From the Sector

Reset
782 results
26.03.2024

CARBIOS joins Paris Good Fashion

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS will be particularly involved in the association's project to set up a working group dedicated to the development of a "fiber-to-fiber" industry, one of Paris Good Fashion's top priorities over the next five years. While only 1% of textiles are currently recycled fiber-to-fiber (circular), this working group will identify levers for significantly increasing the share of recycled fibers in the industry.  Polyester currently follows a linear model from which we need to break out: virgin polyester is made from petroleum, and recycled polyester from PET bottles. After use, most of these products end their lives in landfill or incineration. A circular, "fiber-to-fiber" industry will give new life to textiles and reduce the environmental impact associated to their end-of-life management.

Source:

Carbios

22.03.2024

Fashion for Good: Ten new innovators for 2024 programme

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

  • Algreen Ltd: Algreen co-develops alternative materials from algae and biobased sources that can replace fossil-based products such as PU.
  • Balena: Balena creates biodegradable partly biobased polymers for footwear outsoles.
  • Epoch Biodesign: Epoch Biodesign is an enzymatic recycler of PA66 and PA6 textile waste.
  • Fibre52: Fibre52 is a bio-based solution replacing traditional bleach prepared-for-dyeing and dye processes.
  • Gencrest BioProducts Pvt Ltd: Gencrest works with various agri-residues to convert them into textile-grade fibres using their enzymatic technology.
  • HeiQ AeoniQ: HeiQ AeoniQ™ is a continuous cellulose filament yarn with enhanced tensile properties.
  • Nanollose - Nullabor: Nullarbor™Lyocell is developed from microbial cellulose which is converted into pulp pulp to produce a lyocell fibre with their partner Birla Cellulose.  
  • REGENELEY:  REGENELEY pioneers advanced shoe sole recycling technologies by separating and recycling EVA, TPU, and rubber components found in footwear.
  • Samsara Eco: Samsara Eco is an enzymatic recycler of PA66 and PET textile waste.
  • SEFF: SEFF Fibre produces cottonised fibres and blends of hemp fabrics utilising a patented HVPED process.
Source:

Fashion for Good

22.03.2024

EURATEX: European Commission announces “Textiles of the Future” Partnership

In the fringes of the EU Research and Innovation Days, the European Commission has announced 9 new European co-funded and co-programmed partnerships, including “Textiles of the Future”. These partnerships will be at the core of the Horizon Europe Strategic Plan 2025-2027, addressing the green and digital transition, and a more resilient, competitive, inclusive and democratic Europe.

EURATEX has been working towards such a partnership over the last few years. Investing in innovation is a critical component to successfully implement the EU Strategy for Sustainable and Circular Textiles. EURATEX therefore welcomes the Commission’s decision, as a measure to help their 200.000 EU textile companies to remain competitive.

The Textiles of the Future Partnership will be co-managed by the European Technology Platform for Future of Textiles and Clothing (ETP). With a deep knowledge in textiles research and a vast innovation network, ETP stands ready to bring that partnership into reality.

In the fringes of the EU Research and Innovation Days, the European Commission has announced 9 new European co-funded and co-programmed partnerships, including “Textiles of the Future”. These partnerships will be at the core of the Horizon Europe Strategic Plan 2025-2027, addressing the green and digital transition, and a more resilient, competitive, inclusive and democratic Europe.

EURATEX has been working towards such a partnership over the last few years. Investing in innovation is a critical component to successfully implement the EU Strategy for Sustainable and Circular Textiles. EURATEX therefore welcomes the Commission’s decision, as a measure to help their 200.000 EU textile companies to remain competitive.

The Textiles of the Future Partnership will be co-managed by the European Technology Platform for Future of Textiles and Clothing (ETP). With a deep knowledge in textiles research and a vast innovation network, ETP stands ready to bring that partnership into reality.

Source:

EURATEX

Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

Collaboration between IHKIB and WRAP (c) IHKIB
18.03.2024

Collaboration between IHKIB and WRAP

In a move to enhance the global competitiveness of the Turkish apparel industry, the Istanbul Apparel Exporters' Association (IHKIB) has entered into a collaborative agreement with the Worldwide Responsible Accredited Production (WRAP).

IHKIB, representing 80% of Türkiye's apparel exports, aims to facilitate and guide its members in navigating new markets and staying abreast of sectoral developments.
WRAP, a US-based non-profit organization, focuses on promoting safe, lawful, humane, and ethical working conditions within the textile and apparel industry.

In a move to enhance the global competitiveness of the Turkish apparel industry, the Istanbul Apparel Exporters' Association (IHKIB) has entered into a collaborative agreement with the Worldwide Responsible Accredited Production (WRAP).

IHKIB, representing 80% of Türkiye's apparel exports, aims to facilitate and guide its members in navigating new markets and staying abreast of sectoral developments.
WRAP, a US-based non-profit organization, focuses on promoting safe, lawful, humane, and ethical working conditions within the textile and apparel industry.

Mr. Selcuk Mehmet Kaya, Chairman of the International Relations and Sustainability Committee of IHKIB, and Mr. Avedis Seferian, President and CEO of WRAP, officially inked a collaboration agreement on March 8, 2024, marking a significant step towards fostering business relations between Türkiye and the USA. The agreement focuses on a pilot project developed by IHKIB and WRAP, aiming to identify leading Turkish apparel companies exporting to the USA and encouraging these facilities to attain WRAP certification. In return, WRAP will provide in-person and virtual training at no charge to guide these facilities through the certification process. The project seeks to strengthen business ties between Türkiye and the USA, creating additional opportunities for mutual cooperation between the parties in both countries.

Source:

IHKIB - Istanbul Apparel Exporters’ Association

Freudenberg showcases sustainable solutions at Techtextil 2024 (c) Freudenberg Performance Materials
Freudenberg´s sustainable carrier material for green roofs on urban buildings is made from renewable resources
15.03.2024

Freudenberg showcases sustainable solutions at Techtextil 2024

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Biocarrier for green roofs
Freudenberg is showcasing a sustainable carrier material for green roofs on urban buildings at the trade fair. The carrier is made from polylactide, i.e. from renewable resources. When filled with soil, it provides a strong foothold to root systems, enabling the growth of lightweight sedum blankets that can be rolled out to provide instant green roofs. These roofs not only help counter urban heat, they also improve stormwater management and regulate indoor temperatures.

From textile waste to padding
The company extended its circular thermal wadding product range with the release of comfortemp® HO 80xR circular, a wadding made from 70 percent recycled polyamide from discarded fishing nets, carpet flooring and industrial plastic. Because polyamide 6, also known as nylon, retains its performance characteristics after multiple recycling processes, the fibers can be used again and again to manufacture performance sporting apparel, leisurewear and luxury garments.

Packaging solutions with various sustainability benefits
Freudenberg is also showcasing products for sustainable packaging and filtration solutions. The long-lasting Evolon® technical packaging series is a substitute for disposable packaging used in the transport of sensitive industrial items such as automotive parts. The material is made from up to 85 percent recycled PET. A further highlight at Techtextil are Freudenberg’s fully bio-based solutions for manufacturing dessicant bags. The binder-free material based on bio-fibers is also industrially compostable.
In addition, the experts will be giving trade fair visitors an insight into Freudenberg’s filtration portfolio.

Source:

Freudenberg Performance Materials

KARL MAYER and Grabher: Competence platform for wearables (c) KARL MAYER GROUP
13.03.2024

KARL MAYER and Grabher: Competence platform for wearables

KARL MAYER has already produced a wide range of electrically conductive warp-knitted items for a wide variety of applications in the TEXTILE-CIRCUIT division of its TEXTILE MAKERSPACE, including a sensor shirt, a gesture control system and a conductive charging station. In order to drive the topic of wearables forward, the textile machine manufacturer has signed a cooperation agreement with the Grabher Group and delivered an MJ 52/1-S to the specialist for high-tech textiles in Lustenau. Managing Director Günter Grabher officially inaugurated the key machine for project work in the smart textiles sector in May 2023.

The machine is involved in various research projects, but is also available for new projects and tasks. The smart textiles competence team at KARL MAYER and Grabher is looking forward to supporting the ideas and work of interested parties also outside the research network with its know-how and the possibilities of the MJ 52/1-S.

KARL MAYER has already produced a wide range of electrically conductive warp-knitted items for a wide variety of applications in the TEXTILE-CIRCUIT division of its TEXTILE MAKERSPACE, including a sensor shirt, a gesture control system and a conductive charging station. In order to drive the topic of wearables forward, the textile machine manufacturer has signed a cooperation agreement with the Grabher Group and delivered an MJ 52/1-S to the specialist for high-tech textiles in Lustenau. Managing Director Günter Grabher officially inaugurated the key machine for project work in the smart textiles sector in May 2023.

The machine is involved in various research projects, but is also available for new projects and tasks. The smart textiles competence team at KARL MAYER and Grabher is looking forward to supporting the ideas and work of interested parties also outside the research network with its know-how and the possibilities of the MJ 52/1-S.

The MJ 52/1 S is also an extremely flexible project machine. The 138″ model in gauge E 28 produces a wide range of warp-knitted fabrics and incorporates conductive material directly into the textile surface - exactly where it is needed and with the structure that is required. The basis for the tailor-made fiber placement is KARL MAYER's string bar technology. The system for controlling the pattern guide bars ensures a fast, established textile production process and a high degree of pattern freedom.

Source:

KARL MAYER GROUP

Thomas Stegmaier appointed Sustainability Officer Photo: DITF
Dr.-Ing. habil. Thomas Stegmaier
11.03.2024

DITF: Thomas Stegmaier appointed Sustainability Officer

The EU directive on the further development of sustainability reporting (CSRD) poses major challenges for companies and the public sector. Until now, the regulations have only applied to large capital market-oriented companies. However, far-reaching changes to sustainability reporting are expected when the CSRD is transposed into national law in 2024. The German Institutes of Textile and Fiber Research (DITF) are facing up to this challenge of external reporting and at the same time the responsibility for sustainable and resource-conserving science. The Textile Research Center has therefore set up a specialist department reporting to the Executive Board.

The DITF are reaffirming their commitment to sustainability with the appointment of the previous Head of the Competence Center Textile Chemistry, Environment & Energy, Dr.-Ing. habil. Thomas Stegmaier, as Chief Sustainability Officer (CSO). In addition to this new role, Stegmaier will continue to provide his expertise to the Competence Center Textile Chemistry, Environment & Energy as Deputy Head.

The EU directive on the further development of sustainability reporting (CSRD) poses major challenges for companies and the public sector. Until now, the regulations have only applied to large capital market-oriented companies. However, far-reaching changes to sustainability reporting are expected when the CSRD is transposed into national law in 2024. The German Institutes of Textile and Fiber Research (DITF) are facing up to this challenge of external reporting and at the same time the responsibility for sustainable and resource-conserving science. The Textile Research Center has therefore set up a specialist department reporting to the Executive Board.

The DITF are reaffirming their commitment to sustainability with the appointment of the previous Head of the Competence Center Textile Chemistry, Environment & Energy, Dr.-Ing. habil. Thomas Stegmaier, as Chief Sustainability Officer (CSO). In addition to this new role, Stegmaier will continue to provide his expertise to the Competence Center Textile Chemistry, Environment & Energy as Deputy Head.

The task of the Chief Sustainability Officer is to develop solutions to reduce the DITF's energy and resource consumption, promote renewable energies and implement efficient energy use. The management team, the operational organizational units and all employees are involved in the process.

The CSO also acts as a driving force for both the Executive Board and the research departments to promote sustainability issues.

08.03.2024

Autoneum: Two new plants in China and India

  • Autoneum is expanding its production capacities in Asia with two new plants in Changchun in the Chinese province of Jilin and Pune in Western India.

The world's largest automotive market Asia is one of the most important sales regions for vehicle manufacturers and suppliers as well as a pioneer for new forms of e-mobility. Autoneum already supplies both international and local vehicle manufacturers in Asia with multifunctional lightweight components for noise and heat protection, supporting them in their commitment to sustainable mobility. Autoneum is expanding its production capacities in the key automotive hubs of China and India to increase its presence and thus its proximity to customers in these important production centers.

  • Autoneum is expanding its production capacities in Asia with two new plants in Changchun in the Chinese province of Jilin and Pune in Western India.

The world's largest automotive market Asia is one of the most important sales regions for vehicle manufacturers and suppliers as well as a pioneer for new forms of e-mobility. Autoneum already supplies both international and local vehicle manufacturers in Asia with multifunctional lightweight components for noise and heat protection, supporting them in their commitment to sustainable mobility. Autoneum is expanding its production capacities in the key automotive hubs of China and India to increase its presence and thus its proximity to customers in these important production centers.

Autoneum’s new plant in China, which will be operated as a joint venture, will be located in Changchun in the northern Chinese Jilin province, which is one of Asia’s largest car production centers. The proximity to key local and international vehicle manufacturers makes Changchun a strategically important and attractive location for Autoneum. The plant will help to increase market share with European, Japanese and Chinese car manufacturers with products for light vehicles and also support the expansion of the Company’s business with components for commercial vehicles in this region. The project is supported by the local authorities in China. From the end of 2024, the plant will ramp up production with first samples for already awarded business for inner dashes, interior floor insulators and other NVH (noise, vibration, harshness) components for cars of all drive types.

Autoneum is furthermore expanding its local presence in Western India with a fully owned production facility in Pune in the state of Maharashtra. The Company already operates two locations in India: one in Behror near New Delhi in the north and a joint venture plant in Chennai in the south. Thanks to the new Pune plant, Autoneum will now be present in the north, west and south of the country and gain access to the third of four major automobile production centers in India. Orders have already been received and the plant in Pune will start manufacturing carpet systems, interior trim, wheelhouse outer liners, e-motor covers and other noise protection components as of the second quarter of 2024. From the 7 500 square meter building, Autoneum will supply international as well as local car manufacturers with a particular focus on Indian and Korean vehicle manufacturers.

Source:

Autoneum Management AG

08.03.2024

Rieter: Partnership with Shanghai's DIW

On March 6, 2024, Rieter received an order for the first batch of Rieter technology amounting to around CHF 62 million from Shanghai Digital Intelligence World Industrial Technology Group Co., Ltd. (DIW). Rieter also signed a strategic partnership with DIW to develop an intelligent yarn manufacturing technology that utilizes digitization and automation to minimize conversion costs.

On March 6, 2024, Rieter received an order for the first batch of Rieter technology amounting to around CHF 62 million from Shanghai Digital Intelligence World Industrial Technology Group Co., Ltd. (DIW). Rieter also signed a strategic partnership with DIW to develop an intelligent yarn manufacturing technology that utilizes digitization and automation to minimize conversion costs.

Rieter and DIW signed a first order in the amount of around CHF 62 million for combers and draw frames that will provide the basis to transform DIW’s spinning mills into state-of-the-art industrial textile operations. DIW, a fast-growing company specializing in intelligent manufacturing and industrial operation services, selected Rieter following a competition in which the company’s machines achieved better stability and higher production than competitors. The strategic partnership of DIW and Rieter is designed to further enhance the overall operational efficiency of DIW’s mills by providing highly efficient machines, automation and digitization technology. This will also minimize conversion cost and consolidate the sustainable growth of both companies, while contributing to the high-quality development of the Chinese textile industry.

Source:

Rieter Management AG

DITF: Modernized spinning plant for sustainable and functional fibres Photo: DITF
Bi-component BCF spinning plant from Oerlikon Neumag
06.03.2024

DITF: Modernized spinning plant for sustainable and functional fibres

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

Since polyamide (PA) and many other polymers were developed more than 85 years ago, various melt-spun fibers have revolutionized the textile world. In the field of technical textiles, they can have on a variety of functions: depending on their exact composition, they can for example be electrically conductive or luminescent. They can also show antimicrobial properties and be flame-retardant. They are suitable for lightweight construction, for medical applications or for insulating buildings.

In order to protect the environment and resources, the use of bio-based fibers will be increased in the future with a special focus on easy-to-recycle fibers. To this end, the DITF are conducting research into sustainable polyamides, polyesters and polyolefins as well as many other polymers. Many 'classic', that is, petroleum-based polymers cannot or only insufficiently be broken down into their components or recycled directly after use. An important goal of new research work is therefore to further establish systematic recycling methods to produce fibers of the highest possible quality.

For these forward-looking tasks, a bicomponent spinning plant from Oerlikon Neumag was set up and commissioned on an industrial scale at the DITF in January. The BCF process (bulk continuous filaments) allows special bundling, bulking and processing of the (multifilament) fibers. This process enables the large-scale synthesis of carpet yarns as well as staple fiber production, a unique feature in a public research institute. The system is supplemented by a so-called spinline rheometer. This allows a range of measurement-specific chemical and physical data to be recorded online and inline, which will contribute to a better understanding of fiber formation. In addition, a new compounder will be used for the development of functionalized polymers and for the energy-saving thermomechanical recycling of textile waste.

05.03.2024

Over 330 exhibitors at Intertextile Shanghai Home Textiles

From 6 – 8 March 2024, over 330 exhibitors from seven countries and regions will convene at of Intertextile Shanghai Home Textiles – Spring Edition to highlight a variety of home textile products. Buyers will be able to source the latest bedding, duvets, pillows, towels, carpets, rugs and many more.

Highlighted exhibitors

From 6 – 8 March 2024, over 330 exhibitors from seven countries and regions will convene at of Intertextile Shanghai Home Textiles – Spring Edition to highlight a variety of home textile products. Buyers will be able to source the latest bedding, duvets, pillows, towels, carpets, rugs and many more.

Highlighted exhibitors

  • Bedding – GSI Creos Corporation, Jjiangyin Hongliu Bedsheet Co Ltd, Zhejiang Eider Warmth New Material Co Ltd
  • Down – Anhui Million Feather Co Ltd, Hangzhou Gaga Home Textiles Co Ltd, Shanghai Donglong Home Textile Products Co Ltd
  • Functional pillow & mattress – Changshu Dafa Warp Knitting Co Ltd, Chuzhou Bray Smart Home Appliances Co Ltd, Zhangjiagang Coolest Life Technology
  • Floor – Amore Textile (Suzhou) Co Ltd, Jingyi Fur Products Co Ltd, Shaoxing Jiaohui Home Textile Co Ltd
  • Quilt fillings – Pujiang Boyue Home Textile Co Ltd, Pujiang Huayu Hometextile Co Ltd
  • Textile design – Tela’s Design Lda
  • Towelling – Nantong Dadong Co Ltd, Sunvim Group Co Ltd
  • Loungewear & bath – Suzhou Huazhong Knitting Co Ltd, Zhejiang Demu Textile Technology Co Ltd
  • Upholstery fabrics – Changshu Xinghan Hometextiles Co Ltd, Jiangsu First Home Textile Co Ltd, Shaoxing Chengchong Imp & Exp Co Ltd
  • Home textile technologies – Nantong Mingxing Science & Technology Development Co Ltd, Sichuan Chnki Sewing Machine Co Ltd

Fringe programme
Complementing the exhibitor lineup, Intertextile Shanghai Home Textiles will feature events to keep attendees up-to-date with emerging developments, trends, and important intuition.
For example, one of the most essential yet often overlooked foundations for sustaining wellness is quality sleep. Throughout day one and two at the Bedding Seminar Area, sleep technology will again be a key topic of discussion, guaranteeing comprehensive insights on sleep quality while tapping into associated business prospects.
Traditional Chinese medicine will also take the spotlight, with talks linking various health issues to remedies. Crossover subjects include topical therapy’s role in a better night’s sleep as well as innovations blending medicinal properties with textile design.
An increasing number of people are choosing to use natural materials and green textiles for their bedrooms and throughout their homes. For this reason, the seminars falling under the "Textiles & Technology" theme will shed light on sustainability and what’s next in the industry.

Source:

Messe Frankfurt (HK) Ltd

CARBIOS and Landbell Group: Collaboration for biorecycling plant (c) Landbell Group / CARBIOS
01.03.2024

CARBIOS and Landbell Group: Collaboration for biorecycling plant

CARBIOS and Landbell Group, a global operator of more than 40 producer responsibility organizations (PROs) and a provider of closed-loop recycling solutions, announce the signing of a non-binding Memorandum of Understanding for the sourcing, preparation and recycling of post-consumer PET waste using CARBIOS’ biorecycling technology at its first commercial plant in Longlaville from 2026.  

The partnership will leverage Landbell Group’s expertise and network in the sourcing of PET packaging and textile waste which will be prepared for biorecycling. Thanks to CARBIOS’ highly selective enzyme, less sorting and washing is required compared to current recycling technologies, offering future savings in energy and water use. From 2026, Landbell Group will supply CARBIOS with 15 kt/year of PET flakes, ensuring a steady supply chain for sustainable PET production. These flakes will serve as essential feedstock for CARBIOS’ production of food-grade PTA and MEG, further re-polymerized into PET.

CARBIOS and Landbell Group, a global operator of more than 40 producer responsibility organizations (PROs) and a provider of closed-loop recycling solutions, announce the signing of a non-binding Memorandum of Understanding for the sourcing, preparation and recycling of post-consumer PET waste using CARBIOS’ biorecycling technology at its first commercial plant in Longlaville from 2026.  

The partnership will leverage Landbell Group’s expertise and network in the sourcing of PET packaging and textile waste which will be prepared for biorecycling. Thanks to CARBIOS’ highly selective enzyme, less sorting and washing is required compared to current recycling technologies, offering future savings in energy and water use. From 2026, Landbell Group will supply CARBIOS with 15 kt/year of PET flakes, ensuring a steady supply chain for sustainable PET production. These flakes will serve as essential feedstock for CARBIOS’ production of food-grade PTA and MEG, further re-polymerized into PET.

Through the partnership with Landbell Group in Germany, the supply of multilayer trays through the CITEO tender in France  and the MoU with Indorama Ventures, CARBIOS will have sourced over 70% of its feedstock required for the 50kt/year capacity when its first commercial plant in Longlaville, France, will operate at full capacity. Close to the borders with Belgium, Germany and Luxembourg, the plant’s location is strategic for nearby waste supplies.

Through this partnership with CARBIOS, Landbell Group will ensure that the problematic PET fractions such as multilayered, colored and opaque trays from packaging waste and polyester textile waste are redirected towards recycling. In this way, Landbell Group strengthens its commitment to the development of recycling solutions to enable a circular economy.

26.02.2024

SGL Carbon: Review of options for Business Unit Carbon Fibers

SGL Carbon SE is currently evaluating various strategic options for the Business Unit Carbon Fibers (CF). These include a possible partial or complete divestment of the Business Unit. In a first step, potential interested parties shall be approached with the general data of the Business Unit to determine their interest in an acquisition. If there is sufficient interest, a structured transaction process will be carried out in a second step. Overall, a share of sales amounting to around € 179.6 million after nine months in 2023 (9M 2022: € 269.0 million) is therefore under review. The CF sales share corresponded to 21.9% of SGL Carbon's consolidated sales after nine months in 2023 (9M 2022: 31.5%). Adjusted EBITDA of the Business Unit excluding the result from joint ventures amounted to minus € 10,9 million after nine months in 2023 (9M 2022: € 27,9 million). Despite the operating loss of CF after nine months in 2023, SGL Carbon maintains its guidance for fiscal year 2023. This shows the positive development of the three other business units and the resilience of SGL Carbon's business model.

SGL Carbon SE is currently evaluating various strategic options for the Business Unit Carbon Fibers (CF). These include a possible partial or complete divestment of the Business Unit. In a first step, potential interested parties shall be approached with the general data of the Business Unit to determine their interest in an acquisition. If there is sufficient interest, a structured transaction process will be carried out in a second step. Overall, a share of sales amounting to around € 179.6 million after nine months in 2023 (9M 2022: € 269.0 million) is therefore under review. The CF sales share corresponded to 21.9% of SGL Carbon's consolidated sales after nine months in 2023 (9M 2022: 31.5%). Adjusted EBITDA of the Business Unit excluding the result from joint ventures amounted to minus € 10,9 million after nine months in 2023 (9M 2022: € 27,9 million). Despite the operating loss of CF after nine months in 2023, SGL Carbon maintains its guidance for fiscal year 2023. This shows the positive development of the three other business units and the resilience of SGL Carbon's business model.

Carbon Fibers manufactures textile, acrylic and carbon fibers as well as composite materials at seven locations in Europe and North America. Following the temporary drop in demand for carbon fibers from the important wind industry market, the Business Unit's sales and earnings fell significantly in the course of fiscal year 2023. Due to the importance of the wind industry for the European Green Deal, SGL Carbon and many experts assumed that the wind industry recovers quickly. Unfortunately, this is currently not the case. Even if demand picks up, the company assumes that Carbon Fibers will need additional resources to remain competitive in the international market environment and to exploit market opportunities in the best possible way. Against this background, SGL Carbon is reviewing all possibilities to support a positive further development of the Carbon Fibers Business Unit.

More information:
SGL Carbon carbon fibers
Source:

SGL Carbon SE 

DITF: Biopolymers from bacteria protect technical textiles Photo: DITF
Charging a doctor blade with molten PHA using a hot-melt gun
23.02.2024

DITF: Biopolymers from bacteria protect technical textiles

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

These biopolymers have the advantage that they can be produced in anything from small laboratory reactors to large production plants. The most promising biopolymers include polysaccharides, polyamides from amino acids and polyesters such as polylactic acid or polyhydroxyalkanoates (PHAs), all of which are derived from renewable raw materials. PHAs is an umbrella term for a group of biotechnologically produced polyesters. The main difference between these polyesters is the number of carbon atoms in the repeat unit. To date, they have mainly been investigated for medical applications. As PHAs products are increasingly available on the market, coatings made from PHAs may also be increasingly used in technical applications in the future.

The bacteria from which the PHAs are obtained grow with the help of carbohydrates, fats and an increased CO2 concentration and light with suitable wavelength.

The properties of PHA can be adapted by varying the structure of the repeat unit. This makes polyhydroxyalkanoates a particularly interesting class of compounds for technical textile coatings, which has hardly been investigated to date. Due to their water-repellent properties, which stem from their molecular structure, and their stable structure, polyhydroxyalkanoates have great potential for the production of water-repellent, mechanically resilient textiles, such as those in demand in the automotive sector and for outdoor clothing.

The DITF have already carried out successful research work in this area. Coatings on cotton yarns and fabrics made of cotton, polyamide and polyester showed smooth and quite good adhesion. The PHA types for the coating were both procured on the open market and produced by the research partner Fraunhofer IGB. It was shown that the molten polymer can be applied to cotton yarns by extrusion through a coating nozzle. The molten polymer was successfully coated onto fabric using a doctor blade. The length of the molecular side chain of the PHA plays an important role in the properties of the coated textile. Although PHAs with medium-length side chains are better suited to achieving low stiffness and a good textile handle, their wash resistance is low. PHAs with short side chains are suitable for achieving high wash and abrasion resistance, but the textile handle is somewhat stiffer.

The team is currently investigating how the properties of PHAs can be changed in order to achieve the desired resistance and textile properties in equal measure. There are also plans to formulate aqueous formulations for yarn and textile finishing. This will allow much thinner coatings to be applied to textiles than is possible with molten PHAs.

Other DITF research teams are investigating whether PHAs are also suitable for the production of fibers and nonwovens.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

60th anniversary of Eltex of Sweden AB (c) Eltex of Sweden
21.02.2024

60th anniversary of Eltex of Sweden AB

Eltex of Sweden, a pioneer in the adoption of electronic sensors by the weaving machinery industry, is marking its 60th anniversary this month.

The electronic detection of broken or missing weft yarns during production was the problem Eltex founders Åke Rydborn and Ragnar Henriksson set out to solve with the development of the world’s first electronic weft-stop-motion. Its potential was recognised on its introduction at the 1963 ITMA exhibition in Hannover, Germany, leading to the foundation of the company in a modest 12-square-metre workshop in Älmhult, Sweden, in February 1964.

Eltex of Sweden, a pioneer in the adoption of electronic sensors by the weaving machinery industry, is marking its 60th anniversary this month.

The electronic detection of broken or missing weft yarns during production was the problem Eltex founders Åke Rydborn and Ragnar Henriksson set out to solve with the development of the world’s first electronic weft-stop-motion. Its potential was recognised on its introduction at the 1963 ITMA exhibition in Hannover, Germany, leading to the foundation of the company in a modest 12-square-metre workshop in Älmhult, Sweden, in February 1964.

By 1968 the company was operating from a modern 3,000-square-metre plant and beginning to establish a global presence, introducing the first all-in-one printed circuit board (PCB) for its sensor systems in 1971. As exports increased, further Eltex operations were established in the USA and Ireland and the company expanded its product range including energy control devices, temperature and humidity loggers, food handling safety systems, and military grade battery chargers. Further textile milestones in parallel to advances in weaving technology included optical arrival detectors for air-jet weaving machines at the beginning of the 1980s, and the QTV system for warp preparation, which introduced digital stop-motion control to the industry at the start of the 1990s. In 2009, the company branched out into carpet tufting, first with the CoTS clamp-on tube sensor for tufting machines, followed by the Compact sensor for tufting machines in 2013. In 2019 the Compact II further cemented the company’s position in this sector.

Newly developed Eltex EyETM and ACT-R
Most recently, Eltex has launched the Eltex EyETM system for the monitoring of yarn tension on warp beams. Not only does it eliminate problems when warping, but also in the subsequent weaving or tufting processes. Eltex EyETM monitors the yarn tension on all positions in real-time and a minimum and maximum allowable tension value can be set. If any yarn’s tension falls outside these values the operator can be warned or the machine stopped.

The Eltex ACT and ACT-R units meanwhile go beyond yarn tension monitoring to actually control yarn tension. This extends the application range greatly. The plug and play system automatically compensates for any differences in yarn tension that arise, for example from irregularities in yarn packages.

Eltex has been owned by Brian Hicks, Seamus O’Dwyer and Jonathan Bell since 2007, following a management buy-out and the subsequent formation of Eltex Global Holdings in Ireland. Today, its head office, Eltex of Sweden AB, is in Osby, Sweden where it provides research and development, administration and global sales for the group. Eltex Manufacturing in Ireland is now the group’s primary production facility and Eltex US, Inc. provides sales and service for North America.

Source:

Eltex of Sweden

19.02.2024

Lectra: Financial statements for 2023

  • Revenues: 477.6 million euros (-6%)
  • EBITDA before non-recurring items: 79.0 million euros (-15%)
  • Net income: 32.6 million euros (-26%)
  • Free cash flow before non-recurring items: 45.3 million euros
  • Dividend: €0.36 per share

Lectra’s Board of Directors, chaired by Daniel Harari, reviewed the consolidated financial statements for the fiscal year 2023. Audit procedures have been performed by the Statutory Auditors.

Currency changes between 2022 and 2023 mechanically decreased revenues and EBITDA before non-recurring items by 3.9 million euros (-3%) and 1.7 million euros (-8%) respectively in Q4, and by 11.2 million euros (-2%) and 4.8 million euros (-6%) respectively in the year, at actual exchange rates compared to like-for-like figures.

  • Revenues: 477.6 million euros (-6%)
  • EBITDA before non-recurring items: 79.0 million euros (-15%)
  • Net income: 32.6 million euros (-26%)
  • Free cash flow before non-recurring items: 45.3 million euros
  • Dividend: €0.36 per share

Lectra’s Board of Directors, chaired by Daniel Harari, reviewed the consolidated financial statements for the fiscal year 2023. Audit procedures have been performed by the Statutory Auditors.

Currency changes between 2022 and 2023 mechanically decreased revenues and EBITDA before non-recurring items by 3.9 million euros (-3%) and 1.7 million euros (-8%) respectively in Q4, and by 11.2 million euros (-2%) and 4.8 million euros (-6%) respectively in the year, at actual exchange rates compared to like-for-like figures.

OUTLOOK
While the 2023 full-year results were affected by the adverse environment, they also attest to the substantial improvement in the fundamentals of the Group's business model, which will have a positive impact on 2024 results. Persistent macroeconomic and geopolitical uncertainties could nevertheless continue to weigh on investment decisions by the Group's customers.

While the most recent indicators seem to suggest that the situation is unlikely to deteriorate further, the timing and magnitude of a rebound in new system orders remain uncertain.

Outlook for 2024
To facilitate analysis, the accounts of Lectra excluding the Launchmetrics acquisition ("Lectra 2023 Scope") will be analysed separately from the Launchmetrics accounts in 2024.

The Group has based its 2024 objectives on the exchange rates in effect on December 29, 2023, in particular $1.10/€1. When converting 2023 results using the exchange rates retained for 2024, 2023 revenues are mechanically reduced by 4.7 million euros (to 472.9 million euros) and 2023 EBITDA before non-recurring items is reduced by 2.2 million euros (to 76.8 million euros). Thus, for the Lectra 2023 Scope, the comparisons between 2024 and 2023 printed below are based on constant exchange rates.

At this early stage of 2024, continuing low visibility regarding orders and revenues from new systems makes it impossible to predict the actual timing and scale of the future rebound in this area. On the other hand, visibility is high for recurring revenues, which accounted for 68% of total revenues in 2023 and will continue to grow in 2024.

In light of the above, Lectra has set as its objective for 2024, for the Lectra 2023 Scope, to achieve revenues in the range of 480 to 530 million euros (+2% to +12%) and EBITDA before non-recurring items in the range of 85 to 107 million euros (+10% to +40%).

The low end of the revenues range is based on the absence of a rebound in new systems orders, which would remain stable in 2024 relative to 2023, with a 6% decline in revenues from perpetual software licenses, equipment and accompanying software and non-recurring services, as the order backlog was lower on December 31, 2023 than a year before.

The high end of the revenues range reflects a gradual rebound in new systems orders, which at year-end 2024 would be back to year-end 2022 level.
 
In addition, Launchmetrics revenues (for the consolidation period from January 23 to December 31) are projected to be in the range of 42 to 46 million euros, with an EBITDA margin before non-recurring items of more than 15% (assuming an exchange rate of $1.10/€1).

19.02.2024

CARBIOS and De Smet Engineers & Contractors: Partnership for construction of PET biorecycling plant

CARBIOS and De Smet Engineers & Contractors (DSEC), a provider of Engineering, Procurement and Construction services in the biotech’s and agro-processing industries, announce their collaboration to spearhead the construction of the world's first PET biorecycling plant. Under the agreement, De Smet has been entrusted with the project management and detailed engineering, including procurement assistance and CARBIOS partners’ management, to ensure the execution of the plant's construction in Longlaville, France, due for commissioning in 2025.  CARBIOS’ first commercial facility will play a key role in the fight against plastic pollution by offering an industrial-scale solution for the enzymatic depolymerization of PET waste to accelerate a circular economy for plastic and textiles.

With over 70 members of De Smet's expert team dedicated to the project and working alongside CARBIOS teams, the collaboration aims to guarantee the project timeline and budget while upholding quality, safety, health, and environmental standards. Construction is currently underway and on schedule.

CARBIOS and De Smet Engineers & Contractors (DSEC), a provider of Engineering, Procurement and Construction services in the biotech’s and agro-processing industries, announce their collaboration to spearhead the construction of the world's first PET biorecycling plant. Under the agreement, De Smet has been entrusted with the project management and detailed engineering, including procurement assistance and CARBIOS partners’ management, to ensure the execution of the plant's construction in Longlaville, France, due for commissioning in 2025.  CARBIOS’ first commercial facility will play a key role in the fight against plastic pollution by offering an industrial-scale solution for the enzymatic depolymerization of PET waste to accelerate a circular economy for plastic and textiles.

With over 70 members of De Smet's expert team dedicated to the project and working alongside CARBIOS teams, the collaboration aims to guarantee the project timeline and budget while upholding quality, safety, health, and environmental standards. Construction is currently underway and on schedule.

Julien Born Photo HeiQ Materials AG
Julien Born
16.02.2024

Julien Born new CEO of HeiQ AeoniQ Holding

HeiQ AeoniQ Holding, a subsidiary of HeiQ Group, is appointing Julien Born as its CEO, leveraging his extensive executive leadership and profound textile industry expertise cultivated in prestigious organizations such as DuPont, KOCH Industries, and The LYCRA Company, where he served as CEO since 2021. Julien Born will champion the growth of the cellulosic filament fiber HeiQ AeoniQ™.

The HeiQ AeoniQ™ technology is poised for commercial production at the inaugural manufacturing facility in Portugal by the close of 2025. The just concluded €5M acquisition of land and buildings, within a 2-year project total investment of €80M, marks a pivotal milestone for the 15,000m2 facility in Maia, Porto. Situated strategically in Portugal's textile hub and a mere 20 minutes from a major commercial port, this facility is poised to catalyze the scale-up phase of the business, going from pilot manufacture to mass production when it wants to compete at full-scale on cost and performance with fossil fuel-based fibers.

HeiQ AeoniQ Holding, a subsidiary of HeiQ Group, is appointing Julien Born as its CEO, leveraging his extensive executive leadership and profound textile industry expertise cultivated in prestigious organizations such as DuPont, KOCH Industries, and The LYCRA Company, where he served as CEO since 2021. Julien Born will champion the growth of the cellulosic filament fiber HeiQ AeoniQ™.

The HeiQ AeoniQ™ technology is poised for commercial production at the inaugural manufacturing facility in Portugal by the close of 2025. The just concluded €5M acquisition of land and buildings, within a 2-year project total investment of €80M, marks a pivotal milestone for the 15,000m2 facility in Maia, Porto. Situated strategically in Portugal's textile hub and a mere 20 minutes from a major commercial port, this facility is poised to catalyze the scale-up phase of the business, going from pilot manufacture to mass production when it wants to compete at full-scale on cost and performance with fossil fuel-based fibers.

HeiQ intends to consolidate the Group’s current and future activities in Portugal at the newly acquired site. This includes Shared Service Center functions as well as the Innovation Hub for the HeiQ Textile & Flooring business unit.

The recent addition of Julien Born to lead the charge follows the nomination of Robert van de Kerkhof to the HeiQ Board, a seasoned executive with extensive textile experience holding positions as CCO, CSO, Board member of Lenzing Plc, and Chairman of CIRFS, the European Man-Made Fibres Association. Robert will also serve as the Chairman of the HeiQ AeoniQ Holding Board.

HeiQ AeoniQ Holding, established as an independent subsidiary to attract new investors, value-chain partners, and brands, embarks on an ambitious multi-year scale-up strategy. This strategy involves integrating diverse sources of bio-derived feedstock and hyper-scaling cellulosic filament fiber production capacity over the next decade, targeting industries such as apparel, footwear, automotive, home textiles, and aeronautics.

Source:

HeiQ Materials AG

(c) Swiss Textile Machinery Swissmem
16.02.2024

Recycled fibres: Swiss manufacturers for circularity

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Spinning recycled cotton
The use of mechanically recycled fibres in spinning brings specific quality considerations: they have higher levels of short fibres and neps – and may often be colored, particularly if post-consumer material is used. It’s also true that recycled yarns have limitations in terms of fineness. The Uster Statistics 2023 edition features an extended range of fibre data, supporting sustainability goals, including benchmarks for blends of virgin and recycled cotton.
In general, short fibres such as those in recycled material can easily be handled by rotor spinning machines. For ring spinning, the shorter the fibres, the more difficult it is to guide them through the drafting zone to integrate them into the yarn body. Still, for wider yarn counts and higher yarn quality, the focus is now shifting to ring spinning. The presence of short fibres is a challenge, but Rieter offers solutions to address this issue.

Knitting recycled wool
For recycling, wool fibres undergo mechanical procedures such as shredding, cutting, and re-spinning, influencing the quality and characteristics of the resulting yarn. These operations remove the natural scales and variations in fibre length of the wool, causing a decrease in the overall strength and durability of the recycled yarn. This makes the yarn more prone to breakage, especially under the tension exerted during knitting.

Adapting to process recycled materials often requires adjustments to existing machinery. Knitting machines must be equipped with positive yarn suppliers to control fibre tension. Steiger engages in continuous testing of new yarns on the market, to check their suitability for processing on knitting machines. For satisfactory quality, the challenges intensify, with natural yarns requiring careful consideration and adaptation in the knitting processes.

From fibres to nonwovens
Nonwovens technology was born partly from the idea of recycling to reduce manufacturing costs and to process textile waste and previously unusable materials into fabric structures. Nonwovens production lines, where fibre webs are bonded mechanically, thermally or chemically, can easily process almost all mechanically and chemically recycled fibres.

Autefa Solutions offers nonwovens lines from a single source, enabling products such as liners, wipes, wadding and insulation to be produced in a true closed loop. Fibres are often used up to four times for one product.

Recycling: total strategy
Great services, technology and machines from members of Swiss Textile Machinery support the efforts of the circular economy to process recycled fibres. The machines incorporate the know-how of several decades, with the innovative power and quality standards in production and materials.
Stäubli’s global ESG (environmental, social & governance) strategy defines KPIs in the context of energy consumption, machine longevity and the recycling capacity in production units worldwide, as well in terms of machinery recyclability. The machine recyclability of automatic drawing in machines, weaving systems and jacquard machines ranges from 96 to 99%.

Source:

Swiss Textile Machinery Swissmem