent inserts. The cover is sewn in such a way that a pocket is formed: this is where the absorbent pad is inserted to prevent slipping.

Up to the age of three, a baby uses around 5,000 diapers. Despite the convenient handling of common disposable diapers, parents are increasingly looking for a healthy and sustainable alternative to these products to avoid waste. In Germany alone, 10 million diapers are disposed of every day.

Ways to solve this dilemma, would be disposable products that are made from bio-based or biodegradable materials, or reusable products with a longer life span replace disposable products.

Founding team Luisa Kahlfeldt and Caspar Böhme combine both with their "Sumo Diapers." These cloth diapers are made entirely of sustainable materials while offering high performance and innovative design.

The Sumo Diaper is a fitted cloth diaper that consists of a waterproof cover and absorbent inserts. The cover is sewn in such a way that a pocket is formed: this is where the absorbent pad is inserted to prevent slipping.

To further enhance the performance of this absorbent pad, the Sumo team partners with the viscose special fibre manufacturer Kelheim Fibres, who brings decades of experience from the hygiene sector, especially for sensitive applications where high absorbency is required (such as tampons). Together, Sumo and Kelheim Fibres have developed a high-performance absorbent pad that uses no fossil materials.

The basis are functionalised specialty viscose fibres with adapted cross-sections. Needle-punched / thermobonded nonwovens with a blend of specialty viscose and PLA bicomponent fibres were chosen to ensure the product's washability. PLA stands for polylactic acid made from natural and renewable raw materials. By combining nonwovens, usually found mainly in the single-use sector, with reusable products, Sumo and Kelheim Fibres have chosen a completely new approach.

Inside the pad, the speciality fibres from Kelheim score with their special properties: In the distribution layer (ADL), the trilobal cross-section of the Galaxy® fibre forms capillary channels that enable efficient and optimized liquid distribution and thus optimum use of the capacity of the absorbent core, offering the lowest rewet values.

In the absorbent core, the segmented hollow fibre Bramante stores liquid not only between but also inside the fibre. The liquid remains there even when pressure is applied to the construction, providing excellent rewet values. Bramante can absorb up to 260% of its own weight in liquid. Cotton only achieves values of around 50% here.

The innovative nonwoven construction with the speciality fibres from Kelheim performs significantly better in tests in terms of air permeability, liquid absorption and rewetting than commercially available solutions made of synthetic fibres or cotton in knitted structures, and has earned Sumo diapers a place among the finalists for the IDEA® Long-Life Product Achievement Award.

The launch is scheduled for the first of May.

Source:

Kelheim Fibres

IDEA
28.02.2022

Online Voting Opens for “Best of the Best” IDEA® Achievement Awards

  • Winners in Six Categories to be Announced at IDEA® 2022 in Miami Beach

Online voting for the IDEA® Achievement Awards representing the “best of the best” innovations in the global nonwovens and engineered fabrics industry in six categories will open on Feb. 28.

Industry professionals will have the opportunity to vote for the winners from the finalists and see award-winning achievements in person at IDEA® 2022, the World’s Preeminent Event for Nonwovens & Engineered Fabrics, March 28-31, at the Miami Beach Convention Center.

Presented by INDA, in partnership with Nonwovens Industry magazine, the awards recognize the leading introductions in equipment, raw materials, short-life, long-life and nonwovens products, and sustainability. To vote on the Nonwovens Industry website, visit: https://www.nonwovens-industry.com/idea-reg-achievement-awards

  • Winners in Six Categories to be Announced at IDEA® 2022 in Miami Beach

Online voting for the IDEA® Achievement Awards representing the “best of the best” innovations in the global nonwovens and engineered fabrics industry in six categories will open on Feb. 28.

Industry professionals will have the opportunity to vote for the winners from the finalists and see award-winning achievements in person at IDEA® 2022, the World’s Preeminent Event for Nonwovens & Engineered Fabrics, March 28-31, at the Miami Beach Convention Center.

Presented by INDA, in partnership with Nonwovens Industry magazine, the awards recognize the leading introductions in equipment, raw materials, short-life, long-life and nonwovens products, and sustainability. To vote on the Nonwovens Industry website, visit: https://www.nonwovens-industry.com/idea-reg-achievement-awards

In addition, INDA will unveil the IDEA® 2022 Lifetime Achievement Award honoree and Nonwovens Industry will announce the IDEA® Entrepreneur Achievement Award recipient at the event.  

All of the winners will be announced on March 30 at a ceremony at IDEA® from 9:30 a.m. to 10:30 a.m. moderated by Dave Rousse, President, INDA and Karen, McIntyre, Editor, Nonwovens Industry.

The INDA Technical Advisory Board, consisting of technical professionals from member companies, has narrowed the competition from more than 100 online nominations to the following 18 finalists selected for their leading innovations since the last IDEA show in 2019.

The industry will have the chance to select their top choices from the three finalists in each of the following six categories through the online voting process:

IDEA® Equipment Achievement Award

  • ESC-8 – Curt G. Joa, Inc.
    Imagine endless combinations of insert and chassis designs for adult incontinence production at the push of a button. With patent-pending ESC-8™ Electronic Size Change Technology, JOA has addressed the need for automated product size change. The release of this industry-leading, first-of-a-kind technology gives customers the flexibility to configure endless insert and chassis combinations while maintaining higher production speeds and minimizing raw material usage. The ESC-8™ can be integrated into new and existing machines.
     
  • Elastic Thread Anchoring (ETA) Sonotrode – Herrmann Ultrasonics Inc.
    Elastics are an integral component to many hygiene products. Imagine a diaper or incontinence product that is reliable, adhesive-free and extremely soft. Herrmann Ultrasonics Elastic Thread Anchoring (ETA) Sonotrode technology provides just that, in an industry first, easy-to-use closed-loop feedback manufacturing solution. The fixation of the elastic threads is accomplished with ultrasonic energy that offers a wide process window, without the need for tool changeovers, at processing speeds above 2,000 ft./min.
     
  • Doffer Airlay Card – Technoplants SRL
    With airlaying suction and a doffing system like traditional roller cards, the Doffer Airlay Card makes it possible to produce carded webs with doffer in thicknesses from 10 to 1.500 gsm. With top and bottom suction, it can produce a partly carded and partly airlaid web. This card can comb, separate and make parallel all types of natural, synthetic and regenerated fibers for applications including hygiene, filtration, medical and gradient acquisition distribution layer (ADL).

IDEA® Raw Material Achievement Award

  • sero™ premium hemp fiber – Bast Fibre Technologies Inc.
    sero™ 100 percent premium hemp fibers are the result of years of the company’s top-to-bottom supply chain experience. BFT’s proprietary processing technology is employed to carefully clean, individualize, and soften bast fibers that meet stringent nonwoven technical standards and are plastic-free, tree-free, and compostable. sero™ fibers are a plug-and-play replacement for plastic fibers that run seamlessly on major nonwoven platforms without compromising production speeds, efficiency, or uniformity.
     
  • ODOGard – Rem Brands, Inc.
    Rem Brands, Inc.’s patented ODOGard® technology is a revolutionary advancement in odor elimination. This next-generation odor elimination mechanism works by covalent molecular bonding to malodors. Malodors are permanently attached to the ODOGard® molecule, changing them into non-odorous molecules forever. ODOGard® can be impregnated into pulp fluff and other kinds of media. Whether  malodors come from the air or from hygiene products, ODOGard® has it covered.
     
  • SharoWIPES™ – Sharon Laboratories
    SharoWIPES™ by Sharon Laboratories, Israel, is a technological breakthrough from in-depth scientific research addressing industry needs for more “clean label, non-irritating, eco-friendly” consumer wet wipes. With their unique anti-biofilm mechanism, SharoWIPES™ offer dual protection from microbial contamination of both the wet wipe formula, as well as the non-woven fabric. SharoWIPES™ preservation systems deliver broad-spectrum protection at low levels contributing to wet wipe brand equity with free from, microbiome friendly, vegan and biodegradable claims.
     

IDEA® Short-Life Product Achievement Award

  • MDP™ – Dermasteel, Ltd.
    MDP™ presents a breakthrough approach to restoring the quality of life for men experiencing bladder leakage. MDP™ is a revolutionary nonwoven product for men coping with light urinary incontinence that is invisibly discreet, effective, comfortable, and reliable. It features Body ID Technology™ for customized adjustment, variable elasticity strapping, self-reflexive side panels for unimpeded breathability, form-fitting to the unique characteristics of each man’s anatomy, and the smallest carbon footprint of any comparable male incontinence option.
     
  • Organic 2.0 – Ellepot A/S
    In young plant propagation, plastic products are used in large quantities. Ellepot’s new paper is a game-changer supporting plastic exit strategies. During six years in development, Ellepot and Ahlstrom-Munksjö partnered with OrganoClick, the developer of special binders using organocatalysis, a field of chemistry awarded the Nobel Prize in 2021. The product is approved for organic crops in Germany, the UK, Denmark, The Netherlands, Sweden and Canada and certified okay home compostable and biodegradable in soil.
     
  • LifeSavers Wipes – LifeSavers LLC
    LifeSavers Wipes are personal hygiene wipes that change color if they detect abnormal health indicators in the urine. The launch product is a diabetic wipe, which will change color if there are abnormal levels of glucose in the urine. The wipes are therefore triple purposed as they assist with personal hygiene after urinating, act as an early warning system, and serve as an instant glucose monitor. UTI and kidney disease wipes are next in line.
     

IDEA® Long-Life Product Achievement Award

  • Canopy Hero Pro – Canopy
    Today’s reusable respirators are uncomfortable, limit communication, and can lose effectiveness after cleaning. Disposable options pose similar issues and generate waste. Canopy® has created a next-generation, reusable respirator for healthcare workers that’s comfortable, easy to clean, exceeds federal safety standards, has a transparent front to allow for improved communication, costs less than disposables, and can help save 7,200 tons of waste daily. Its patented, transparent, fully mechanical filter helps protect those who protect us.
     
  • Long-Life Cellulose-based Nonwovens for Higher Performance in Reusable Baby Diapers – Kelheim Fibres GmbH and Sumo Diapers
    Innovation exemplified: the trend-setting Sumo Baby Cloth Diaper shows how needle-punched/thermobonded nonwovens find their way into reusable diapers, thanks to Kelheim Fibres’ specialty viscose fibers with adjusted cross-sections (trilobal and hollow). This technology pushes liquid management capabilities and the absorbency of washable hygiene products to new levels, creating a unique duality of high-performance and high-sustainability credentials, and opening up new fields of application.
     
  • Nanofiber Cabin Air Filter – MANN + HUMMEL GmbH
    MANN+HUMMEL has developed a hybrid media by combining electret-based spunbond and a pure mechanical filtration layer of ultrafine polymer fibers. The result: an outstanding separation of PM1 particles up to 95 percent, according to DIN EN ISO 16890. This technology enables stable filtration performance and long-term efficiency over the whole filter lifetime. The nanofiber layer can be combined with any cabin air filter media of the MANN+HUMMEL range, improving air quality in a vehicle’s cabin significantly.
     

IDEA® Sustainability Advancement Award

  • Pureflow8 – In Flight Material Separator – Diaper Recycling Technology Pte. Ltd.
    New bolt-on additions to the company’s Generation 8 recycling platform guarantee increased performance in terms of material purity and work efficiency. While recovering up to 87 percent of diaper waste raw material’s financial investment, DRT pushes the boundaries further to meet sustainability targets and include active pulp scanning, fluidizing SAP re-gen technology, and gravimetric pulp refeed processes. DRT recognizes its teams and suppliers who have worked tremendously hard to complete this major milestone.
     
  • Fitesa® 100 Percent BioBased Bico – Fitesa
    Fitesa® S Bico 100 percent BioBased PE/PLA is a technically sophisticated plant-sourced nonwoven that has been successfully applied in innovative baby diapers as topsheet, backsheet, and front ear components to deliver classic spunbond strength with good abrasion resistance and converting performance. It is responsibly sourced, PE soft, and sustainable, leaving a negative carbon footprint by reducing environmental CO2. It represents the next generation of hygienic nonwovens designed to make work easier and life better.
     
  • Fiber-based Screw Caps – Glatfelter Corp. and Blue Ocean Closures
    Finally, an alternative to metal and plastic screw caps! Blue Ocean Closures partnered with Glatfelter and ALPLA to accelerate and produce sustainable and environmentally-friendly packaging solutions. The companies optimized their use of renewable and recyclable wood fibers and airlaid materials by creating paper-based screw caps that are durable, strong, and water-resistant. The method of proprietary vacuum press forming allows for low production cost and high scalability.
     

IDEA® Nonwoven Product Achievement Award

  • Sontara® Silk – Glatfelter Corp.
    Sontara® Silk perfectly fits facial contour, is luxurious on the skin, and has a minimal environmental impact. When infused with lotion, these masks have enhanced elasticity, conform closely to the skin, and have excellent adhesion. Sontara® Silk has superior translucency and ensures even penetration of active ingredients onto the skin. Sontara® Silk fabric is manufactured with premium fibers derived from natural raw material. These sustainable materials allow the product to be biodegradable and compostable.
     
  • HYDRASPUN® Aquaflo – Sustainable Nonwoven Substrates – Suominen Corporation
    Suominen’s latest moist tissue product, HYDRASPUN® Aquaflo achieves dry tissue dispersibility through a proprietary blend of 100 percent sustainable cellulosic materials, minimizing environmental impact. This flushable nonwoven has a premium hand feel for a luxurious consumer experience. In addition, it passes dispersibility standards set by INDA (GD4) and the International Water Services Flushability Group (IWSFG.) HYDRASPUN® Aquaflo is produced in Europe and North America and represents multi-year development and market insights to deliver a personal care product ideal for today’s consumer.
     
  • LS SAF™ Nonwoven Fabrics –Technical Absorbents
    Technical Absorbents developed a new grade of Low Shrink (LS) superabsorbent fiber (SAFTM) for use within a new range of nonwovens that are more resistant to shrinkage. The new LS SAFTM fiber and resulting fabrics were developed in response to demand from the medical industry for a superabsorbent nonwoven suitable for use in advanced wound pad dressings. The new fiber was engineered to be capable of withstanding the moisture used in the EtO sterilization process.

Moving forward after this year, the IDEA® Achievement Award will be presented every two years under the new cycle announced for the event with the subsequent IDEA® taking place April 23-25, 2024.

(c) Flocus ™
22.02.2022

Flocus ™ kapok nonwovens and fabrics for the leather goods and footwear

Flocus ™, the trademark for kapok fibers, offers a range of kapok textile materials such as fibers, yarns, textiles and nonwovens. The company presents the most performing and zero carbon footprint solutions based on Flocus™ kapok available for the leather goods industry, a sector that is making an important transition to sustainability in terms of processing and raw materials.

As for nonwoven, some of their most used products in the world of leatherware are:

Flocus ™, the trademark for kapok fibers, offers a range of kapok textile materials such as fibers, yarns, textiles and nonwovens. The company presents the most performing and zero carbon footprint solutions based on Flocus™ kapok available for the leather goods industry, a sector that is making an important transition to sustainability in terms of processing and raw materials.

As for nonwoven, some of their most used products in the world of leatherware are:

  • Maliwatt - 50% Kapok, 50% PLA (based on corn), a 100% biodegradable non-woven which can be used in the shoe sole. Maliwatt can be thermopressed/heat press and turned into a paper/cardboard type and lightweight structure. It is the perfect material for sneakers, casual and active shoes thanks to its quick dry, antibacterial, hydrophobic, hypoallergenic, Insulation properties. Other frequent applications are in the field of automotive, construction and car panels, sound absorption and acoustics panels and geo textiles.
  • HDE /Hydroentanglement - 50% Kapok, 50% Organic cotton. It is a 100% natural and biodegradable material that can be used in the shoe production as a sole, intersole or as a padding for shoes and bags. Thanks to its termoregulating, lightweight, hypoallergenic, thermoconductivity, insulation, soft touch, hydrophobic, anti-moth anti mite properties, it is used for a large range of applications. It is popular in the apparel world as a cruelty free filling for winter jackets, replacing duck down, and in the home industry ad a stuffing for mattresses, duvets, furniture, sleeping bags.

The offer for the leather goods industry includes also Flocus™ kapok-based fabrics in different blends and weights: linings, coatings, fabric inserts, accessories, components rich in performance and style. For example, kapok and organic cotton with GOTS certification, kapok with Tencel and recycled polyester (Repreve), kapok with linen, organic cotton and a small percentage of Spandex.

These materials were presented at the September 2021 edition of Lineapelle in the exhibition "A New point of materials", dedicated to eco-responsible innovations in terms of technologies, applications, materials and machines.

Source:

Flocus

(c) Trevira GmbH
19.10.2021

Indorama at Index 2021 with Sustainability Portfolio

The Hygiene Fibers Group of Indorama Ventures (IVL) came together at the Index Show to present an all-inclusive range of recycled and biodegradable solutions for Hygiene Fiber and Nonwoven applications.

The combination of polymers, technologies, processes and global reach supported by the Hygiene Fibers Group – one of three business segments that make up Indorama Ventures – positions it within the Hygiene industry to meet increasingly challenging market demand for innovative sustainable solutions within the hygiene sector. Across the six brands and companies that make up Hygiene Fibers Group – Auriga, Avgol, FiberVisions, Indorama Asia, Trevira and Wellman International – sustainability and supporting customers to achieve circular objectives is integral to all efforts and fundamental to the ethos of the Hygiene business segment.

The Hygiene Fibers Group of Indorama Ventures (IVL) came together at the Index Show to present an all-inclusive range of recycled and biodegradable solutions for Hygiene Fiber and Nonwoven applications.

The combination of polymers, technologies, processes and global reach supported by the Hygiene Fibers Group – one of three business segments that make up Indorama Ventures – positions it within the Hygiene industry to meet increasingly challenging market demand for innovative sustainable solutions within the hygiene sector. Across the six brands and companies that make up Hygiene Fibers Group – Auriga, Avgol, FiberVisions, Indorama Asia, Trevira and Wellman International – sustainability and supporting customers to achieve circular objectives is integral to all efforts and fundamental to the ethos of the Hygiene business segment.

At the Index Show, the Hygiene Fibers Group launched CiCLO®, a textile technology which allows polyester and other synthetic materials to biodegrade like natural materials do in wastewater treatment plant sludge, sea water and landfill conditions, reducing synthetic microfiber pollution generated during washing, and minimizing plastic accumulation in landfills caused by discarded textiles.

In line with the company’s commitment to support customers with high performance products, while also reducing the impact on the environment, several of the  Hygiene Fibers brands, including Wellman International, Trevira GMBH and Auriga, have been working closely over the last 12 months with the IAM team and the CiCLO® technology. Developments have focused on PET and rPET staple fiber and filament sustainable solutions for applications where recycling is particularly challenging, such as Hygiene, Home Textiles and Automotive applications.

Strengthening the profile of biodegradable offerings within the Hygiene Fibers Group’s sustainability portfolio, Trevira introduced a new range of bicomponent fibres based on PLA and PBS (polybutylene succinate) at the Index show. Both biopolymers offer an exceptional technological opportunity in terms of environmental care and sustainability, while delivering optimum performance. Equally to PLA, PBS is recyclable and up to 100% biodegradable under industrial conditions.

Efforts towards supporting customers to achieve circular objectives are a priority within the Hygiene Fibers Group. This is reflected in the recycled fibers expertise deployed across the segment. Four Hygiene Fibers Group brands, IVL Asia, Auriga, Trevira and Wellman International offer an extensive range of 100% recycled, accredited PET fibers, across a multitude of fiber and nonwovens applications.

The development and evolution of sustainable technologies is central to activity across IVL’s Hygiene Fibers Group, with particular focus on sustainable polyolefin solutions. FiberVisions and ES-FIBERVISIONS, leading Polyolefin mono and bico fiber brands and sister company Avgol, have partnered with UK-based Polymateria to commercially harness the innovative ‘biotransformation’ technology pioneered by Polymateria. The patented technology alters the properties of polyolefins to make them biodegradable in a natural process.  Other polyolefin sustainable innovations within the Hygiene Fibers Group were featured at Index include biosurfactant and biocolourant developments being undertaken by the Avgol team with FiberVisons progressing sustainable design solutions, including lightweight, high performance, reduced carbon solutions.

Source:

Trevira GmbH, Indorama Ventures

Fast Concept - Paper leather jacket, by Prof Kay Politowicz and Dr Kate Goldsworthy UAL (c) RISE AB
Fast Concept - Paper leather jacket, by Prof Kay Politowicz and Dr Kate Goldsworthy UAL
23.11.2018

New research pushing the limits for ‘fast’ and ‘slow’ fashion towards a sustainable, circular future

  • conceptual and commercial garments presented at exhibition in London

After two years of research Mistra Future Fashion is honoured to present, in collaboration with Centre for Circular Design at University of the Arts London and Filippa K, an exhibition pushing the limits of ‘fast’ and ‘slow’ fashion. Started in 2017, the industry-embedded project Circular Design Speeds takes a unique systemic approach, showcasing what could be accomplished using existing value chains as well as what the future of sustainable fashion holds. Ground-breaking textile research from University of the Arts London is questioning normative use and design of garments in creating prototypes to be worn across a spectrum of 24 hours to 50 years. By implementing research into existing value chains, Filippa K have produced a coat that is 100% recycled and recyclable, as well as a concept dress that is 100% bio-based and biodegradable. The research results and garments will be presented at the launch event at the University of the Arts London, on November 23rd and open to public on the 24th and 25th of November.

  • conceptual and commercial garments presented at exhibition in London

After two years of research Mistra Future Fashion is honoured to present, in collaboration with Centre for Circular Design at University of the Arts London and Filippa K, an exhibition pushing the limits of ‘fast’ and ‘slow’ fashion. Started in 2017, the industry-embedded project Circular Design Speeds takes a unique systemic approach, showcasing what could be accomplished using existing value chains as well as what the future of sustainable fashion holds. Ground-breaking textile research from University of the Arts London is questioning normative use and design of garments in creating prototypes to be worn across a spectrum of 24 hours to 50 years. By implementing research into existing value chains, Filippa K have produced a coat that is 100% recycled and recyclable, as well as a concept dress that is 100% bio-based and biodegradable. The research results and garments will be presented at the launch event at the University of the Arts London, on November 23rd and open to public on the 24th and 25th of November.

On Friday November 23rd the exhibition Disrupting Patterns: Designing for Circular Speeds opens up at University of the Arts London. The exhibition is the results of a two-year research project called Circular Design Speeds aiming at pushing the limits of ‘fast’ and ‘slow’ fashion by testing new concepts for sustainable design in an industry setting. On display are exploratory prototypes, as well as commercial garments produced by industry partner Filippa K using existing value chains. In addition, research results on innovative materials, consumer acceptance, composting studies and Life Cycle Assessments are presented. The aim of this project is to implement research results in a real fashion industry context, focusing on speed of use and maximising fabric value retention in products.

The Service Shirt developed by Professor Rebecca Earley is designed to last for over 50 years. The concept garment explores the multiple complexities, challenges and opportunities associated with design for circular business models in extended use contexts. The Service Shirt was designed as a ‘deliberate extreme’ to have a total lifecycle of 50 years. This lifecycle includes in-house and external remanufacturing processes, as well as various use cycles – often moving between single ownership and rental and sharing contexts. It becomes the lining for a jacket and then crafted in to fashion accessories, before finally being chemically regenerated in the year 2068.

On the opposite side of the spectrum the Fast-Forward concept, developed by Prof Kay Politowicz and Dr Kate Goldsworthy, explores alternative modes of production and use for a sustainable ‘fast-fashion’ application. Advantages with regards to climate impact are enabled through lighter material choices, nonwoven fabric production, no launder, clear routes to recovery and redistributed manufacturing systems. A sliding scale of ‘speed’ from ultra-fast forward through to a more widely accepted length of use, with adaptations to production processes and end of life, is presented. The prototypes are made from a new bio-based nonwoven material co-developed with Dr Hjalmar Granberg at RISE Research Institute of Sweden & University of the Arts London. The composition of the paper is a mix of cellulose pulp and bio-based PLA fibre, making the garment 100% biodegradable or recyclable in existing paper recycling systems.

Working closely with industry partner Filippa K made commercial testing possible. By implementing research into existing value chains, Filippa K was able to produce a coat that is 100% recycled and recyclable, as well as a concept dress that is 100% bio-based and biodegradable. The garments are a part of Filippa K’s Front Runner series and will be available in selected stores on November 26th. With a focus on products’ length of use and maximizing fabric value retention, Filippa K are dedicated to becoming fully circular by 2030.

“Being part of the fashion industry comes with many challenges, especially when considering the fact that we are the second most polluting industry after oil. Our industry needs to change and we believe adapting to circular models, like nature’s ecosystem, is one important solution. We want to be able to offer beautiful clothing and to make business within the planetary boundaries.”
- Elin Larsson, Sustainability Director, Filippa K

To validate the design research presented, a Life Cycle Assessment was performed on the prototypes. Mistra Future Fashion affiliated Dr. Greg Peters, Chalmers University of Technology, together with additional LCA Researchers at RISE, conclude that the production of fibres and fabrics are the main processes impacting the environment during the garment life cycles. Therefore, to extend the lifetime of existing garments and design for re-use, as done in the Service Shirt, is indeed the superior alternative compared to a reference garment.

“Compared with garments of the same mass, the extended life garments represent a large improvement in environmental performance over the reference garments, outperforming the reference garments in all effect categories. This superiority is primarily a consequence of avoiding garment production via reprinting and reassembly of the initial garment to extend its useful life.”
- Dr Greg Peters, LCA Researcher at Chalmers University of Technology

Another way to circumvent the impacts of fast fashion is to develop materials with considerably lower impacts during production, and which also avoid the barriers to recycling faced by conventional garments. Instead of hinder consumers from buying new, the act of acquiring a new garment could in fact be sustainable. The paper-based short life garments considered in this assessment show considerable impact savings when compare to the benchmark garment. Dr. Peters says,

“The paper-based garments benefit from the lower impacts of the material (fibre production, spinning and knitting) compared with conventional cotton, from their relatively light weight and also on account of the lower impacts in garment production and use.”