From the Sector

Reset
73 results
Freudenberg showcases sustainable solutions at Techtextil 2024 (c) Freudenberg Performance Materials
Freudenberg´s sustainable carrier material for green roofs on urban buildings is made from renewable resources
15.03.2024

Freudenberg showcases sustainable solutions at Techtextil 2024

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Biocarrier for green roofs
Freudenberg is showcasing a sustainable carrier material for green roofs on urban buildings at the trade fair. The carrier is made from polylactide, i.e. from renewable resources. When filled with soil, it provides a strong foothold to root systems, enabling the growth of lightweight sedum blankets that can be rolled out to provide instant green roofs. These roofs not only help counter urban heat, they also improve stormwater management and regulate indoor temperatures.

From textile waste to padding
The company extended its circular thermal wadding product range with the release of comfortemp® HO 80xR circular, a wadding made from 70 percent recycled polyamide from discarded fishing nets, carpet flooring and industrial plastic. Because polyamide 6, also known as nylon, retains its performance characteristics after multiple recycling processes, the fibers can be used again and again to manufacture performance sporting apparel, leisurewear and luxury garments.

Packaging solutions with various sustainability benefits
Freudenberg is also showcasing products for sustainable packaging and filtration solutions. The long-lasting Evolon® technical packaging series is a substitute for disposable packaging used in the transport of sensitive industrial items such as automotive parts. The material is made from up to 85 percent recycled PET. A further highlight at Techtextil are Freudenberg’s fully bio-based solutions for manufacturing dessicant bags. The binder-free material based on bio-fibers is also industrially compostable.
In addition, the experts will be giving trade fair visitors an insight into Freudenberg’s filtration portfolio.

Source:

Freudenberg Performance Materials

DITF: Biopolymers from bacteria protect technical textiles Photo: DITF
Charging a doctor blade with molten PHA using a hot-melt gun
23.02.2024

DITF: Biopolymers from bacteria protect technical textiles

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

These biopolymers have the advantage that they can be produced in anything from small laboratory reactors to large production plants. The most promising biopolymers include polysaccharides, polyamides from amino acids and polyesters such as polylactic acid or polyhydroxyalkanoates (PHAs), all of which are derived from renewable raw materials. PHAs is an umbrella term for a group of biotechnologically produced polyesters. The main difference between these polyesters is the number of carbon atoms in the repeat unit. To date, they have mainly been investigated for medical applications. As PHAs products are increasingly available on the market, coatings made from PHAs may also be increasingly used in technical applications in the future.

The bacteria from which the PHAs are obtained grow with the help of carbohydrates, fats and an increased CO2 concentration and light with suitable wavelength.

The properties of PHA can be adapted by varying the structure of the repeat unit. This makes polyhydroxyalkanoates a particularly interesting class of compounds for technical textile coatings, which has hardly been investigated to date. Due to their water-repellent properties, which stem from their molecular structure, and their stable structure, polyhydroxyalkanoates have great potential for the production of water-repellent, mechanically resilient textiles, such as those in demand in the automotive sector and for outdoor clothing.

The DITF have already carried out successful research work in this area. Coatings on cotton yarns and fabrics made of cotton, polyamide and polyester showed smooth and quite good adhesion. The PHA types for the coating were both procured on the open market and produced by the research partner Fraunhofer IGB. It was shown that the molten polymer can be applied to cotton yarns by extrusion through a coating nozzle. The molten polymer was successfully coated onto fabric using a doctor blade. The length of the molecular side chain of the PHA plays an important role in the properties of the coated textile. Although PHAs with medium-length side chains are better suited to achieving low stiffness and a good textile handle, their wash resistance is low. PHAs with short side chains are suitable for achieving high wash and abrasion resistance, but the textile handle is somewhat stiffer.

The team is currently investigating how the properties of PHAs can be changed in order to achieve the desired resistance and textile properties in equal measure. There are also plans to formulate aqueous formulations for yarn and textile finishing. This will allow much thinner coatings to be applied to textiles than is possible with molten PHAs.

Other DITF research teams are investigating whether PHAs are also suitable for the production of fibers and nonwovens.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

19.12.2023

New sustainability label Autoneum Blue

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

Marine pollution has reached alarming levels in recent decades, with plastic contamination posing one of the most harmful threats to the health of the world’s largest ecosystem. In light of ever-stricter legal requirements for the environmental performance of vehicles, especially regarding the recycled content of components and their end-of-life recyclability, the reduction and recycling of plastics is also one of the key challenges for the automotive industry. Autoneum Pure, the Company’s sustainability label for technologies with an excellent sustainability performance throughout the product life cycle, is already successfully helping customers to tackle these challenges. With Autoneum Blue, Autoneum is now expanding its sustainable product portfolio with a label for components that combine the use of recycled material with protecting the oceans and social responsibility.

In order to qualify for the Autoneum Blue label, components must be based on materials that consist of at least 30% recycled PET that was collected from coastal areas within a 50-kilometer range of the water. These credentials mean the products make an important contribution to preventing plastic pollution in the oceans. In addition, the process of collecting the PET bottles must be socially respon-sible and comply with human rights, and traceable procurement of the bottle flakes must be guaran-teed. Autoneum Blue thus complements the Company’s strategic target to continuously reduce water consumption in all areas of its operations with an additional focus on preventing plastic pollution of the oceans.

Autoneum currently offers selected wheelhouse outer liners, needlepunch carpets and trunk side trim under the Blue label. In principle, however, the label could be extended to any product based on Autoneum technologies that feature recycled polyester fibers. As an addition to Autoneum’s existing fully recyclable monomaterial polyester constructions, which are characterized by waste-free production and have a significantly lower carbon footprint compared to products made from virgin fibers, Autoneum Blue presents another example of the Company’s ongoing efforts and continuous strides towards a sustainable circular economy.

Source:

Autoneum Management AG

Award winners with foundation chairman, foundation MD and professors (c) VDMA e.V. Textile Machinery
Award winners with foundation chairman, foundation MD and professors
08.12.2023

Walter Reiners Foundation honours young engineers

As part of the Aachen-Dresden-Denkendorf International Textile Conference in Dresden, the Chairman of the Walter Reiners Foundation of the VDMA, Peter D. Dornier, presented awards to four successful young engineers. Two promotion prizes and two sustainability prizes were awarded in the Bachelor and Diploma/Master categories. Academic works in which solutions for resource-saving products and technologies are developed are eligible for the sustainability prizes.

A sustainability prize worth 3,000 euros in the Bachelor's category was awarded to Franziska Jauch, Niederrhein University of Applied Sciences, for her Bachelor's thesis on pigment digital printing in denim production.

The promotion prize in the Bachelor's category, also worth 3,000 euros, went to Annika Datko, RWTH Aachen, for her work on determining the polyester content in used textiles.

Dave Kersevan, TU Dresden, was honoured with a sustainability prize in the Diploma/Master's category, endowed with 3,500 euros. The subject of his thesis was the development of a laboratory system for the production of needled carbon preforms.

As part of the Aachen-Dresden-Denkendorf International Textile Conference in Dresden, the Chairman of the Walter Reiners Foundation of the VDMA, Peter D. Dornier, presented awards to four successful young engineers. Two promotion prizes and two sustainability prizes were awarded in the Bachelor and Diploma/Master categories. Academic works in which solutions for resource-saving products and technologies are developed are eligible for the sustainability prizes.

A sustainability prize worth 3,000 euros in the Bachelor's category was awarded to Franziska Jauch, Niederrhein University of Applied Sciences, for her Bachelor's thesis on pigment digital printing in denim production.

The promotion prize in the Bachelor's category, also worth 3,000 euros, went to Annika Datko, RWTH Aachen, for her work on determining the polyester content in used textiles.

Dave Kersevan, TU Dresden, was honoured with a sustainability prize in the Diploma/Master's category, endowed with 3,500 euros. The subject of his thesis was the development of a laboratory system for the production of needled carbon preforms.

This year's promotion award in the Diploma/Master's category, endowed with prize money of 3,500 euros, went to Flávio Diniz from RWTH Aachen. The subject of his Master's thesis was the feasibility of manufacturing ultra-thin carbon fibres.

The award ceremony 2024 will take place in April at the VDMA stand at the Techtextil fair in Frankfurt.

ACTIVEYARN book (c) Suedwolle Group
05.12.2023

Suedwolle Group: New ACTIVEYARN® collection

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

The yarns in the ACTIVEYARN® collection embody the company’s six strategic pillars of innovation – sustainability, circularity, traceability, design, performance and technology – drivers of the entire process of design and production.

Jasmin GOTS Nm 2/48 (100% wool 19,5 μ X-CARE) is a natural, renewable and biodegradable yarn with GOTS certification that meets the company’s demand for sustainability. X-CARE, the innovative treatment by Suedwolle Group, uses eco-friendly and chlorine-free substances that make wool environmentally friendly and suitable for easy-care quality.

Tirano Betaspun® RWS FSC (41,5% wool 17,2 μ TEC RWS certified, 41,5% LENZING™Lyocell 1,4 dtex 17% polyamide filament 22 dtex GRS certified) is a fully traceable high performance yarn, suitable for sportswear and activewear.

OTW® Midway GRS Nm 2/60 (60% wool 23,5 μ X-CARE, 40% polyamide 3,3 dtex GRS certified) comes from the recycling of pre-consumer polyamide and thus is a perfect example of circular production. Suitable for weaving, it combines the added performance that comes from our OTW® patented technology applied to a high durability blend, ideal for active garments.

Wallaby Betaspun® Nm 1/60 (87,5% wool 18,4 μ TEC, 12,5% polyamide filament 22 dtex) is the result of application of latest-generation Betaspun® technology to a natural fibre like wool, allowing production of fine yarns with extra strength and abrasion resistance, ideal for seamless and wrap knitting.

Banda TEC X-Compact Nm 2/47 (100% wool 17,2 μ TEC) is a 100% natural, renewable and biodegradable yarn benefitting from the innovative X-Compact, permitting production of particularly linear yarns ideal for clean design and fabrics appropriate for today’s fashions.

Caprera GRS Nm 1/60 (45% wool 19,3 μ Non mulesed X-CARE 55% COOLMAX® EcoMade polyester 2,2 dtex GRS certified) increases the performance of the wool-based non mulesed fibre through combination with COOLMAX® EcoMade polyester. This is a material coming from recycling of post-consumer PET bottles, dyeable at low temperatures, that aids evaporation of moisture from the skin to maintain stable body temperature, enhancing the comfort of activewear and urban garments.

Source:

Suedwolle Group

Devan Chemicals Photo Devan Chemicals
27.11.2023

DEVAN REPEL: A new brand in the water repellency market

In a world where water-repellent textiles play an important role in various industries, Pulcra Chemicals has joined forces with its subsidiary, Devan Chemicals, to introduce DEVAN REPEL. The first product, DEVAN REPEL ONE, is a durable water repellent for Polyester and blends. The development of DEVAN REPEL ONE is a joint to Devan and Pulcra's dedication to innovation and sustainability.

The solution offers a range of benefits:

In a world where water-repellent textiles play an important role in various industries, Pulcra Chemicals has joined forces with its subsidiary, Devan Chemicals, to introduce DEVAN REPEL. The first product, DEVAN REPEL ONE, is a durable water repellent for Polyester and blends. The development of DEVAN REPEL ONE is a joint to Devan and Pulcra's dedication to innovation and sustainability.

The solution offers a range of benefits:

  • Superior Performance: The technology offers outstanding water repellency performance, ensuring that textiles remain dry. Whether it's rain and outdoor wear, outdoor furnishing, shower curtains or multiple technical textiles, the new solution can handle it, making it a strong choice for industries where water resistance is paramount.
  • Flexibility: The versatility of this technology can be applied to a wide range of materials, with especially good results on polyester and its blends, offering flexibility for various applications across industries.
  • Enhanced Sustainability: This technology is free from perfluorinated compounds (PFCs), and free from isocyanates.
  • Longevity: Products treated with this water repellency technology are protecting from the elements for a longer lifespan.

Performance, particularly on effect durability, can be boosted to meet different requirements with new DEVAN EXTENDER GEN3. This extender is free of Isocyanate, Butanone-oxime and 2-dimethylpyrazole.

Sitip fabrics to feature at "Sculpture by the Sea" in Australia Photo: Elena Redaelli
20.10.2023

Sitip fabrics to feature at "Sculpture by the Sea" in Australia

On display at Sculpture by the Sea, the land art event that brings the Sydney coastline to life every year, is “Seabilia”, Elena Redaelli’s latest work created using waste fabric from Sitip’s production processes. A creation that draws attention to the environment and its fragility in the face of human activity, “Seabilia” is a reminder of how precious yet delicate this balance is, and how humans must become mindful of their actions before the effects end up being completely irreversible.

Sitip's commitment to environmental sustainability struck a chord with Elena Redaelli, and a meeting between the Bergamo-based textile company and the artist from Erba, Italy, led to “Seabilia”, a work that will be displayed as part of Sculpture by the Sea on Tamarama Beach near Bondi in Sydney.

It’s one of the most popular events to take place in this corner of Australia, attracting half a million visitors who flock to these Aussie beaches to admire more than one hundred works created by artists from all over the world.

On display at Sculpture by the Sea, the land art event that brings the Sydney coastline to life every year, is “Seabilia”, Elena Redaelli’s latest work created using waste fabric from Sitip’s production processes. A creation that draws attention to the environment and its fragility in the face of human activity, “Seabilia” is a reminder of how precious yet delicate this balance is, and how humans must become mindful of their actions before the effects end up being completely irreversible.

Sitip's commitment to environmental sustainability struck a chord with Elena Redaelli, and a meeting between the Bergamo-based textile company and the artist from Erba, Italy, led to “Seabilia”, a work that will be displayed as part of Sculpture by the Sea on Tamarama Beach near Bondi in Sydney.

It’s one of the most popular events to take place in this corner of Australia, attracting half a million visitors who flock to these Aussie beaches to admire more than one hundred works created by artists from all over the world.

Held since 1997, this event captures the imagination of its visitors for three weeks each austral spring and, thanks to the vast area it covers, has earned the title of largest annual sculpture exhibition in the world.

The 2023 edition, scheduled to take place from 20 October to 6 November, will feature Elena Redaelli's work created using waste Native-Cosmopolitan Kyoto fabric which, having failed the company's quality control tests, was donated to the artist.

A post-consumer recycled circular knit fabric composed of 89% recycled polyester (PLR), 11% elastane (EA), and weighing 240 grams, the Native-Cosmopolitan Kyoto is made from recycled yarns derived from plastic waste that’s been recovered from the environment, particularly from the sea and from recycling centres. The fabric is Bluesign, GRS (Global Recycled Standard) and OEKO-TEX certified, attesting to Sitip's commitment to environmental responsibility and protection.

During the process, the artist hand-cut the waste fabric and crocheted the pieces together using recycled cotton and other types of thread.

In the creative mind of the artist, the genesis of “Seabilia” arose from deep in the ocean where tiny creatures inhabit the darkest, least explored parts of the planet. A place where the rhythm of life for the inhabitants is marked by silence and obscurity, while waves and tides agitate the surface above. The life of the ocean, such a vast and imposing environment, is impacted every single day by human activity, slowly weakening its delicate balance. “Seabilia” is intended to act as a reminder of how precious yet extremely fragile this balance is, and how humans must become more aware of the consequences of their actions before it’s too late and such a vital asset is lost forever.

“Following Emersione, a work that was exhibited at the Ex Ateneo in Bergamo during Fiber Storming, a textile art exhibition organised by ArteMorbida Textile Arts Magazine and curated by Barbara Pavan, Seabilia is the second art project where I’ve had the opportunity to utilise SITIP's fabrics. – explains the artist, Elena Redaelli. As it was going to be displayed on the rocks at Tamarama Beach, my installation needed a durable, elastic fabric with structural characteristics capable of withstanding ocean winds and sudden changes in weather. Using waste Native-Cosmopolitan Kyoto fabric was the obvious choice, not just because of its very high quality, but also, and more importantly, because it’s made from recycled yarns derived from plastic waste that’s been recovered from the environment, often even from the sea itself. The different textures and shades of white enabled me to create a varied work that, despite the almost monochromatic tones, conjures a diverse range of tactile sensations. The biomorphic modular composition evokes skeletons of sea creatures that appear to have been deposited onto the rocks by a wave and left there to wither in the blazing Australian sun.”

 

Source:

Sitip

seat belts Photo Oerlikon Textile GmbH & Co. KG
07.09.2023

Oerlikon Polymer Processing Solutions at the Techtextil India 2023

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

More polyester for airbags
The yarns used in airbags are made predominantly from polyamide. As a result of increasingly diverse airbag applications and also the increasing size of the systems used, polyester is today used as well, depending on the application requirements and cost-benefit considerations. Against this background, the Oerlikon Barmag technol-ogies make an invaluable contribution. In addition to high productivity and low energy consumption, they particularly excel in terms of their stable production processes. Furthermore, they comply with every high quality standard for airbags, which – as in the case of virtually all other textile products used in vehicle construction – must provide the highest level of safety for vehicle occupants - without any loss of function in any climate and for the lifetime of the vehicle

Buckle up!
Seat belts have to withstand tensile forces in excess of three tons and simultaneously stretch in a controlled manner in emergencies in order to reduce the load in the event of impact. A seat belt comprises approximately 300 filament yarns, whose individual, high-tenacity yarn threads are spun from around 100 individual filaments. “With our unique, patented Single Filament Layer Technology, we offer a sophisticated and simultaneously gentle high-tenacity (HT) yarn process for manufacturing these lifesavers and other applications made from industrial yarn”, explains André Wissenberg, Head of Marketing.

Road reinforcement using geotextiles
Low stretch, ultra-high tenacity, high rigidity – industrial yarns offer outstanding properties for the demand-ing tasks carried out by geotextiles; for instance, as geogrids in the base course system under asphalt. Normally, geotextiles have extremely high yarn titers of up to 24,000 denier. Oerlikon Barmag system concepts simultaneously manufacture three filament yarns of 6,000 denier each. Due to the high spinning titers, fewer yarns can be plied together to the required geo-yarn titer in a more cost- and energy-efficient manner.

hycuTEC –  quantum leap for filter media
In the case of its hycuTEC hydro-charging solution, Oerlikon Neumag offers a new technology for charging nonwovens that increases filter efficiency to more than 99.99%. For meltblown producers, this means material savings of 30% with significantly superior filter performance. For end users, the consequence is noticeably improved comfort resulting from significantly reduced breathing resistance. With its considerably lower water and energy consumption, this new development is also a future-proof, sustainable technology.

Source:

Oerlikon Textile GmbH & Co. KG

RISE® Innovation Award INDA Association of the Nonwoven Fabrics Industry
25.08.2023

RISE® Innovation Award 2023: Four Finalists

INDA, the Association of the Nonwoven Fabrics Industry, announced the finalists that will compete for the RISE® Innovation Award. RISE®, the Research, Innovation & Science for Engineered Fabrics Conference, will take place September 26-27 at Talley Student Union, North Carolina State University, Raleigh, NC.

The finalists who will present their product innovations on Tuesday, September 26th, include:

ESC-8 – The JOA® Electronic Size Change Unit by Curt G. Joa, Inc.
The JOA® ESC-8™ unit allows unprecedented Adult Pant design flexibility with the ability to process nearly limitless combinations of insert and chassis sizes at industry best speeds. Additionally, this technology enables the production of a greener, more sustainable product by eliminating up to 250 tons of material, 5 tons of glue, and 500 tons of greenhouse gas emissions every year.

INDA, the Association of the Nonwoven Fabrics Industry, announced the finalists that will compete for the RISE® Innovation Award. RISE®, the Research, Innovation & Science for Engineered Fabrics Conference, will take place September 26-27 at Talley Student Union, North Carolina State University, Raleigh, NC.

The finalists who will present their product innovations on Tuesday, September 26th, include:

ESC-8 – The JOA® Electronic Size Change Unit by Curt G. Joa, Inc.
The JOA® ESC-8™ unit allows unprecedented Adult Pant design flexibility with the ability to process nearly limitless combinations of insert and chassis sizes at industry best speeds. Additionally, this technology enables the production of a greener, more sustainable product by eliminating up to 250 tons of material, 5 tons of glue, and 500 tons of greenhouse gas emissions every year.

BicoBio Fiber by Fiberpartner ApS
The BicoBio Fiber is a bicomponent fiber core sheath construction, developed from materials with a low carbon footprint. This fiber is designed to biodegrade in the environments where most plastics are found: landfills and the ocean. The fiber’s BioBased PE is produced from sugar cane and has a negative carbon footprint. The fiber’s recycled PET is GRS certified. PrimaLoft® Bio™, a technology that enables polyester fibers to biodegrade, is utilized in the production of BicoBio Fibers. These fibers can be processed with a variety of nonwoven technologies.

Reifenhäuser Reicofil RF5 XHL by Reifenhäuser REICOFIL GmbH & Co. KG
Reicofil XHL (Extra High Loft) is the game changer for a super soft and drapeable nonwoven offering an incomparable feel the nonwoven market has never seen before. The outstanding soft touch is unique and intended for use in the hygiene sector. XHL focuses on low basis weight and high thickness with the best visual appearance. The high performance and efficient use of raw materials and energy ensure cost-effectiveness and environmentally-friendly production.

SAPMonit by TiHiVE
TiHive’s game-changing innovation, SAPMonit – a visionary French technology breakthrough – inspects millions of diapers weekly. SAPMonit delivers lightning-speed inline inspection of Super Absorbents weight and distribution, optimizes resources, detects flaws, and accelerates R&D. SAPMonit utilizes advanced see-through cameras, high-speed vision algorithms, and secure cloud integration, revolutionizing industry norms. SAPMonit has great potential for sustainability, cost reduction, and enhanced customer satisfaction.

The RISE Innovation Award winner will be announced Wednesday afternoon, September 27th.

More information:
INDA RISE®
Source:

INDA Association of the Nonwoven Fabrics Industry

ElasTool in a lifting unit, e.g. for logistics, transport or mining Grafik JUMBO-Textil
ElasTool in a lifting unit, e.g. for logistics, transport or mining
22.08.2023

JUMBO-Textil: Lubricant-free tensioning and clamping system

From mechanical engineering to the construction industry, from logistics to rescue technology – tensioning and clamping systems fulfil important tasks in a number of industries. The possible uses of technical textiles for industrial applications of this kind are manifold.

Patented and precisely configured
The ElasTool system from the elastics expert consists of a connection tool and a rubber rope connected to this tool via integrated locking elements. The stainless steel, aluminium or plastic connection tool and the rubber rope – with a thickness of between 12 and 38 mm – are each configured to fit precisely. The highlight of the patented connection solution: the more tensile force is exerted, the more the rope is jammed. Thanks to the locking system, ElasTool still provides a secure hold even when the diameter of the rubber rope narrows to up to 60 percent due to the tensile load. A crucial advantage over conventional end connections by pressing.

From mechanical engineering to the construction industry, from logistics to rescue technology – tensioning and clamping systems fulfil important tasks in a number of industries. The possible uses of technical textiles for industrial applications of this kind are manifold.

Patented and precisely configured
The ElasTool system from the elastics expert consists of a connection tool and a rubber rope connected to this tool via integrated locking elements. The stainless steel, aluminium or plastic connection tool and the rubber rope – with a thickness of between 12 and 38 mm – are each configured to fit precisely. The highlight of the patented connection solution: the more tensile force is exerted, the more the rope is jammed. Thanks to the locking system, ElasTool still provides a secure hold even when the diameter of the rubber rope narrows to up to 60 percent due to the tensile load. A crucial advantage over conventional end connections by pressing.

Economical and low maintenance
The system has further advantages: the textile solution runs quietly. Unlike clamping systems with steel cable springs, there is no creaking here. In addition, textiles, plastic and aluminium are particularly lightweight materials. ElasTool therefore saves energy. Another benefit: the connection system works without lubricating oil. While conventional tensioning and clamping solutions in industrial plants and products have to be oiled regularly, the JUMBO textile system works completely maintenance-free.

Versatile and easily interchangeable
Depending on the area of application of the ElasTool, the interchangeable head can be exchanged: Plastic hook instead of aluminium eyelet, stainless steel flange instead of aluminium hook – for example. The interchangeable head can be replaced effortlessly and without special tools.

"A lifting system in a high-bay warehouse, a trolley in a crane, damping for compressors or crash systems – these are just three of the many possible applications. We adapt the dimensions, material, force-stretch behaviour, flame retardancy – like all properties – specifically to the respective project," emphasises Carl Mrusek, Chief Sales Officer of JUMBO-Textil. "Thus, with ElasTool, we offer a safe load connection for a wide variety of applications in industry."

ElasTool from JUMBO-Textil

  • Lightweight and flexible alternative to conventional tensioning and clamping systems
  • Suitable even in small installation spaces
  • With individual specifications and infinitely customisable dimensions
  • Connection tool optionally made of plastic, aluminium or stainless steel
  • Rubber rope in a thickness of 12 to 38 mm
  • Rubber rope made of polyamide, polyester, recycled PES, polypropylene, aramid, Dyneema, monofilament, natural fibres
  • Different interchangeable head shapes possible
  • As an end connection or for coupling with other machine elements
  • Tensile load up to 600 N, in individual cases more than this
  • Individually configurable e.g. with hook, eyelet or flange
Source:

JUMBO-Textil

(c) KARL MAYER GROUP
02.06.2023

KARL MAYER GROUP with sustainable technical textiles at ITMA

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

The KARL MAYER GROUP also supports its customers with well thought-out Care Solutions. The new support offers include retrofit packages for retrofitting control and drive technology for weft insertion and composite machines, and service packages that bundle various services. These include machine inspections and the replacement of all drive belts. The customer benefits from fixed prices that cover the costs of technician assignments, various discount options and transparent services.

A new solution for the vertical greening of cities is presented from the field of application for technical textiles. The core of the innovation is a grid textile produced on warp knitting machines with weft insertion by KARL MAYER Technische Textilien GmbH. The knitted lattice fabric is made of flax. It is used as a climbing aid for fast-growing plants, and after the greening phase, in autumn, it can be recycled together with these plants as biomass in pyrolysis plants to produce electricity and activated carbon. In summer, the planted sails lower the ambient temperature through evaporation effects. In addition, photosynthesis creates fresh air and binds CO2. Other important advantages are low soil requirements and flexible placement in public spaces. The greening system was developed by the company Micro Climate Cultivation, OMC°C, with the support of KARL MAYER Technische Textilien.

The KARL MAYER GROUP will also be exhibiting a sustainable composite solution made from natural fibres. The reinforcing textile of the innovative lightweight material is a multiaxial non-crimp fabric, which was also produced from the bio-based raw material flax on a COP MAX 4 from KARL MAYER Technische Textilien. The boatbuilding specialist GREENBOATS uses natural fibre composites to achieve sustainable products. The fact that it succeeds in this is shown, for example, by the Global Warming Potential (GWP): 0.48 kg of CO2 per kilogram of flax reinforcement compares with 2.9 kg of CO2 per kilogram of glass textile.

Source:

KARL MAYER Verwaltungsgesellschaft mbH

Celliant -how it works (c) Hologenix
06.04.2023

Hologenix: Infrared technology with potentially positive impact on diabetic patients

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

According to statistics cited in the International Diabetes Federation Diabetes Atlas, 9th edition, globally, close to a half billion people are living with diabetes and that number is expected to increase by more than 50 percent in the next 25 years.
 
The introduction of the study in the Journal of Textile Science & Engineering also reports that diabetic patients frequently suffer from a combination of peripheral neuropathy and peripheral artery disease, which particularly affects their feet. It further states that it has been estimated that the lifetime risk for the development of foot ulcers in diabetic patients can be as high as 25 percent and that the risk of amputation is 10 to 20 times higher than in non-diabetic subjects.
 
The study was performed by Lawrence A. Lavery, D.P.M., M.P.H., a Professor in the Department of Plastic Surgery at UT Southwestern Medical Center. His clinic and research interests involve diabetic foot complications, infections and wound healing, and he participated in the conception, design, implementation and authorship of the Journal of Textile Science & Engineering study.  

CELLIANT technology is a patented process for adding micron-sized thermo-responsive mineral particles to fibers, in this case polyethylene terephthalate (PET) fibers. The resulting CELLIANT yarns were woven into stockings and gloves containing either 82% CELLIANT polyester, 13% nylon and 5% spandex or for the placebo, 82% polyester with no CELLIANT, 13% nylon and 5% spandex. CELLIANT products absorb body heat and re-emit the energy back to the body as infrared energy, which is non-invasive and increases temporary blood flow and cell oxygenation levels in the body.

The objective of the study was to “evaluate changes in transcutaneous oxygen (TcPO2) and peripheral blood flow (laser Doppler, LD) in the hands and feet of diabetic patients with vascular impairment when CELLIANT gloves and stockings are worn.” While there was not a statistically significant result across all subjects, the study did show that some patients wearing CELLIANT stockings for 60 minutes had an increase of as much as 20% in tissue oxygenation and 30% in localized blood flow. According to the study’s conclusion, “the trends that were observed in favor of CELLIANT stockings suggest that a larger well-designed clinical trial should be undertaken and may provide evidence of clinical efficacy in treatment of the diabetic foot.”
 
The study also notes that “There have been no documented or observed side effects of wearing CELLIANT stockings, and they are relatively inexpensive compared to conventional pharmaceutical interventions.”

Hologenix has embarked on a more comprehensive trial, “Study to Evaluate CELLIANT Diabetic Medical Socks to Increase Tissue Oxygenation and Incidence of Complete Wound Closure in Diabetic Foot Wounds” – NCT04709419, which focuses on the impact of CELLIANT technology to potentially improve tissue oxygenation and wound healing outcomes.
 
“We are excited to explore whether future studies of infrared, with its most common biological effects of increased localized blood flow and cellular oxygenation, could result in a breakthrough in diabetic patients with vascular impairment,” said Seth Casden, Hologenix Co-founder and CEO. “We see a huge potential opportunity with this research for helping to fulfill our core mission of improving people’s health and well-being by potentially reducing the impact of diabetes, and we are actively seeking partners to expand our research efforts.”

Source:

Hologenix

DOW
27.10.2022

Dow: Advanced silicone ink for printing especially on highly elastic garments

  • Patented SILASTIC™ LCF 9600 M Textile Printing Ink Base addresses growing demand for improved performance in textile applications

With the continued global growth of the apparel market, the use of polyester, nylon and blends of these materials with elastane is also on the rise, especially in sportswear and loungewear. To support this higher demand for synthetic textiles, Dow is launching a patented silicone ink – SILASTIC™ LCF 9600 M Textile Printing Ink Base – that can be used for printing on synthetic and cotton fabrics, particularly highly elastic garments.

The increased use of synthetic yarns in recent years has resulted in greater performance requirements on ink chemistries such as durability, elongation and ease of use in highly elastic sportwear. To address these needs, Dow leveraged the exceptional benefits of silicone ink bases with products such as SILASTIC™ LCF 9600 Textile Printing Ink Base and SILASTIC™ 9601 Textile Printing Ink Base.

  • Patented SILASTIC™ LCF 9600 M Textile Printing Ink Base addresses growing demand for improved performance in textile applications

With the continued global growth of the apparel market, the use of polyester, nylon and blends of these materials with elastane is also on the rise, especially in sportswear and loungewear. To support this higher demand for synthetic textiles, Dow is launching a patented silicone ink – SILASTIC™ LCF 9600 M Textile Printing Ink Base – that can be used for printing on synthetic and cotton fabrics, particularly highly elastic garments.

The increased use of synthetic yarns in recent years has resulted in greater performance requirements on ink chemistries such as durability, elongation and ease of use in highly elastic sportwear. To address these needs, Dow leveraged the exceptional benefits of silicone ink bases with products such as SILASTIC™ LCF 9600 Textile Printing Ink Base and SILASTIC™ 9601 Textile Printing Ink Base.

Designed for an increased matte effect and improved hand feel, the patented SILASTIC™ LCF 9600 M offers excellent wash durability, high elongation, very soft low tack touch and avoids the “orange peel effect” on cotton substrates. Additionally, SILASTIC™ LCF 9600 M enables safer textile development with its ability to be formulated without the use of PVC, phthalates, solvents, organotins and formaldehyde.

Photo: Indorama Ventures Limited
12.10.2022

Indorama Ventures: New plant for nylon yarn

  • Collaboration between Indorama Ventures and Toyobo to meet growing global demand for airbags
  • Newly completed plant in Thailand will supply high-performance nylon yarn to customers in the automotive safety sector

Indorama Ventures Public Company Limited (IVL) celebrated the completion of a plant to manufacture high-performance nylon yarn for automobile airbags. The new plant in Rayong, Thailand, was constructed by Toyobo Indorama Advanced Fibers Co., Ltd. (TIAF), a joint venture that Indorama Ventures established with Toyobo Co., Ltd in November 2020.

The plant, which has been built on the site of Indorama Polyester Industries PCL (IPI) in Rayong Province, will deliver 11,000 tons of high-performance yarn per year to meet global demand for airbags that is expected to grow by 3 percent to 4 percent annually as automakers equip vehicles with more airbags and emerging economies require cars to adopt more safety features. Test production is scheduled to start in October 2022 with the goal of starting commercial production in the middle of 2023.

  • Collaboration between Indorama Ventures and Toyobo to meet growing global demand for airbags
  • Newly completed plant in Thailand will supply high-performance nylon yarn to customers in the automotive safety sector

Indorama Ventures Public Company Limited (IVL) celebrated the completion of a plant to manufacture high-performance nylon yarn for automobile airbags. The new plant in Rayong, Thailand, was constructed by Toyobo Indorama Advanced Fibers Co., Ltd. (TIAF), a joint venture that Indorama Ventures established with Toyobo Co., Ltd in November 2020.

The plant, which has been built on the site of Indorama Polyester Industries PCL (IPI) in Rayong Province, will deliver 11,000 tons of high-performance yarn per year to meet global demand for airbags that is expected to grow by 3 percent to 4 percent annually as automakers equip vehicles with more airbags and emerging economies require cars to adopt more safety features. Test production is scheduled to start in October 2022 with the goal of starting commercial production in the middle of 2023.

In 2014, Indorama Ventures and Toyobo jointly acquired Germany’s PHP Fibers GmbH, a leading airbag yarn maker. Since then, both companies have strengthened their relationship with a focus to expand in the automotive safety sector. Mr Christopher Kenneally, based in Bangkok, leads IVL’s Fibers segment, which produces fibers and yarns across its Hygiene, Mobility and Lifestyle verticals. Mr Ashok Arora, with over 30 years of experience in fibers and polymer operations, will helm TIAF as CEO while maintaining his role as CTO with IVL Fibers.

Source:

Indorama Ventures Limited

Photo: Archroma
09.06.2022

Archroma at Techtextil 2022 with latest innovations and system solutions

Archroma will be at Techtextil 2022 in Frankfurt am Main, Germany, from 21 to 24 June 2022, to launch its latest innovations and system solutions aimed to help textile manufacturers with optimized sustainability, productivity and value creation in their markets.

Archroma will present 9 new solution systems and 3 innovations, and will hold 2 booth events.

3 innovation highlights

  • PFC-free* Smartrepel® Hydro SR, a new solution developed for the repellence of water-based soil;
  • Biocide-free OX20, a new odor-neutralizing technology newly launched by our partner SANITIZED AG;
  • Perapret® AIR, a new mineral finishing technology for air purification is activated by natural and artificial light sources and can be applied on all fabrics

9 new solution systems
Archroma introduced its first ever solution systems at the Techtextil 2019 edition, and since then has developed more than 30 systems for technical textile and nonwoven applications.

Archroma will be at Techtextil 2022 in Frankfurt am Main, Germany, from 21 to 24 June 2022, to launch its latest innovations and system solutions aimed to help textile manufacturers with optimized sustainability, productivity and value creation in their markets.

Archroma will present 9 new solution systems and 3 innovations, and will hold 2 booth events.

3 innovation highlights

  • PFC-free* Smartrepel® Hydro SR, a new solution developed for the repellence of water-based soil;
  • Biocide-free OX20, a new odor-neutralizing technology newly launched by our partner SANITIZED AG;
  • Perapret® AIR, a new mineral finishing technology for air purification is activated by natural and artificial light sources and can be applied on all fabrics

9 new solution systems
Archroma introduced its first ever solution systems at the Techtextil 2019 edition, and since then has developed more than 30 systems for technical textile and nonwoven applications.

  • CLEAN AIR, a mineral air purification system that stays put on all kinds of fabrics and is activated by artificial and natural light, for as long as there is light; ➔ based on the new Perapret® AIR;
  • CONSCIOUSLY DEEP, a metal-free one-step scouring and dyeing system for medium to very dark colored nylons that stay deep and bright day after day, and are good for you and the planet;
  • EARTH SOFT, a biomass-based and vegan softening system that is suitable for all kind of fibers and makes you comfortable in your own skin;
  • NATURE BOUND, a compostable binder system for food filtration materials that protect you and the planet;
  • ODOR CONTROL 2.0, a system for odor-free sportswear where permastink cannot build up on your favorite clothes, that’s applicable on polyester, cotton and nylon; ➔ based on the new OX20;
  • RAG N’ROLL, a compostable binder system for nonwoven cleaning rags, that protect you and the planet;
  • SAFE SEATS NextGen, a PFC-free* and halogen-free* modular surface treatment system for safer and cleaner seating materials, ➔ based on the new Smartrepel® Hydro SR;
  • SWEET DREAMS, a metal and particle free* system that redefines protection for mattress ticking fabrics, with long-lasting hygiene and outstanding softness, that protects you and the environment;
  • TAKE A BREATH, an enhanced filtration system that keeps your air clean and fresh for longer putting health first and your competition behind;

2 booth events
A WORLD WITHOUT ODORS, FIGHT OR FLIGHT?
Innovation highlight: Biocide-free OX20 odor management solution by SANITIZED AG

Speakers:

  • Nuria Estape, Panel Moderator, Head of Marketing & Promotion, Brand & Performance Textile Specialties, Archroma
  • Georg Lang, Head of CC Finishing, Archroma
  • Stefan Müller, Head of BU Textiles Additives Sanitized
  • Yann Ribourdouille , Global registration expert Product Stewardship, Archroma

A WORLD WITHOUT PFC, DREAM OR REALITY?
Innovation highlight: PFC-free* Smartrepel® Hydro SR

Speakers

  • Nuria Estape, Panel Moderator, Head of Marketing & Promotion, Brand & Performance Textile Specialties, Archroma
  • Roland Borufka, Head of Competence Center Repellents, Archroma
  • Wolfgang Knaup, Head of R&D repellents, Archroma
  • Yann Ribourdouille, Global registration expert Product Stewardship, Archroma
Source:

Archroma / EMG

Photo Andritz
02.06.2022

Zhoukou Xuwang, China, starts up two ANDRITZ crosslapped spunlace lines

Zhoukou Xuwang Co., Ltd. has successfully started up two new ANDRITZ neXline spunlace lines at its facilities based in Henan province, China. Combining equipment from the aXcess and eXcelle ranges, both lines are dedicated to the production of spunlace fabrics of 30 to 120 gsm made out of viscose and polyester fibers. The ANDRITZ design will allow Zhoukou Xuwang to serve the premium product market, especially for premium hygiene and technical wipes, in China.

The ANDRITZ scope of supply for the two lines included:

  • aXcess opening and blending systems
  • high-performance eXcelle card and crosslapper
  • robust aXcess CA25 carding machine
  • efficient Jetlace Avantage hydroentanglement unit

This configuration will enable Zhoukou Xuwang to manufacture high-quality products while reducing raw materials consumption. These goals are further enabled by the installation of an ANDRITZ Asselin-Thibeau crosslapper PRO35-140, generating a uniform profile over the entire web width.

Zhoukou Xuwang Co., Ltd. has successfully started up two new ANDRITZ neXline spunlace lines at its facilities based in Henan province, China. Combining equipment from the aXcess and eXcelle ranges, both lines are dedicated to the production of spunlace fabrics of 30 to 120 gsm made out of viscose and polyester fibers. The ANDRITZ design will allow Zhoukou Xuwang to serve the premium product market, especially for premium hygiene and technical wipes, in China.

The ANDRITZ scope of supply for the two lines included:

  • aXcess opening and blending systems
  • high-performance eXcelle card and crosslapper
  • robust aXcess CA25 carding machine
  • efficient Jetlace Avantage hydroentanglement unit

This configuration will enable Zhoukou Xuwang to manufacture high-quality products while reducing raw materials consumption. These goals are further enabled by the installation of an ANDRITZ Asselin-Thibeau crosslapper PRO35-140, generating a uniform profile over the entire web width.

In spite of the difficult circumstances and supply chain disruptions related to the Covid crisis, both spunlace lines were installed smoothly and on time. They quickly went into commercial production, with a line speed of up to 100 m/min and high-performance MD/CD ratio.

More information:
Andritz Andritz Nonwoven
Source:

Andritz

(c) Huntsman Textile Effects
22.04.2022

Huntsman Textile Effects at Performance Days 2022

Huntsman Textile Effects, a global leader in innovative solutions and environmentally sustainable products, is featuring high-performance end-to-end systems for protection effects and sustainable solutions for any wear at Performance Days on April 27-28, 2022, in Munich, Germany.

With more consumers seeking comfort and protection when buying sportwear, they expect their sports apparel to dry quickly, resist stains and odors, and offer breathability. Achieving these functionalities with on-trend aesthetics whilst realizing sustainability, are possible.

Huntsman Textile Effects, a global leader in innovative solutions and environmentally sustainable products, is featuring high-performance end-to-end systems for protection effects and sustainable solutions for any wear at Performance Days on April 27-28, 2022, in Munich, Germany.

With more consumers seeking comfort and protection when buying sportwear, they expect their sports apparel to dry quickly, resist stains and odors, and offer breathability. Achieving these functionalities with on-trend aesthetics whilst realizing sustainability, are possible.

Resource saving solutions
Huntsman will introduce the AVITERA® SE Fast process at Performance Days. The revolutionary technology delivers the lowest environmental impact for dyeing polyester-cellulosic (PES-CO) blends. It combines alkali-clearable TERASIL® W/WW disperse dyes and AVITERA® SE reactive dyes to cut processing time from around nine hours to just six, helps mills reduce the water and energy required for production by up to 50% and increases output by up to 25% or more while delivering outstanding wet-fastness to ensure that sportswear will not bleed or stain during home laundering, or while in storage or transit.

EROPON® E3-SAVE is another next-generation water saving innovation. An all-in-one textile auxiliary for PES processing, it allows pre-souring, dyeing and reduction clearing to be combined in a single bath and eliminates the need for anti-foaming products, which shortens processing time and saves water and energy.

Eco-friendly stain and rain resistance
In partnership with Chemours, Huntsman will present the new eco-friendly finishes that repel water and stains, and help garments looking new for longer. Teflon™ EcoElite with Zelan™ R3 technology contains 63% plant-based materials and is the industry’s first renewably sourced water-repellent finish. It exceeds performance levels possible with traditional fluorinated technologies, with excellent water repellency and durability while reserving breathability.

Innovative odor control solutions
Huntsman will also showcase revolutionary antimicrobial and odor-control solutions as part of their partnership with Sciessent. Sciessent’s latest anti-odor technology – NOBO™ specifically developed to reduce odors in natural and synthetic fabrics. It can be incorporated into virtually any fabric – from base layer and activewear tops to socks and underwear to jeans and chinos. It offers a cost-effective way to upgrade everyday garments.

In addition, the partners will also present Sciessent’s Agion Active X2®, a next-generation odor-control solution that combines advanced antimicrobial and odor-absorbing technologies to both capture and fight odor-causing bacteria, and Lava X2®, a standalone odor adsorption product and key component of Agion Active X2® that attracts, absorbs and degrades odors for long-lasing odor protection.

 

Source:

Huntsman Textile Effects

Kornit Digital Introduces High-Volume Digital Production Solution for Vibrant Decorative Designs on Polyester and Polyester-Blended Apparel (c) Kornit
Kornit Atlas MAX Poly
06.04.2022

Kornit Digital Printing for Unique Fashion

  • Kornit Digital Introduces High-Volume Digital Production Solution for Vibrant Decorative Designs on Polyester and Polyester-Blended Apparel
  • Kornit Atlas MAX Poly to Transform Professional and Recreational Sportswear, Teamwear, and Sports Brands; Injecting Life into Apparel with Power of Design Across Full Color Gamut

Kornit Digital Ltd. (NASDAQ: KRNT) (“Kornit”), a worldwide market leader in sustainable, on-demand digital fashionx and textile production, introduced today its distinctive Kornit Atlas MAX Poly system – an industry-first direct-to-garment (DTG) solution delivering superior-quality digital decoration for vibrant, colorful design on polyester and poly-blended apparel.

  • Kornit Digital Introduces High-Volume Digital Production Solution for Vibrant Decorative Designs on Polyester and Polyester-Blended Apparel
  • Kornit Atlas MAX Poly to Transform Professional and Recreational Sportswear, Teamwear, and Sports Brands; Injecting Life into Apparel with Power of Design Across Full Color Gamut

Kornit Digital Ltd. (NASDAQ: KRNT) (“Kornit”), a worldwide market leader in sustainable, on-demand digital fashionx and textile production, introduced today its distinctive Kornit Atlas MAX Poly system – an industry-first direct-to-garment (DTG) solution delivering superior-quality digital decoration for vibrant, colorful design on polyester and poly-blended apparel.

Kornit’s Atlas MAX Poly capitalizes on the demand for fashionable, unique sportswear and apparel. As the industry emerges from a post-pandemic environment in which athletic and leisurewear became mainstream, there is increasing demand for apparel combining polyester and poly-blends with vivid designs across a range of colors. Atlas MAX Poly can transform the multi-billion-dollar professional and recreational sports apparel and teamwear markets, limited today by limitations in mass customization of polyester.

“Kornit Atlas MAX Poly is a game-changer,” said Omer Kulka, Chief Marketing Officer at Kornit Digital. “As fashion and sports apparel merge, there’s new opportunity for innovative fashion on polyester, currently the fastest-growing textile vertical. For the first time, recreational sportswear, promotional, and sports brands can embrace vibrant and colorful design with Kornit’s proven MAX technology – setting superior quality standards for on-demand production previously not possible.”

Unveiled during Kornit Fashion Week Tel Aviv 2022, Atlas MAX Poly incorporates Kornit’s field-proven MAX technology for high-quality premium decoration, process automation, and smart autonomous quality control. With Kornit’s XDi decorative applications, Atlas MAX Poly enables endless designs and creativity on polyester, and empowers new styles for multiple effects and unlimited combinations such as emulating threadless embroidery, high-density vinyl, screen transfer emulations, and 3D effects.

The solution is compatible with mesh and plain fabrics, including brushed polyester, while maintaining durability and breathability. It brings the highest throughput for on-demand polyester decoration, reducing total cost of ownership to drive profitability. Customers gain competitive advantage via Pantone color-matching and a wide color gamut including neon colors for bright and vibrant impressions, using single-step mechanisms minimizing production footprints while maximizing versatility.

Beyond superior quality, graphics, color, and application variety, Kornit Atlas MAX Poly offers efficient, reliable, profitable end-to-end polyester production via:

  • Kornit’s ActiveLoad automated garment-loading and pallet adjustment for repeatable, high-quality output with minimal errors reducing time and waste, eliminating operator ramp-up and boosting throughput up to 20%.
  • Seamless integration with KornitX Global Fulfillment Network, enabling a pixel-to-parcel-to-doorstep experience. This unleashes untapped demand for polyester short-run production, personalization, and disruptive direct-to-fan and direct-to-recreational business models.
  • Integration with KornitX’s workflow ecosystem and Kornit Konnect™ dashboard, optimizing process visibility and control, adding data-driven insights for production floor efficiencies.
(c) SITIP
17.03.2022

Sitip: Fabrics for the first 100% sustainable SCOTT Racing Team biking uniform

Sitip confirms for the third year its partnership with SCOTT Racing Team in the production of the team uniform created in collaboration with ROICA™ EF of Asahi Kasei and Rosti.

The partnership was born in 2019 and celebrated during Ispo 2020, which returns for the third consecutive year to re-propose an exclusive and special uniform, designed to be extremely performing but also, and entirely, eco-sustainable.

Starting from the performance requirements of athletes, who need highly technical fabrics extremely breathable, comfortable on the skin, resistant and with perfect shape retention able to support them in competitions, Sitip has chosen the fabrics of its Native Sustainable Textiles line - technology which applies to fabrics produced with recycled yarns and chemicals with low environmental impact, implementing the GRS (Global Recycle Standard) standard, with Asahi Kasei’s premium ROICA™ EF stretch yarn.

Sitip confirms for the third year its partnership with SCOTT Racing Team in the production of the team uniform created in collaboration with ROICA™ EF of Asahi Kasei and Rosti.

The partnership was born in 2019 and celebrated during Ispo 2020, which returns for the third consecutive year to re-propose an exclusive and special uniform, designed to be extremely performing but also, and entirely, eco-sustainable.

Starting from the performance requirements of athletes, who need highly technical fabrics extremely breathable, comfortable on the skin, resistant and with perfect shape retention able to support them in competitions, Sitip has chosen the fabrics of its Native Sustainable Textiles line - technology which applies to fabrics produced with recycled yarns and chemicals with low environmental impact, implementing the GRS (Global Recycle Standard) standard, with Asahi Kasei’s premium ROICA™ EF stretch yarn.

This line includes NATIVE-BICIMANIA and NATIVE-PIRATA, two GRS-certified recycled polyester fabrics chosen for the production of the uniform shirt, enriched by Microsense Soft Performance technology - able to guarantee the product a delicate softness and maximum comfort on the skin.

This year the absolute novelty is represented by the shorts, for a complete uniform: made with the NATIVE-THUNDERBIKE POWER fabric, designed for high performance sports, in recycled polyamide and always with the ROICA™ EF yarn by Asahi Kasei.

More information:
SITIP Asahi Kasei SCOTT Racing Team
Source:

SITIP