From the Sector

Reset
2 results
DITF: Modernized spinning plant for sustainable and functional fibres Photo: DITF
Bi-component BCF spinning plant from Oerlikon Neumag
06.03.2024

DITF: Modernized spinning plant for sustainable and functional fibres

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

Since polyamide (PA) and many other polymers were developed more than 85 years ago, various melt-spun fibers have revolutionized the textile world. In the field of technical textiles, they can have on a variety of functions: depending on their exact composition, they can for example be electrically conductive or luminescent. They can also show antimicrobial properties and be flame-retardant. They are suitable for lightweight construction, for medical applications or for insulating buildings.

In order to protect the environment and resources, the use of bio-based fibers will be increased in the future with a special focus on easy-to-recycle fibers. To this end, the DITF are conducting research into sustainable polyamides, polyesters and polyolefins as well as many other polymers. Many 'classic', that is, petroleum-based polymers cannot or only insufficiently be broken down into their components or recycled directly after use. An important goal of new research work is therefore to further establish systematic recycling methods to produce fibers of the highest possible quality.

For these forward-looking tasks, a bicomponent spinning plant from Oerlikon Neumag was set up and commissioned on an industrial scale at the DITF in January. The BCF process (bulk continuous filaments) allows special bundling, bulking and processing of the (multifilament) fibers. This process enables the large-scale synthesis of carpet yarns as well as staple fiber production, a unique feature in a public research institute. The system is supplemented by a so-called spinline rheometer. This allows a range of measurement-specific chemical and physical data to be recorded online and inline, which will contribute to a better understanding of fiber formation. In addition, a new compounder will be used for the development of functionalized polymers and for the energy-saving thermomechanical recycling of textile waste.

B.I.G. Yarns launches EqoCycle Yarns designed for the carpet industry (c) Beaulieu International Group
08.03.2021

B.I.G. Yarns launches EqoCycle Yarns designed for the carpet industry

  • 75% recycled content yarn with no performance compromise
  • A circular, endlessly recyclable solution for contract, automotive and residential carpets
  • Significant resource efficiency in EqoCycle production compared to virgin-based PA6 yarn: 58% reduction in fossil fuel use; 27% less energy consumption; 37% CO₂ emission reduction

B.I.G. Yarns announces its latest development, EqoCycle, a fully recyclable PA6 yarn with 75% recycled content, offering the same high-quality performance of virgin PA6 yarn. The new recycled yarn mainly based on post-industrial waste supports contract, automotive and residential carpet manufacturers with a drop-in circular solution to reduce the ecological footprint of their end products.

  • 75% recycled content yarn with no performance compromise
  • A circular, endlessly recyclable solution for contract, automotive and residential carpets
  • Significant resource efficiency in EqoCycle production compared to virgin-based PA6 yarn: 58% reduction in fossil fuel use; 27% less energy consumption; 37% CO₂ emission reduction

B.I.G. Yarns announces its latest development, EqoCycle, a fully recyclable PA6 yarn with 75% recycled content, offering the same high-quality performance of virgin PA6 yarn. The new recycled yarn mainly based on post-industrial waste supports contract, automotive and residential carpet manufacturers with a drop-in circular solution to reduce the ecological footprint of their end products.

EqoCycle is made with recycled granulates derived from pre-consumer recycled and regenerated PA6, certified by Control Union for Global Recycled Standard (GRS) Certification. The use of less virgin materials implicates a decrease of fossil fuels by 58% and a 27% decrease in energy consumption. On top, EqoCycle yarns allow a reduction of 37% of CO₂ eq./kg compared to the fossil based yarns. The environmental impacts of EqoCycle with 75% recycled content were calculated through an LCA analysis, verified according to ISO 14025 and EN 15804+A1 and published in an Environmental Product Declaration (EPD registration number S-P-02415).

Customers have the assurance that for every 1.000 tons of EqoCycle yarn, 13,562 barrels of oil are saved and 2.700 tons of CO₂ emission are reduced, compared to PA6 traditionally made from virgin materials.

Emmanuel Colchen, General Manager Yarns Division, comments: “EqoCycle is a perfect example of how higher resource efficiency in our industry can promote greater circularity in our customers’ industries. Minimizing waste, re-using materials, and saving energy and carbon emissions in production, it provides our customers and carpet brands with a new sustainable alternative that won’t compromise their end-product performance but will support their increasing focus on CO₂ reduction and global warming potential. All part of our wider commitment to encourage decoupling from the need for only virgin feedstocks and moving towards a circular economy for yarns and soft flooring industries.”

EqoCycle is the latest circular solution in B.I.G. Yarns’ PA6 portfolio, joining EqoBalance PA6, based on biomass balance renewable resources, which offers up to 75% CO₂ reduction. Both exemplify the company’s on-going investment in developing new products that better serve customers’ needs in a sustainable way. B.I.G. Yarns fully pursues opportunities to support and solve the global environmental challenges through innovation, investment and collaboration, as part of its sincere belief in, and broader commitment to, Social Responsibility.

The innovation of EqoCycle and EqoBalance PA6 aligns with the company’s active integration of the UN Sustainable Development Goals (SDGs) into its business activities, creating value for customers and engaging employees and value chain partners.