From the Sector

Reset
16 results
(c) TMAS
25.03.2024

TMAS: Microfactory for filter bags in Sweden

ACG Kinna Automatic and ACG Nyström – members of TMAS, the Swedish textile machinery association – have delivered the first microfactory for the production of fully finished filter bags to an international filtration industry customer, in cooperation with JUKI Central Europe.

The microfactory’s configuration is based on two separate interconnecting modules – the Smart Filter Line (SFL) and the Filtermaster 2.0. The SFL handles the fabric feeding from rolls and its folding prior to seam construction, which can either be by automatic sewing, welding or with sewing and taping, depending on specifications. Very rapid changeover of the modular seaming methods can be achieved during product changes. The specific size of the now fully-tubular fabric is then precisely cut to size for each individual unit and further folded ready to be fed into the Filtermaster 2.0. The Filtermaster 2.0 then automatically attaches the reinforcement, bottom and snap rings onto the filter tube with a second Juki sewing head on a robotic arm, to form the fully finished filter bag ready for packaging.

ACG Kinna Automatic and ACG Nyström – members of TMAS, the Swedish textile machinery association – have delivered the first microfactory for the production of fully finished filter bags to an international filtration industry customer, in cooperation with JUKI Central Europe.

The microfactory’s configuration is based on two separate interconnecting modules – the Smart Filter Line (SFL) and the Filtermaster 2.0. The SFL handles the fabric feeding from rolls and its folding prior to seam construction, which can either be by automatic sewing, welding or with sewing and taping, depending on specifications. Very rapid changeover of the modular seaming methods can be achieved during product changes. The specific size of the now fully-tubular fabric is then precisely cut to size for each individual unit and further folded ready to be fed into the Filtermaster 2.0. The Filtermaster 2.0 then automatically attaches the reinforcement, bottom and snap rings onto the filter tube with a second Juki sewing head on a robotic arm, to form the fully finished filter bag ready for packaging.

Filter bags are employed in a wide range of industrial processes and while they may be largely under the radar as products, they represent a pretty significant percentage of overall technical textiles production.
They are used in foundries, smelters, incinerators, asphalt plants and energy production plants. Other key manufacturing fields – often where dust is generated – include the production of timber, textiles, composites, waste handling and minerals, in addition to chemicals, food production, pharmaceuticals, electronics and agriculture.

As a further example of the scale of the industry and the high volumes of fabrics involved, one supplier has delivered a single order of 30,000 filter bags to be used for flue gas cleaning at a European power plant. The bags can also be anywhere up to twelve metres in length and frequently have to be replaced.

Source:

Textile Machinery Association of Sweden

13.02.2023

CELLIANT cleared to market in 50+ countries

  • Registered in majority as a class 1 medical device  

CELLIANT -  a performance textile that converts body heat into infrared energy - is designated as a Class 1 Medical Device in Australia, Canada, the EU and European Economic Area (EEA), Japan, New Zealand, the United Arab Emirates, the United Kingdom and the United States. CELLIANT is cleared to market in China, India, Indonesia, Korea, Malaysia, Mexico, Peru, Philippines, Russia, Saudi Arabia, Singapore, South Africa, Taiwan, Thailand and Vietnam, with more countries and regions to follow.

  • Registered in majority as a class 1 medical device  

CELLIANT -  a performance textile that converts body heat into infrared energy - is designated as a Class 1 Medical Device in Australia, Canada, the EU and European Economic Area (EEA), Japan, New Zealand, the United Arab Emirates, the United Kingdom and the United States. CELLIANT is cleared to market in China, India, Indonesia, Korea, Malaysia, Mexico, Peru, Philippines, Russia, Saudi Arabia, Singapore, South Africa, Taiwan, Thailand and Vietnam, with more countries and regions to follow.

In 2017, the FDA determined that products containing CELLIANT are medical devices as defined in section 201(h) of the Federal Food, Drug and Cosmetic Act and are general wellness products because they are intended to temporarily increase blood flow and local circulation at the site of the application in healthy individuals.
 
At Hologenix®, whose CELLIANT® infrared technology is an ingredient in world-class brands across many categories, science matters. The company has a distinguished Science Advisory Board composed of experts in the fields of photobiology, nanotechnology, sleep medicine, diabetes and wound care. The Science Advisory Board has overseen nine peer-reviewed published studies that collectively demonstrate CELLIANT’s effectiveness and the benefits of infrared energy. This claim set provides the basis for products containing CELLIANT to be designated as a Class 1 Medical Device in 38 countries and cleared to market in 15, with more countries and regions to follow. This elevated status in 53 countries translates to CELLIANT being an ideal partner for global companies who are seeking innovation in textiles to distinguish their products.   

“We have laid the groundwork for our partner brands to capitalize on the benefits of our infrared technology and to enhance their ability to do business,” said Seth Casden, Hologenix co-founder and CEO.  “We firmly believe that regulatory status matters and that is why we have grown the number of countries we have such relationships with by over a third in the last three years. It is definitely a competitive advantage of our company and CELLIANT.”

“Globally, the awareness of the benefits of infrared textiles, which absorb body heat and reflect it back as therapeutic infrared energy, has grown exponentially over the last 10 years,” continued Casden. “And in the United States infrared is gaining a strong foothold.”

Source:

Hologenix

(c) Fraunhofer ICT
06.01.2023

Fraunhofer CPM develop programmable material for ergonomic lying position

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Materials and microstructuring
Materials for applications requiring specific changes to stiffness or shape are being developed by researchers from Fraunhofer CPM, which is formed of six core institutes with the aim of designing and producing programmable materials. So, how can we program materials? “Essentially, there are two key areas where adjustments can be made: the base material – thermoplastic polymers in the case of mattresses and metallic alloys for other applications, including shape memory alloys – and, more specifically, the microstructure,” explains Dr. Heiko Andrä, spokesperson on the topic at the Fraunhofer Institute for Industrial Mathematics ITWM, one of the Fraunhofer CPM core institutes. “The microstructure of these metamaterials is made up of unit cells that consist of structural elements such as small beams and thin shells.” While the size of each unit cell and its structural elements in conventional cellular materials, like foams, vary randomly, the cells in the programmable materials are also variable – but can be precisely defined, i.e., programmed. This programming can be made, for example, in such a way that pressure on a particular position will result in specific changes at other regions of the mattress, i.e., increase the size of the contact surface and provide optimal support to certain areas of the body.

Materials can also react to temperature or humidity
The change in shape that the material should exhibit and the stimuli to which it reacts - mechanical stress, heat, moisture or even an electric or magnetic field - can be determined by the choice of material and its microstructure.

The journey to application
A single piece of material can take the place of entire systems of sensors, regulators and actuators. The goal of Fraunhofer CPM is to reduce the complexity of systems by integrating their functionalities into the material and reducing material diversity. We always have industrial products in mind when developing the programmable materials. As such, we take mass production processes and material fatigue into account, among other things,” says Franziska Wenz, deputy spokesperson on the topic at the Fraunhofer Institute for Mechanics of Materials IWM, another core institute of Fraunhofer CPM. The initial pilot projects with industry partners are also already underway. The research team expects that initially, programmable materials will act as replacements for components in existing systems or be used in special applications such as medical mattresses, comfortable chairs, variable damping shoe soles and protective clothing. “Gradually, the proportion of programmable materials used will increase,” says Andrä. Ultimately, they can be used everywhere – from medicine and sporting goods to soft robotics and even space research.

Source:

Fraunhofer ITWM

(c) Hologenix, LLC
15.11.2022

Medline and Hologenix launch new orthopedic infrared products

Medline, a medical product distributor and manufacturer, together with Hologenix® launched a new line of CURAD® Performance Series® orthopedic products powered by CELLIANT® infrared technology.

CELLIANT, the flagship innovation of Hologenix, is a proprietary blend of natural minerals that allows textiles to convert body heat into infrared energy, returning it to the body and temporarily increasing local blood flow and cellular oxygenation. This has been clinically demonstrated to support recovery from physical activity and fatigue, increase endurance and stamina, and boost overall performance in healthy individuals, among other benefits.  

Trusted by athletes, CURAD is the Official Medical Supplier of the IRONMAN® U.S. Series. The new orthopedic products powered by CELLIANT infrared technology are the latest additions to the CURAD Performance Series collection and including different infrared supports designed for the ankle, knee, back, shoulder, as well as multipurpose use.

Medline, a medical product distributor and manufacturer, together with Hologenix® launched a new line of CURAD® Performance Series® orthopedic products powered by CELLIANT® infrared technology.

CELLIANT, the flagship innovation of Hologenix, is a proprietary blend of natural minerals that allows textiles to convert body heat into infrared energy, returning it to the body and temporarily increasing local blood flow and cellular oxygenation. This has been clinically demonstrated to support recovery from physical activity and fatigue, increase endurance and stamina, and boost overall performance in healthy individuals, among other benefits.  

Trusted by athletes, CURAD is the Official Medical Supplier of the IRONMAN® U.S. Series. The new orthopedic products powered by CELLIANT infrared technology are the latest additions to the CURAD Performance Series collection and including different infrared supports designed for the ankle, knee, back, shoulder, as well as multipurpose use.

“This new CURAD Performance Series offering represents a major expansion of CELLIANT infrared (IR) bio-responsive textiles into the sports medicine field,” said Seth Casden, Hologenix Co-Founder and CEO. “We are honored to partner with Medline and look forward to future introductions.”

In addition to the inclusion of CELLIANT infrared technology, Medline has engineered the elastic supports to provide targeted compression for enhanced local circulation that helps reduce swelling, with a contoured fit that won’t slip or shift during normal activities with silicone grips that keep the product in place.

The removable hot/cold therapy supports provide adjustable compression and a gel compress that can be cooled or heated to further reduce swelling and discomfort.

Source:

Hologenix, LLC /  Sarah Fletcher Communication

(c) Lindauer DORNIER GmbH
Maja Dornier (lhs) and Prof. Dr. Wolf Mutschler (rhs) hand over the Peter Dornier Foundation Award, endowed with 5,000 euros, to the award winner Dipl.-Ing. Mathis Bruns
26.07.2022

Peter Dornier Foundation Prize 2022 honours textile research on woven heart valve

According to the World Health Organization (WHO), cardiovascular disease is one of the most common natural causes of death. Every year, it is the cause of death of around 17 million people worldwide. The Peter Dornier Foundation Prize 2022 has now awarded a research work that is to improve the medical care of people with insufficient heart valve function in the future and prolong the patients' lives.

According to the World Health Organization (WHO), cardiovascular disease is one of the most common natural causes of death. Every year, it is the cause of death of around 17 million people worldwide. The Peter Dornier Foundation Prize 2022 has now awarded a research work that is to improve the medical care of people with insufficient heart valve function in the future and prolong the patients' lives.

The human heart is a high-performance machine: over the course of a person's life, it beats almost three billion times, pumping around 200 million litres of blood through the body. Enormous stresses that can sometimes lead to life-threatening signs of wear and tear. If a heart valve gets out of step, patients usually get artificial-mechanical or biological valves as a replacement. However, mechanical solutions imply patients to take blood-thinning medication for the rest of their lives. In addition, there may be audible closing noises. For example, almost a quarter of patients with mechanical heart valves complain of sleep disturbances. Biological heart valves, on the other hand, such as those made from animal tissue, require a great deal of manual work and have a shorter lifetime.

Potential of weaving for medical products demonstrated
For this reason, Graduate Engineer Mathis Bruns at the Institute for Textile Machinery and High-Performance Textile Materials Technology (ITM) at the TU Dresden is researching an implant alternative made of fabric. As part of a research project that also involved heart surgeons from the Dresden Heart Centre and the University Hospital in Würzburg, Mr. Bruns provided important findings for weaving an artificial heart valve in his diploma thesis. For his work entitled "Development of tubular structures with integrated valve function", Mathis Bruns has now received the Peter Dornier Foundation Prize 2022, endowed with 5,000 euros. In his laudation, Dr. Adnan Wahhoud, former head of the development department of air-jet weaving machines at DORNIER in Lindau, said: "With his work, the winner of the award demonstrates very clearly the potential of weaving technology to produce fabrics of complex form, geometry and structure with the aim of prolonging and improving people's lives." The award-winning thesis enriches research into three-dimensional tissues for use in medicine.

Weaving replacement heart valves without seams
"A particular advantage of our approach is the integral production method", says foundation prize winner Mathis Bruns. “The geometry and function of a heart valve is that complex that woven heart valves could not be produced in this form previously. Through the combined use of a rigid rapier weaving machine with bobbin shield and a Jacquard machine, it is possible to weave the replacement heart valve in such a way that it no longer has be sewn together. Even the tubular structures for the blood vessels and the integrated valve function are ‘all of one piece’. Seams are always a weak point in textile medical products," Mr. Bruns adds. “Another advantage of the woven heart valve is the possibility to insert it by the help of minimally invasive surgery. Hence, the folded valve which is about the size of a tea light is to be pushed with a catheter via the bloodstream to the target position in the heart and unfolded there. The patient's chest and heart would then no longer have to be cut open”, explains prize winner Mr. Bruns.

Textile structure is similar to human tissue
A wide variety of medical products have always been produced on DORNIER weaving machines. Customers use them to produce fabrics for bandages, prostheses, blood filters and orthoses among other things. For Mathis Bruns, it is only evident that implants such as heart valves will more and more be woven on the machines from Lindau in the future. "Textile tissue is very similar to human tissue," he says. The human body consists largely of thread-like materials, just as a textile fabric is made up of thousands of individual threads. "Muscle fibres convey force impulses, nerve tracts send stimuli such as pain and brain cells convey information via thread-like dendrites and axons." Because of their ‘thread-like properties’, woven implants are therefore particularly suitable for medical applications.

05.04.2022

ADD-ITC 2022: Call for Abstracts

The Aachen-Dresden-Denkendorf International Textile Conference 2022 as face-to-face event takes place on-site in Aachen on December 1-2, 2022.

There is the opportunity to contribute to the conference program and submit an abstract for a talk or poster presentation. The Call for Abstracts for oral presentations ends on May 6, 2022. The Call for Abstracts for poster contributions is open until July 31, 2022.

The ADD-ITC is a conference for experts from the fields of
·    Textile chemistry, finishing & functionalization
·    Synthetic Fibers & Materials
·    Machinery, Processes & Composites

The conference program includes plenary lectures and themed sessions in the areas of
·    Sustainability in the textile industry
·    Future of textile production
·    Textiles for medicine and health
·    Smart textiles & fashion
·    Historic textiles
·    Technology transfer (IGF-ZIM projects)
·    Textile developments by start-ups
 

The Aachen-Dresden-Denkendorf International Textile Conference 2022 as face-to-face event takes place on-site in Aachen on December 1-2, 2022.

There is the opportunity to contribute to the conference program and submit an abstract for a talk or poster presentation. The Call for Abstracts for oral presentations ends on May 6, 2022. The Call for Abstracts for poster contributions is open until July 31, 2022.

The ADD-ITC is a conference for experts from the fields of
·    Textile chemistry, finishing & functionalization
·    Synthetic Fibers & Materials
·    Machinery, Processes & Composites

The conference program includes plenary lectures and themed sessions in the areas of
·    Sustainability in the textile industry
·    Future of textile production
·    Textiles for medicine and health
·    Smart textiles & fashion
·    Historic textiles
·    Technology transfer (IGF-ZIM projects)
·    Textile developments by start-ups
 

Further information about the conference program, plenary and keynote speakers as well as the call for abstracts are online availabel.

Source:

Aachen-Dresden-Denkendorf International Textile Conference

RADICIGROUP
05.04.2022

RadiciGroup: A spacesuit for analogue Mars missions

  • RadiciGroup establishes a network of Italian textile excellence to create a spacesuit for analogue Mars missions
  • The Space Economy is launched in Bergamo. Mars Planet analogue astronauts to take part in the SMOPS Mars mission simulation wearing suits made of RadiciGroup yarn.

A group of companies in the Italian textile industry, headed by RadiciGroup, has created the first spacesuit for analogue simulation fully designed and engineered in Italy for the Space Medicine Operations (SMOPS) Mars mission. This endeavour was promoted and organized by Mars Planet – the Italian chapter of the Mars Society headquartered in the province of Bergamo – under the patronage of the Italian Space Agency.

The SMOPS analogue mission is mainly focused on space medicine: health monitoring of future astronauts and development of support technologies for the simulation of life in space and planet environments.

Source:

RADICIGROUP

(c) Avgol
15.11.2021

Avgol at Hygienix™ 2021 with biotransformation technology in nonwovens

Avgol, an Indorama Ventures company and manufacturer of high-performance nonwoven fabric solutions, will be showcasing its latest work in biotransformation technology for polyolefin fibers and nonwoven fabrics at this year’s Hygienix™ event.

Nick Carter, Vice President, Nonwovens Marketing at Avgol, will be a guest speaker at the event, giving a presentation alongside Dr. DeeAnn Nelson, R&D and Innovation Manager with Avgol in North America, on ‘Biotransformation Technology in Polyolefin Fibers and Nonwoven Fabrics, Focus on Fugitive Used Articles’. “Today, the word “sustainability” does not have a unified meaning in the industries we serve,” said Nick. “Perform a regional analysis on any given customer or consumer, delve into a legislative body or advocacy group’s positioning and you will find each are likely to use the word ‘sustainable’ with varying interpretations, implementations, and implications.

The Avgol presentation, part of the Product & Process Innovation in AHPs series, will take place at 2pm on Tuesday, November 16.

Avgol, an Indorama Ventures company and manufacturer of high-performance nonwoven fabric solutions, will be showcasing its latest work in biotransformation technology for polyolefin fibers and nonwoven fabrics at this year’s Hygienix™ event.

Nick Carter, Vice President, Nonwovens Marketing at Avgol, will be a guest speaker at the event, giving a presentation alongside Dr. DeeAnn Nelson, R&D and Innovation Manager with Avgol in North America, on ‘Biotransformation Technology in Polyolefin Fibers and Nonwoven Fabrics, Focus on Fugitive Used Articles’. “Today, the word “sustainability” does not have a unified meaning in the industries we serve,” said Nick. “Perform a regional analysis on any given customer or consumer, delve into a legislative body or advocacy group’s positioning and you will find each are likely to use the word ‘sustainable’ with varying interpretations, implementations, and implications.

The Avgol presentation, part of the Product & Process Innovation in AHPs series, will take place at 2pm on Tuesday, November 16.

From their base at the tabletop event, Nick and the Avgol team will be discussing the global challenge of eliminating incineration, chemical treatment, landfill, dumping and, in particular, fugitive material pollution from non-woven products.

“Following our recent success at Index 20, we will be sharing insight to our research and development strategy with Hygienix attendees, addressing the degradation performance of our products and the path forward for the industry in terms of the use of new bio-colorants, biosurfactants and new technologies. Of course, we will also be demonstrating our latest Forward Innovative Thinking (FITTM) range of hygiene materials too, including natureFITTM”, says Nick Carter.

natureFIT™ is the newest innovation in the Avgol™ technology platform, designed to imbue nonwoven fabrics with additional qualities and benefits that anticipate the shifting demands of the consumer-led retail space. The suite of fabric solutions is focused on replacing elements of spun melt fabric design, where possible, with natural alternatives. The advanced technology affords product designers a significant reduction in polymer consumption to reduce environmental impact while simultaneously enhancing softness and conformability.

Hygienix™ runs from 15 – 18 November 2021 at the Westin Kierland Resort in Scottsdale, Arizona, USA.

More information:
Avgol Hygienix™ 2021 nonwovens
Source:

Avgol / PHD Marketing Ltd

Infinited Fiber and Patagonia seal Multiyear Sales Deal (c) Infinited Fiber Company
28.06.2021

Infinited Fiber Company and Patagonia seal Multiyear Sales Deal

Outdoor apparel company Patagonia and circular fashion and textile technology group Infinited Fiber Company have signed a multiyear sales agreement for Infinited Fiber Company’s unique, premium-quality regenerated textile fiber Infinna™, which is created out of textile waste. The move marks a major milestone for both companies towards making textile circularity an everyday reality: The deal guarantees Patagonia access to the limited-supply fiber over the coming years and secures future sales income for Infinited Fiber Company as it ramps up production.

Infinna is a unique, virgin-quality regenerated textile fiber with the soft and natural look and feel of cotton. It is created from cotton-rich textile waste that is broken down at the molecular level and reborn as new fibers. Because it’s made of cellulose – a building block of all plants – Infinna is biodegradable and contains no microplastics to clog our seas. Clothes made with it can be recycled again in the same process together with other textile waste.

Outdoor apparel company Patagonia and circular fashion and textile technology group Infinited Fiber Company have signed a multiyear sales agreement for Infinited Fiber Company’s unique, premium-quality regenerated textile fiber Infinna™, which is created out of textile waste. The move marks a major milestone for both companies towards making textile circularity an everyday reality: The deal guarantees Patagonia access to the limited-supply fiber over the coming years and secures future sales income for Infinited Fiber Company as it ramps up production.

Infinna is a unique, virgin-quality regenerated textile fiber with the soft and natural look and feel of cotton. It is created from cotton-rich textile waste that is broken down at the molecular level and reborn as new fibers. Because it’s made of cellulose – a building block of all plants – Infinna is biodegradable and contains no microplastics to clog our seas. Clothes made with it can be recycled again in the same process together with other textile waste.

In April, Infinited Fiber Company announced plans to build a flagship factory in Finland to meet the growing demand for Infinna from global fashion brands. It is currently supplying customers from its R&D and pilot facilities in Espoo and Valkeakoski, Finland. The planned flagship factory will have an annual production capacity of 30,000 metric tons, which is enough fiber for roughly 100 million T-shirts made with 100% Infinna. Infinited Fiber Company expects to have sold the new factory’s entire output for several years during 2021.

More than 92 million metric tons of textile waste is produced globally every year and most of this ends up in landfills or incinerators. At the same time, textile fiber demand is increasing, with Textile Exchange estimating the global textile fiber market to grow 30% to 146 million metric tons by 2030 from 111 million metric tons in 2019. Infinited Fiber Company’s fiber regeneration technology, which uses cellulose-rich waste streams as its raw material, offers a solution both to stop waste from being wasted and to reduce the burden of the textile industry on the planet’s limited natural resources.

16.06.2021

Closed-loop recycling pilot project for single-use facemasks

  • Fraunhofer, SABIC, and Procter & Gamble join forces
  • The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics.
  • The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

  • Fraunhofer, SABIC, and Procter & Gamble join forces
  • The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics.
  • The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

“Recognizing the challenge, we set out to explore how used facemasks could potentially be returned into the value chain of new facemask production”, says Dr. Peter Dziezok, Director R&D Open Innovation at P&G. “But creating a true circular solution from both a sustainable and an economically feasible perspective takes partners. Therefore, we teamed up with Fraunhofer CCPE and Fraunhofer UMSICHT’s expert scientists and SABIC’s Technology & Innovation specialists to investigate potential solutions.”

As part of the pilot, P&G collected used facemasks worn by employees or given to visitors at its manufacturing and research sites in Germany. Although those masks are always disposed of responsibly, there was no ideal route in place to recycle them efficiently. To help demonstrate a potential step change in this scenario, special collection bins were set up, and the collected used masks were sent to Fraunhofer for further processing in a dedicated research pyrolysis plant.

“A single-use medical product such as a face mask has high hygiene requirements, both in terms of disposal and production. Mechanical recycling, would have not done the job”, explains Dr. Alexander Hofmann, Head of Department Recycling Management at Fraunhofer UMSICHT. “In our solution, therefore, the masks were first automatically shredded and then thermochemically converted to pyrolysis oil. Pyrolysis breaks the plastic down into molecular fragments under pressure and heat, which will also destroy any residual pollutants or pathogens, such as the Coronavirus. In this way it is possible to produce feedstock for new plastics in virgin quality that can also meet the requirements for medical products”, adds Hofmann, who is also Head of Research Department “Advanced Recycling” at Fraunhofer CCPE.

The pyrolysis oil was then sent to SABIC to be used as feedstock for the production of new PP resin. The resins were produced using the widely recognized principle of mass balance to combine the alternative feedstock with fossil-based feedstock in the production process. Mass balance is considered a crucial bridge between today’s large scale linear economy and the more sustainable circular economy of the future, which today is operated on a smaller scale but is expected to grow quickly.

“The high-quality circular PP polymer obtained in this pilot clearly demonstrates that closed-loop recycling is achievable through active collaboration of players from across the value chain”, emphasizes Mark Vester, Global Circular Economy Leader at SABIC. “The circular material is part of our TRUCIRCLE™ portfolio, aimed at preventing valuable used plastic from becoming waste and at mitigating the depletion of fossil resources.”

Finally, to close the loop, the PP polymer was supplied to P&G, where it was processed into non-woven fibers material. “This pilot project has helped us to assess if the close loop approach could work for hygienic and medical grade plastics”, says Hansjörg Reick, P&G Senior Director Open Innovation. “Of course, further work is needed but the results so far have been very encouraging.”

The entire closed loop pilot project from facemask collection to production was developed and implemented within seven months. The transferability of advanced recycling to other feedstocks and chemical products is being further researched at Fraunhofer CCPE.

Source:

Fraunhofer

(c) Statex Produktions- und Vertriebs GmbH
03.06.2021

Rebranding: Statex becomes Shieldex

Bremen-based Statex Produktions- und Vertriebs GmbH, a company founded in 1978 and currently in its 3rd generation of family management, is reinventing itself. One of the leading manufacturers in the field of silvered and metallised textiles has focused on the field of technical textiles and will in future place its brand name Shiledex at the centre of its corporate identity.

In accordance with the principle "Metallised Textiles for Challenges that matter", the new website is to transport the company's know-how in the areas of technical textiles, automotive, intelligence and military, medicine as well as fashion and design with a clear structure.

The sorting of the different application areas such as sensor technology, heating and lighting, EMC shielding, wellness and lifestyle as well as health and hygiene simplifies the access to the Shieldex product worlds.

 

Bremen-based Statex Produktions- und Vertriebs GmbH, a company founded in 1978 and currently in its 3rd generation of family management, is reinventing itself. One of the leading manufacturers in the field of silvered and metallised textiles has focused on the field of technical textiles and will in future place its brand name Shiledex at the centre of its corporate identity.

In accordance with the principle "Metallised Textiles for Challenges that matter", the new website is to transport the company's know-how in the areas of technical textiles, automotive, intelligence and military, medicine as well as fashion and design with a clear structure.

The sorting of the different application areas such as sensor technology, heating and lighting, EMC shielding, wellness and lifestyle as well as health and hygiene simplifies the access to the Shieldex product worlds.

 

More information:
Statex Shieldex metallised textiles
Source:

Statex Produktions- und Vertriebs GmbH

14.01.2021

Hologenix and Kelheim Fibres launch Celliant Viscose

Hologenix, creators of Celliant®, infrared responsive technology, and Kelheim Fibres, a world-leading manufacturer of viscose specialty fibers, have partnered to launch Celliant Viscose at ISPO Munich 2021. Celliant Viscose is a finalist in Best Products by ISPO and will be showcased in the Fibers & Insulations Category for ISPO Textrends, where realistic views and 3-D simulations will be available for each material.

The introduction of nature-based Celliant Viscose will be the first in-fiber infrared sustainable solution on the market and meets a consumer demand for more environmentally friendly textiles. An alternative to synthetic fibers and extremely versatile, Celliant Viscose blends beautifully with cotton, micromodal, lyocell, wool varieties including cashmere. It also has many applications across industries as it is ideal for performance wear, luxury loungewear, casual wear and bedding.

Hologenix, creators of Celliant®, infrared responsive technology, and Kelheim Fibres, a world-leading manufacturer of viscose specialty fibers, have partnered to launch Celliant Viscose at ISPO Munich 2021. Celliant Viscose is a finalist in Best Products by ISPO and will be showcased in the Fibers & Insulations Category for ISPO Textrends, where realistic views and 3-D simulations will be available for each material.

The introduction of nature-based Celliant Viscose will be the first in-fiber infrared sustainable solution on the market and meets a consumer demand for more environmentally friendly textiles. An alternative to synthetic fibers and extremely versatile, Celliant Viscose blends beautifully with cotton, micromodal, lyocell, wool varieties including cashmere. It also has many applications across industries as it is ideal for performance wear, luxury loungewear, casual wear and bedding.

Celliant Viscose features natural, ethically sourced minerals embedded into plant-based fibers to create infrared products that capture and convert body heat into infrared, increasing local circulation and improved cellular oxygenation. This results in stronger performance, faster recovery and better sleep.

Celliant Viscose provides all the benefits of being a viscose fiber — lightweight, soft, highly breathable, excellent moisture management — as well as fiber enhancements from Celliant infrared technology. Celliant’s proprietary blend of natural minerals allows textiles to capture and convert body heat into full-spectrum infrared energy, resulting in stronger performance, faster recovery and better sleep. In addition, Celliant is durable and will not wash out, lasting the useful life of the product it powers.

An Affordable, Long-lasting Solution with Diverse Applications
As opposed to other IR viscose products which are coatings based, Celliant Viscose’s in-fiber solution increases wearability and longevity with a soft feel, durability from washing and longer life. The combination of Kelheim’s distinctive technology and the Celliant additives creates this unique fiber that provides full functionality without the need for any additional processing step — a new standard in the field of sustainable IR viscose fibers. This single processing also makes Celliant Viscose more cost-effective and time-efficient than coatings.

In addition, Kelheim’s flexible technology allows targeted interventions in the viscose fiber process. By modifying the fiber’s dimensions or cross sections or by incorporating additives into the fiber matrix, Kelheim can precisely define the fiber’s properties according to the specific needs of the end product.

Highly Sustainable
Celliant Viscose is a plant and mineral-based solution for brands seeking an alternative to synthetic fibers. It contains natural raw materials that are from the earth and can return safely to the earth.

Nature-based Celliant Viscose is certified by FSC® or PEFC™, which guarantees the origin in sustainably managed plantations, and is part of the CanopyStyle initiative to protect ancient and endangered forests. The production of Celliant Viscose takes place exclusively at the Kelheim facilities in Germany, complying with the country’s strict environmental laws and guaranteeing an overall eco-friendly product.

Backed by Science
Celliant is rigorously tested by a Science Advisory Board composed of experts in the fields of physics, biology, chemistry and medicine. The Science Advisory Board has overseen 10 clinical, technical and physical trials, and seven published studies that demonstrate Celliant’s effectiveness and the benefits of infrared energy.

For more information, visit www.celliant.com/celliant-viscose/

Source:

Kelheim Fibres GmbH

JUMBO Exoskeleton (c) JUMBO-Textil
01.10.2020

Jumbo Textil: Textile solutions for Exoskeletons

Elastics for power support in medicine and the work environment
People who do physically hard work are relieved; people who are learning how to walk again after an accident or a stroke receive support; people with a handicap gain greater mobility – exoskeletons offer valuable support in many areas. An important component for "power suits": elastics by JUMBO-Textil.

Support construction with and without drive
An exoskeleton is a kind of robot that you wear: a construction of mainly textile components that is slipped over the body and strapped on. Integrated sensors register the body movements. These impulses are converted into electrically driven movements of the exoskeleton, which support or amplify the human movement. In addition, exoskeletons without drive are also being developed: these designs aim to transfer the weight of heavy tools or loads directly into the ground.

Elastics for power support in medicine and the work environment
People who do physically hard work are relieved; people who are learning how to walk again after an accident or a stroke receive support; people with a handicap gain greater mobility – exoskeletons offer valuable support in many areas. An important component for "power suits": elastics by JUMBO-Textil.

Support construction with and without drive
An exoskeleton is a kind of robot that you wear: a construction of mainly textile components that is slipped over the body and strapped on. Integrated sensors register the body movements. These impulses are converted into electrically driven movements of the exoskeleton, which support or amplify the human movement. In addition, exoskeletons without drive are also being developed: these designs aim to transfer the weight of heavy tools or loads directly into the ground.

Tough requirements, individual solutions
Since the skeletons are worn on the body, the textiles and textile components used here need to be skin-friendly and as light as possible. The body's own temperature regulating systems must not be impeded. The contact surfaces must not create pressure points. And the exoskeletons must be individually adaptable to the user's body measurements.

High-tech elastics by JUMBO-Textil offer solutions for the development of exoskeletons – in terms of functionality, safety and wearing comfort: they hold, clamp, close and secure. They relieve and cushion movements and force impact. They illuminate and forward signals. The breathable narrow textiles stretch in both directions as required. They fit snugly on the body and follow every movement. Full-surface hook-and-loop-ready elastic tapes offer a simple, secure and individually adjustable fastening option. JUMBO-Textil consistently uses components made of plastic or light metal for textile components as fastening solutions. As a solution partner for demanding tasks – e.g., in occupational safety – JUMBO-Textil also developes cooled or heated textiles in collaboration with their customers. Also possible: the development of self-luminous narrow textiles – for additional safety.

Source:

(c) stotz-design.com GmbH & Co. KG

The SFL-2000 is the result of a four-year development project (c) AWOL
10.02.2020

ACG Kinna and ACG Nyström teamed up with Juki Corporation


In the latest technology innovation from members of TMAS (the Swedish textile machinery association), ACG Kinna and ACG Nyström have teamed up with Juki Corporation – the world’s leading sewing machine manufacturer – in the development of a new automated line concept that can considerably speed up the production of finished filter bags.

Woven or nonwoven filter bags employed in a wide range of industrial processes may be under the radar as products, but they represent a pretty significant percentage of technical textiles production.

According to a recent report from BCC research, a leading US analyst covering this sector, industrial filtration represented a $555 million market in 2019 and some of the key areas where such filter bags are employed include:


In the latest technology innovation from members of TMAS (the Swedish textile machinery association), ACG Kinna and ACG Nyström have teamed up with Juki Corporation – the world’s leading sewing machine manufacturer – in the development of a new automated line concept that can considerably speed up the production of finished filter bags.

Woven or nonwoven filter bags employed in a wide range of industrial processes may be under the radar as products, but they represent a pretty significant percentage of technical textiles production.

According to a recent report from BCC research, a leading US analyst covering this sector, industrial filtration represented a $555 million market in 2019 and some of the key areas where such filter bags are employed include:

  • Metal fabrication, with effective filtration required for manual and automated welding, thermal cutting, blasting and machining, especially for coolant filtration.
  • The process and energy industries, including foundries, smelters, incinerators, asphalt works and energy production plants.
  • Other key manufacturing fields – often where dust is generated – including the production of timber, textiles, composites, waste handling and minerals, in addition to chemicals, food production, pharmaceuticals, electronics and agriculture.

Line integration
The new SFL-2000 line is the result of a four-year development project between Juki Central Europe, headquartered in Poland, and the two ACG companies.

It is capable of handling a wide range of different filter media, and as an all-in-one solution, can produce high quality and accurate seams to pre-defined parameters, with optional modules allowing for customised constructions.

 

More information:
ACG Kinna ACG Nyström TMAS
Source:

AWOL

Aachen Central Bus Station before the introduction of green.fACade (c) Institut für Textiltechnik
Aachen Central Bus Station before the introduction of green.fACade
03.08.2018

Aachen textile facade reduces nitrogen oxide pollution and urban heat

Aachen researchers have developed the adaptive textile facade green.fACade, which was presented on 2nd August 2018 in the Aachen Faculty of Architecture of RWTH Aachen University, Germany. green.fACade is installed in front of a building like a second skin and can permanently reduce nitrogen oxide pollution in cities.

The researchers achieve the reduction of harmful nitrogen oxides (NO and NO2) by coating the facade with titanium dioxide. Titanium dioxide acts as a photo catalyst and enables the oxidation of nitrogen oxides to form washable nitrate (NO3-). Since the facade is also greened, it contributes to the conversion of carbon dioxide into oxygen by photosynthesis. In addition, a green facade creates an optical resting point in the cityscape and reduces urban heat through evaporation cooling. The enclosed pictures demonstrate how the introduction of green.fACade can have an effect. Picture 1 shows the Aachen Central Bus Station after, picture 2 before the possible introduction of green.fACade.

Aachen researchers have developed the adaptive textile facade green.fACade, which was presented on 2nd August 2018 in the Aachen Faculty of Architecture of RWTH Aachen University, Germany. green.fACade is installed in front of a building like a second skin and can permanently reduce nitrogen oxide pollution in cities.

The researchers achieve the reduction of harmful nitrogen oxides (NO and NO2) by coating the facade with titanium dioxide. Titanium dioxide acts as a photo catalyst and enables the oxidation of nitrogen oxides to form washable nitrate (NO3-). Since the facade is also greened, it contributes to the conversion of carbon dioxide into oxygen by photosynthesis. In addition, a green facade creates an optical resting point in the cityscape and reduces urban heat through evaporation cooling. The enclosed pictures demonstrate how the introduction of green.fACade can have an effect. Picture 1 shows the Aachen Central Bus Station after, picture 2 before the possible introduction of green.fACade.

green.fACade is part of the innovative research project "adaptive textile facades", which uses the special properties of textiles. Thanks to its design, textiles can let sunlight and air through, thus contributing to a modern, aesthetic building design. A new feature of the research project is that further elements such as the titanium oxide coating or sun protection elements are integrated into the textile facade and placed in front of the existing building facade. The adaptive textile facade acts independently and thus reduces energy consumption through the positive climatic effects on the building facade.

"Adaptive Textile Facade" is part of a current research series with the aim of developing innovative facade constructions that are climate-neutral and increase the comfort of local residents. The research team consists of the three RWTH fields of architecture (Faculty of Architecture, PhD student architect M.Sc. Jan Serode), medicine (University Hospital RWTH Aachen, Clinic for Ophthalmology, Prof. Dr Walter) and textile technology (Institut für Textiltechnik, Prof. Dr Gries) and was able to contribute its expertise in the best possible way.

This summer the research team was supported for the first time by the Munich architectural office Auer Weber, represented by managing director Philipp Auer: "For us architects, developments in the field of textile outer shells are a special challenge. Here, highly developed textile materials and processing methods are combined with the lightness and grace of fabrics. Adaptive textile facade elements will increasingly turn the "building shell" into a "building skin", a system that not only offers weather, heat and sun protection, but is in constant intelligent exchange with its environment".

The great importance of these topics for the public was documented by the presence of Kirsten Roßels, representative of the Department of Economics, Science and Europe of the city of Aachen.  Ms Roßels explains: "As the city of Aachen, we are delighted with the innovative and future-oriented project ideas that are being developed at Aachen University, such as the adaptive textile facade. These developments underline the importance of Aachen as a city of science and I would appreciate it if these and other technologies could also become visible in Aachen in the future".

Prof. Dr Gries from the Institut für Textiltechnik sums up: "As textile researchers, we see a great opportunity to develop concrete solutions for our urban living spaces together with renowned experts from other disciplines. I'm sure we can make the urban climate more pleasant and reduce pollution."

Source:

Institut für Textiltechnik (ITA) at RWTH Aachen University

02.05.2018

Demand for European technical textiles attracts leading companies to Cinte Techtextil China

Exhibitors from eight countries have already confirmed to participate in the fair’s European Zone. They join an expected 500-plus total exhibitors from around the world. The 2018 edition of this biennial fair takes place from 4 – 6 September in halls N1 – N3 of the Shanghai New International Expo Centre.

While China retains its edge in terms of technical textiles and nonwovens production capabilities, in the eyes of Chinese buyers, European suppliers are still the leaders when it comes to technology and innovation. This was widely reported by European exhibitors at the previous edition in 2016 of Asia’s leading biennial trade event for the industry: Cinte Techtextil China.

Exhibitors from eight countries have already confirmed to participate in the fair’s European Zone. They join an expected 500-plus total exhibitors from around the world. The 2018 edition of this biennial fair takes place from 4 – 6 September in halls N1 – N3 of the Shanghai New International Expo Centre.

While China retains its edge in terms of technical textiles and nonwovens production capabilities, in the eyes of Chinese buyers, European suppliers are still the leaders when it comes to technology and innovation. This was widely reported by European exhibitors at the previous edition in 2016 of Asia’s leading biennial trade event for the industry: Cinte Techtextil China.

“In the Chinese market, buyers want good quality products, so overseas companies, and products with recognised quality certifications, have a lot of potential,” Ms Ping Chen, General Manager of IBENA Shanghai Technical Textiles commented. “As a leading German company in the industry, our products are welcomed by many buyers at this fair. It is also important to be in the German Pavilion as this signals to buyers that we have quality products, and it attracts more attention.” Swiss firm Sanitized AG had the same experience. “As a Swiss company in the European Zone I believe it’s an advantage, as some local buyers have more confidence towards imported products,” Mr Steven Liu, Sales Manager said.

Other exhibitors commented on the long-term trends in the Chinese market. “There’s a definite shift to more high-quality machinery in China that isn’t affected by what’s happening in the overall economy. Moreover, there are opportunities for overseas suppliers as there is still a gap between us and what Chinese companies produce,” Dr Joachim Binnig, Vice President, Head of Development & Technology, Autefa Solutions Germany GmbH explained.

Mr Roger Zhang, Sales Manager for German firm J.H. Ziegler Nonwovens and New Materials commented: “Our products are mainly for high-end Chinese customers, such as BMW and Audi. The Chinese market has gradually matured, but the production capability for high-performance products which are energy efficient and eco-friendly is still developing, so there is a lot of space for overseas brands to develop here.”

European Zone highlights
This year’s European Zone will feature around 30 exhibitors from eight countries, including Austria, Belgium, the Czech Republic, France, Italy, the Netherlands, Sweden, Switzerland and the UK, while further exhibitors can be found in national pavilions from Belgium, the Czech Republic, Germany and Italy. Some of the exhibitor highlights in the European Zone include:

  • Arkema (France): with brands including PMMA Altuglas, Rilsan, Pebax, Kynar PVDF and Bostik, they will present polymer resin for fibres and yarns, which apply to a wide range of applications, at the fair.
  • Dakota Coating (Belgium): specialists in thermoplastic and thermosetting adhesives, their polymer products, based on polyethylene, polyolefin or mixtures, ethylene vinyl acetates, co-polyamides, polyurethanes and co-polyesters, are suitable for automotive, building, heat transfer and sound insulation uses.
  • Lenzing Plastics (Austria): a new exhibitor at the fair, they are a leading manufacturer of polyolefin and fluoropolymer products, such as Thermoplast and PTFE products. One of their core competencies lies in the monoaxial stretching of films and filaments, and they offer special solutions in the fields of construction & insulation, medicine & hygiene, packaging and cables, as well as automotive and technical textiles. They will highlight their PROFILEN® PTFE product at the fair, and with its extreme durability and very smooth surface, it is highly valued in many niche applications in the technical and medical sectors.
  • Protechnic (France): leading manufacturers of hot-melt adhesives and plastic printed films, they will showcase hot melt thermo-adhesive nets, webs and films at the fair.
  • Trelleborg Coated Systems (Italy): another new exhibitor this edition, they produce high-performance, engineered coated fabrics. They offer a wide variety of substrates – from Kevlar® to silk – with a choice of weaving methods.