From the Sector

Reset
337 results
Winner of Cellulose Fibre Innovation Award 2024 (c) nova-Institute
Winner of Cellulose Fibre Innovation Award 2024
27.03.2024

Winner of Cellulose Fibre Innovation Award 2024

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

40 international speakers presented the latest market trends in their industry and illustrated the innovation potential of cellulose fibres. Leading experts introduced new technologies for the recycling of cellulose-rich raw materials and gave insights into circular economy practices in the fields of textiles, hygiene, construction and packaging. All presentations were followed by exciting panel discussions with active audience participation including numerous questions and comments from the audience in Cologne and online. Once again, the Cellulose Fibres Conference proved to be an excellent networking opportunity to the 214 participants and 23 exhibitors from 27 countries. The annual conference is a unique meeting point for the global cellulose fibre industry.  

For the fourth time, nova-Institute has awarded the “Cellulose Fibre Innovation of the Year” Award at the Cellulose Fibres Conference. The Innovation Award recognises applications and innovations that will lead the way in the industry’s transition to sustainable fibres. Close race between the nominees – “The Straw Flexi-Dress” by DITF & VRETENA (Germany), cellulose textile fibre from unbleached straw pulp, is the winning cellulose fibre innovation 2024, followed by HONEXT (Spain) with the “HONEXT® Board FR-B (B-s1, d0)” from fibre waste from the paper industry, while TreeToTextile (Sweden) with their “New Generation of Bio-based and Resource-efficient Fibre” won third place.

Prior to the event, the conference advisory board had nominated six remarkable innovations for the award. The nominees were neck and neck, when the winners were elected in a live vote by the audience on the first day of the conference.

First place
DITF & VRETENA (Germany): The Straw Flexi-Dress – Design Meets Sustainability

The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

Second place
Honext Material (Spain): HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry

HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, the product is verified in the Product Environmental Footprint.

Third Place
TreeToTextile (Sweden): A New Generation of Bio-based and Resource-efficient Fibre

TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn’t exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

The next conference will be held on 12-13 March 2025.

Source:

nova-Institut für politische und ökologische Innovation GmbH

26.03.2024

CARBIOS joins Paris Good Fashion

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS will be particularly involved in the association's project to set up a working group dedicated to the development of a "fiber-to-fiber" industry, one of Paris Good Fashion's top priorities over the next five years. While only 1% of textiles are currently recycled fiber-to-fiber (circular), this working group will identify levers for significantly increasing the share of recycled fibers in the industry.  Polyester currently follows a linear model from which we need to break out: virgin polyester is made from petroleum, and recycled polyester from PET bottles. After use, most of these products end their lives in landfill or incineration. A circular, "fiber-to-fiber" industry will give new life to textiles and reduce the environmental impact associated to their end-of-life management.

Source:

Carbios

22.03.2024

Fashion for Good: Ten new innovators for 2024 programme

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

  • Algreen Ltd: Algreen co-develops alternative materials from algae and biobased sources that can replace fossil-based products such as PU.
  • Balena: Balena creates biodegradable partly biobased polymers for footwear outsoles.
  • Epoch Biodesign: Epoch Biodesign is an enzymatic recycler of PA66 and PA6 textile waste.
  • Fibre52: Fibre52 is a bio-based solution replacing traditional bleach prepared-for-dyeing and dye processes.
  • Gencrest BioProducts Pvt Ltd: Gencrest works with various agri-residues to convert them into textile-grade fibres using their enzymatic technology.
  • HeiQ AeoniQ: HeiQ AeoniQ™ is a continuous cellulose filament yarn with enhanced tensile properties.
  • Nanollose - Nullabor: Nullarbor™Lyocell is developed from microbial cellulose which is converted into pulp pulp to produce a lyocell fibre with their partner Birla Cellulose.  
  • REGENELEY:  REGENELEY pioneers advanced shoe sole recycling technologies by separating and recycling EVA, TPU, and rubber components found in footwear.
  • Samsara Eco: Samsara Eco is an enzymatic recycler of PA66 and PET textile waste.
  • SEFF: SEFF Fibre produces cottonised fibres and blends of hemp fabrics utilising a patented HVPED process.
Source:

Fashion for Good

Polartec: New High-Performance fabric with recycled materials (c) Polartec
20.03.2024

Polartec: New High-Performance fabric with recycled materials

Polartec® introduces Polartec® Power Shield™ RPM, made from recycled polyester materials and the Polartec® 200, and Micro Series recycled fleeces featuring Polartec® Shed Less™ technology.

Polartec® Power Shield™ RPM is a recycled polyester fabric that offers waterproofness, wind-proofness and breathability, and also ensures high-stretch comfort and resilience. With its high range of motion and highly durable 100% recycled polyester membrane designed for high intensity activities, Power Shield™ RPM elevates end use comfort and is made for runners, cyclists and golfers who refuse to trade performance for sustainability.

Polartec® Shed Less™ technology is an innovative process that decreases fiber fragment shedding during home laundering up to 85%* without compromising the performance or durability of the fabrics it’s applied to. Less shedding means fewer microfiber fragments end up in the oceans and waterways.

Polartec® introduces Polartec® Power Shield™ RPM, made from recycled polyester materials and the Polartec® 200, and Micro Series recycled fleeces featuring Polartec® Shed Less™ technology.

Polartec® Power Shield™ RPM is a recycled polyester fabric that offers waterproofness, wind-proofness and breathability, and also ensures high-stretch comfort and resilience. With its high range of motion and highly durable 100% recycled polyester membrane designed for high intensity activities, Power Shield™ RPM elevates end use comfort and is made for runners, cyclists and golfers who refuse to trade performance for sustainability.

Polartec® Shed Less™ technology is an innovative process that decreases fiber fragment shedding during home laundering up to 85%* without compromising the performance or durability of the fabrics it’s applied to. Less shedding means fewer microfiber fragments end up in the oceans and waterways.

Polartec® Micro™ Series is engineered to provide long-lasting comfort in a vast range of conditions and activity levels. This recycled fleece with Polartec® Shed Less™ technology is made from a lofted structure with thermal air pockets to retain warmth without inhibiting breathability. Polartec® Micro™ Series is both hydrophobic and fast drying.

Polartec® 200 Series is the modern version of the original PolarFleece®, which in 1993 became the first performance fleece knit from yarn made from recycled plastic bottles. It has a great resiliency, lightweight warmth and a fast drying time.

More information:
Polartec Shed Less Fleece polyester
Source:

Polartec

Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

Das Team des FTB der Hochschule Niederrhein zu Besuch bei der Firma Bache Innovative, mit der es im Rahmen von „KnitCycle“ Recycling-Versuche durchführt. Dazu wurden erste textile Produktionsabfälle klassifiziert und sortiert. Foto Hochschule Niederrhein
Das Team des FTB der Hochschule Niederrhein zu Besuch bei der Firma Bache Innovative, mit der es im Rahmen von „KnitCycle“ Recycling-Versuche durchführt. Dazu wurden erste textile Produktionsabfälle klassifiziert und sortiert.
19.03.2024

KnitCycle: Forschungsprojekt für kreislaufgerechte Flachstrick-Textilien

87 Prozent des weltweiten Textilabfalls in der Bekleidungsindustrie landen auf Deponien oder werden verbrannt. Von den 13 Prozent, die noch mechanisch weiterverarbeitet werden, enden die meisten Alttextilien als Dämmmaterial (Downcycling). Nicht einmal ein Prozent werden zu hochwertigen Fasern aufbereitet, aus denen wieder neue Kleidung entsteht.
 
Gemeinsam mit Bache Innovative als Antragstellerin hat die Hochschule Niederrhein (HSNR) ein großes Forschungsprojekt gestartet: „KnitCycle – kreislaufgerechte Produktentwicklung für Flachstricktextilien“. Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Vorhaben für zwei Jahre mit insgesamt rund 290.000 Euro, davon fließen 225.000 Euro an die HSNR.
 
Wo Textilabfall recycelt und damit in den Kreislauf zurückgeführt werden kann, muss auch weniger entsorgt werden. Werden Produktionsabfälle und -überhänge vernichtet, ist das nicht nur teuer für die Unternehmen. Für die Herstellung neuer Kleidung müssen auch wieder neue Fasern erzeugt werden. Je nach Faserstoff kommt es dabei zu großem Wasserverbrauch, starkem Pestizid- und Düngemitteleinsatz sowie langen Transportwegen mit hohen CO2-Emissionen.  

87 Prozent des weltweiten Textilabfalls in der Bekleidungsindustrie landen auf Deponien oder werden verbrannt. Von den 13 Prozent, die noch mechanisch weiterverarbeitet werden, enden die meisten Alttextilien als Dämmmaterial (Downcycling). Nicht einmal ein Prozent werden zu hochwertigen Fasern aufbereitet, aus denen wieder neue Kleidung entsteht.
 
Gemeinsam mit Bache Innovative als Antragstellerin hat die Hochschule Niederrhein (HSNR) ein großes Forschungsprojekt gestartet: „KnitCycle – kreislaufgerechte Produktentwicklung für Flachstricktextilien“. Die Deutsche Bundesstiftung Umwelt (DBU) fördert das Vorhaben für zwei Jahre mit insgesamt rund 290.000 Euro, davon fließen 225.000 Euro an die HSNR.
 
Wo Textilabfall recycelt und damit in den Kreislauf zurückgeführt werden kann, muss auch weniger entsorgt werden. Werden Produktionsabfälle und -überhänge vernichtet, ist das nicht nur teuer für die Unternehmen. Für die Herstellung neuer Kleidung müssen auch wieder neue Fasern erzeugt werden. Je nach Faserstoff kommt es dabei zu großem Wasserverbrauch, starkem Pestizid- und Düngemitteleinsatz sowie langen Transportwegen mit hohen CO2-Emissionen.  
 
Die Projektpartner erarbeiten ein Konzept, mit dem gestrickte Produkte so entwickelt werden können, dass sie sich am Produktlebensende durch ein Faser-zu-Faser-Recycling zu hochwertigen Fasern neu aufbereiten lassen. Aus diesen Fasern kann anschließend neues, industriell verarbeitbares Garn für Bekleidung hergestellt werden, das im Idealfall später abermals recycelt werden kann.
 
Unter dem Motto „Design for Recycling“ analysieren die Partner, welche Faktoren und Verfahren am besten geeignet sind, Textilien schon bei ihrer Entstehung so zu planen, dass sie am Produktlebensende optimal recyclingfähig sind. Gleichzeitig dürfen sich Ästhetik, Qualität und Langlebigkeit der Produkte nicht verschlechtern. Die Frage ist also: Welche Parameter im mechanischen Recycling werden benötigt und welche Produkteigenschaften erzielen das beste kreislauffähige Ergebnis?
 
„KnitCycle“ konzentriert sich auf Pulloverwaren und Produkte, die auf Flachstrickmaschinen endformgerecht in Deutschland produziert werden. Dafür liefert und produziert die auf 3D-Strickwaren spezialisierte Firma Bache Innovative eigenes Abfall- und Forschungsmaterial.
 
Unterstützung mit Experten-Knowhow gibt es auch von TURNS Faserkreisläufe. Dieses Unternehmen stellt recycelte Garne aus verschiedenen gebrauchten, ausrangierten Alttextilien her.
 
Die Faser-zu-Faser-Recycling-Versuche finden am hochschuleigenen Forschungsinstitut für Textil und Bekleidung (FTB) statt. Dazu schafft die HSNR von dem Fördergeld eine Reißmaschine für das Textilrecycling an. Hiermit werden vor Ort die optimalen Prozessparameter für das Recycling der jeweiligen Produkttypen ermittelt. Die in diesem Prozess gewonnenen Reißfasern werden dann u.a. mit Unterstützung der Firma Textechno H. Stein GmbH & Co. KG aus Mönchengladbach analysiert und bewertet.

Mittels unterschiedlicher Aufbereitungs- und Spinnverfahren werden aus den Reißfasern anschließend neue Garne hergestellt. Die Forschenden testen, wie sich die Fasern wiederverspinnen lassen – auch in Kombination mit anderen Naturfasern, um mit möglichst hochwertigen neuen Produkten den Produktkreislauf zu schließen.

An Labor-Strickmaschinen erzeugt das FTB-Team erste 2D-Strickproben. Die finalen Strickprodukte aus den recycelten Garnen stellt der Kooperationspartner Bache Innovative her. 

Source:

Hochschule Niederrhein

18.03.2024

Lenzing: Combined annual and sustainability report 2023

  • Combination of financial and non-financial reporting as evidence of the central role of sustainability
  • Measurable progress in achieving sustainability and climate targets
  • Recognized for sustainability and prepares for the European Green Deal

The Lenzing Group has published a combined annual and sustainability report for the first time, reaffirming the strategic importance of social and environmental responsibility for the company. With the title “Ready to join?”, Lenzing would like to extend an invitation to all customers and partners to join forces to renew the textile and nonwovens industries and bring about positive change.

“This annual and sustainability report is also an invitation to find answers together. Lenzing is working tirelessly to make the industries in which it operates even more sustainable and to drive the transformation of the textile business model from linear to circular. For this transformation to be successful, further efforts by the entire industry and a policy designed to ensure a level playing field for sustainability pioneers are needed,” says Stephan Sielaff, CEO of the Lenzing Group.

  • Combination of financial and non-financial reporting as evidence of the central role of sustainability
  • Measurable progress in achieving sustainability and climate targets
  • Recognized for sustainability and prepares for the European Green Deal

The Lenzing Group has published a combined annual and sustainability report for the first time, reaffirming the strategic importance of social and environmental responsibility for the company. With the title “Ready to join?”, Lenzing would like to extend an invitation to all customers and partners to join forces to renew the textile and nonwovens industries and bring about positive change.

“This annual and sustainability report is also an invitation to find answers together. Lenzing is working tirelessly to make the industries in which it operates even more sustainable and to drive the transformation of the textile business model from linear to circular. For this transformation to be successful, further efforts by the entire industry and a policy designed to ensure a level playing field for sustainability pioneers are needed,” says Stephan Sielaff, CEO of the Lenzing Group.

The results for the 2023 financial year were already published. The report was once again prepared in digital form and is now available.

Source:

Lenzing AG

13.03.2024

IDEA®25: Call for abstracts

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

  • Natural Fibers (Cotton, Hemp, Bamboo, Banana, Wood Pulp, Regenerated Cellulose, Wool, Fur, Chitin, Feathers)
  • Polymers (Biopolymers, Regenerated and Recycled polymers, Unconventional and Alternatives to Traditional Polymers)
  • Sustainable Chemistries (finishes, lubricants, adhesives, and additives)

INNOVATIONS IN SUSTAINABILITY

  • Process Improvements with Sustainability Impact (reduced waste, reduced energy, reduced water consumption)
  • Product Design Improvements with Sustainability Impact (lightweighting, designs for end-of-life, “good enough” design)

END-OF-LIFE SOLUTIONS

  • End-of-Life or Next-Life Considerations (compostability, biodegradability, recycling, advanced recycling and circularity)
  • Presenting is an opportunity for technical professionals to showcase pioneering research, innovative solutions, and expert insights with technology scouts.

Abstracts must be submitted via the INDA website by June 7, 2024.

Source:

INDA - Association of the Nonwoven Fabrics Industry

05.03.2024

Denim Expert's Goal: 100% wastewater recycling

The announcement of a new effluent treatment plant (ETP) marks a milestone in Denim Expert's journey towards sustainability. This upcoming facility is a testament to the company's dedication to reducing its ecological footprint and safeguarding local ecosystems through advanced water management techniques.

The new Effluent Treatment Plant (ETP) being developed by Denim Expert strives for 100% wastewater recycling. As the ETP rises from concept to reality, Denim Expert embarks on a transition towards its next horizon: aligning with the Zero Discharge of Hazardous Chemicals (ZDHC) Wastewater Guidelines Version 2.0.

The announcement of a new effluent treatment plant (ETP) marks a milestone in Denim Expert's journey towards sustainability. This upcoming facility is a testament to the company's dedication to reducing its ecological footprint and safeguarding local ecosystems through advanced water management techniques.

The new Effluent Treatment Plant (ETP) being developed by Denim Expert strives for 100% wastewater recycling. As the ETP rises from concept to reality, Denim Expert embarks on a transition towards its next horizon: aligning with the Zero Discharge of Hazardous Chemicals (ZDHC) Wastewater Guidelines Version 2.0.

Denim Expert's proactive approach to sustainability has been recognized on a global scale. The company has been named 'New Champion' by the World Economic Forum and has partnered with organizations such as the Sustainable Apparel Coalition (SAC), the United Nations Framework Convention on Climate Change (UNFCCC), and the Ellen MacArthur Foundation's Jeans Redesign program. As one of the first factories to join the Partnership for Cleaner Textile (PaCT) and in the process of implementing the 3E program, Denim Expert is dedicated to achieving 100% water reuse and full reliance on solar energy, further solidifying its commitment to driving positive environmental change.

01.03.2024

AkzoNobel: New manufacturing plant in Pakistan

A new €26 million manufacturing plant with its own forest has been opened by AkzoNobel in Faisalabad – the company’s largest investment in Pakistan to date.

The 25-acre site, which has facilities for making decorative paint, wood finishes, automotive and specialty coatings, coil coatings and protective coatings, will help to meet increasing customer demand across a variety of markets.

Also incorporated into the Faisalabad location is a forest spanning an area of 5,450 square feet. More than 1,400 native trees and shrubs – planted using the Japanese Miyawaki gardening technique – are expected to grow into a flourishing self-sustaining ecosystem over the next two years.

The site, which employs nearly 200 people, has been constructed to comply with the company’s strict environmental standards and includes a series of sustainability features, such as renewable energy generation and energy efficient design.

A new €26 million manufacturing plant with its own forest has been opened by AkzoNobel in Faisalabad – the company’s largest investment in Pakistan to date.

The 25-acre site, which has facilities for making decorative paint, wood finishes, automotive and specialty coatings, coil coatings and protective coatings, will help to meet increasing customer demand across a variety of markets.

Also incorporated into the Faisalabad location is a forest spanning an area of 5,450 square feet. More than 1,400 native trees and shrubs – planted using the Japanese Miyawaki gardening technique – are expected to grow into a flourishing self-sustaining ecosystem over the next two years.

The site, which employs nearly 200 people, has been constructed to comply with the company’s strict environmental standards and includes a series of sustainability features, such as renewable energy generation and energy efficient design.

Source:

AkzoNobel

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024 (c) FUSE GmbH
26.02.2024

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

The STOLL Business Unit will be focussing on thermoplastic materials. Several knit to shape parts with a textile outer surface and a hardened inner surface will be on display. The double-face products can be made from different types of yarn and do not need to be back-moulded for use as side door panels or housing shells, for example. In addition, the ready-to-use design saves on waste and yarn material.

07.02.2024

RadiciGroup’s roadmap to a sustainable future

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

In the context of a complex and constantly changing scenario, the Group has therefore decided to capitalize on the goals achieved and look beyond them with a plan defining the medium-term targets and the actions to be taken to fulfil them and covering all areas considered to be "material”, i.e., relevant from the point of view of ESG and financial risks, opportunities and impacts. Indeed, the ultimate goal of "From Earth to Earth" is to support business continuity and the growth of the company and all its stakeholders.

The project was the result of a multi-year collaboration with Deloitte, which contributed an external and objective viewpoint on the definition of the material targets and themes. However, it was not an armchair exercise, but the result of an extensive listening process involving internal and external stakeholders, all of whom were sustainability experts who helped define a shortlist of strategic themes for both the Group and its main stakeholders. These issues were then analysed in detail using working tables on the different themes to identify the objectives in Environmental, Social and Governance areas and the related concrete actions needed to achieve them, in line with the European decarbonization and energy transition policies and the
United Nations Sustainable Development Goals, a global blueprint for sustainable growth.

In particular, RadiciGroup’s environmental goals include: a 20% increase and differentiation in renewable source electricity consumption, an 80% reduction in total direct greenhouse gas emissions by 2030 compared to 2011, attention to water consumption to limit the impact on local communities and biodiversity, the extension of Life Cycle Assessment (LCA) methodology to measure the environmental impact of 70% of the products (in terms of weight) manufactured by the entire Group, collaboration among the various actors in the supply chain from an ecodesign perspective and the search for increasingly more sustainable and circular packaging solutions.

IHKIB: Green Transformation Journey of the Turkish Apparel Industry (c) Istanbul Apparel Exporters' Association (IHKIB)
TIM and IHKIB President Mustafa Gültepe
05.02.2024

IHKIB: Green Transformation Journey of the Turkish Apparel Industry

The fashion industry, which has strategic importance for the Turkish economy with its value-added production, employment, and exports, came together with representatives of global brands and Laison offices at the 'Green transformation' summit. At the meeting hosted by the Istanbul Apparel Exporters' Association (IHKIB), the studies carried out in the process of adaptation to the Green Deal were put under the spotlight, and the expectations of the Turkish fashion industry from the stakeholders were also expressed.

The opening of the meeting, attended by representatives of relevant ministries and foreign representations, national and international fund providers, as well as brands and buying groups were brought together, was made by Türkiye Exporters Assembly (TIM) and IHKIB President Mustafa Gültepe. In his speech, Gültepe underlined Türkiye's importance in the global apparel industry, by realizing approximately 3.5 percent of world apparel exports. Gültepe continued as follows:

The fashion industry, which has strategic importance for the Turkish economy with its value-added production, employment, and exports, came together with representatives of global brands and Laison offices at the 'Green transformation' summit. At the meeting hosted by the Istanbul Apparel Exporters' Association (IHKIB), the studies carried out in the process of adaptation to the Green Deal were put under the spotlight, and the expectations of the Turkish fashion industry from the stakeholders were also expressed.

The opening of the meeting, attended by representatives of relevant ministries and foreign representations, national and international fund providers, as well as brands and buying groups were brought together, was made by Türkiye Exporters Assembly (TIM) and IHKIB President Mustafa Gültepe. In his speech, Gültepe underlined Türkiye's importance in the global apparel industry, by realizing approximately 3.5 percent of world apparel exports. Gültepe continued as follows:

"As IHKIB, we aim to increase our current annual exports, which are around $20 billion, to $40 billion. The road to the goal goes through Europe and America because the European Union is our largest market in apparel. We export 60 percent of our total apparel exports to EU countries. When we add other European countries and the USA, the ratio approaches 75 percent. While working on alternatives for the $40 billion in exports, we need to focus more on the European and U.S. markets because, as the data shows, the path to $40 billion in apparel exports goes through Europe and the U.S. We already have long-standing collaborations with brands centered in Europe and America. With our knowledge, speed, production quality, design power, and geographical proximity to Europe, we distinguish ourselves from competitors. We took a very important step in the transformation process exactly one year ago. We shared our action plan, which is a road map for our fashion industry's compliance with the Green Deal, with the public on January 30, 2023."

After Mustafa Gültepe's opening speech, Euratex Director General Dirk Vantyghem, Deputy Director General of the Ministry of Trade Bahar Güçlü, and Deputy Secretary General of ITKIB Özlem Güneş made presentations regarding the ongoing efforts in the Green Deal process.

Dirk Vantyghem discussed the sustainability strategy of the textile and apparel industry and the expectations from the EU administration, while Bahar Güçlü provided information about the reflections of legal regulations related to the Green Deal on Türkiye.

Deputy Secretary General of ITKIB Özlem Güneş emphasized the significant opportunity that the Green Deal represents for the Turkish apparel industry, providing comprehensive insights into the efforts conducted by IHKIB regarding the Green Deal adaptation process.

Source:

Istanbul Apparel Exporters' Association (IHKIB)

29.01.2024

Refashion: Renewal of accreditation for 2023-2028

Refashion, a textile industry’s eco-organisation, has renewed its authority approval until 2028. 6 years during which it will continue to transform the industry in keeping with the objectives set by the French Ministry of Ecological Transition and the French Ministry of the Economy, including the objective to collect 60% of CHF (clothing, household linen and footwear textiles) placed on the market by 2028. This new period is reflected in an ambitious road map and significantly increased investment. Nearly 1.2 billion euros, financed by the marketers, will be spent on transforming the industry during this new period of authority approval.

Refashion, a textile industry’s eco-organisation, has renewed its authority approval until 2028. 6 years during which it will continue to transform the industry in keeping with the objectives set by the French Ministry of Ecological Transition and the French Ministry of the Economy, including the objective to collect 60% of CHF (clothing, household linen and footwear textiles) placed on the market by 2028. This new period is reflected in an ambitious road map and significantly increased investment. Nearly 1.2 billion euros, financed by the marketers, will be spent on transforming the industry during this new period of authority approval.

Determined to achieve the objectives set out in the ambitious specifications set down by the Secretary of State at the Ministry of Ecological Transition, Berangère Couillard, Refashion has worked on a road map with all of its stakeholders involved in the transformation that is underway. Maud Hardy, nominated as the eco-organisation’s CEO in January 2022, started a collaborative working method that will continue throughout this new period to support areas that are key in this transformation. In the next few months, projects will begin and will visibly highlight the progress made in the three phases of a product’s life cycle: production consumption, regeneration.

Production

  • Recognising eco-design initiatives through the eco-modulation of the fees paid by marketers (durability, environmental information labelling, integration of recycled materials). For marketers, these initiatives should represent the scheme’s cornerstone. The aim is to involve all stakeholders in reducing the environmental impact of products.

Consumption

  • As from 2023, Refashion will spend 5 million euros minimum per year in awareness-raising activities and on information to the general public by supporting an array of local authority initiatives.
  • The launch of a repair fund in 2023, in particular to prolong the usage of textiles and footwear products. More than 150 million euros will be invested between 2023 and 2028 to change the habits of the French population to increase repairs by 35% (guideline target by the ADEME 2019).

Regeneration

  • Accelerating clothing, household linen and footwear collection, in particular thanks to an operational mix in the sector. Funding traditional sorting operators will remain central, but Refashion will also develop an additional operational system in order to achieve the collection target of 60% of products placed onto the market (versus 34% in 2021).
  • 5% of fees paid to Refashion will go towards the redeployment/reuse funds to provide support for reuse within the remit of stakeholders in the Social and Solidarity Economy. In addition to this funding, additional funding arrangements open to all stakeholders will be established. The total budget throughout the authority approval period represents 135 million euros.
  • 5% of fees, i.e., 58 million euros in 6 years, will be spent on R&D to help achieve these milestones in order to industrialise the recycling of used CHF: recyclability that is considered during the design stage; automated sorting and recycling.
Source:

Refashion

MACH2®XS Photo SHIMA SEIKI MFG., LTD.
MACH2®XS
28.01.2024

SHIMA SEIKI at Dhaka International Textile & Garment Machinery Exhibition 2024

Operating in Bangladesh since 1996, this is the fourteenth time the Japanese manufacturer is participating in DTG.

As the Bangladeshi textile industry calls for sustainable production through innovation and digitalization, the market is keen to establish effective business models that support such production. In response, for the first time in its DTG exhibition history, SHIMA SEIKI's lineup consists entirely of WHOLEGARMENT® knitting machines. Capable of knitting an entire garment in one piece without the need for linking or sewing while using only the material required to knit one garment at a time, WHOLEGARMENT® knitting is famous for promoting sustainability in the knit factory.

Operating in Bangladesh since 1996, this is the fourteenth time the Japanese manufacturer is participating in DTG.

As the Bangladeshi textile industry calls for sustainable production through innovation and digitalization, the market is keen to establish effective business models that support such production. In response, for the first time in its DTG exhibition history, SHIMA SEIKI's lineup consists entirely of WHOLEGARMENT® knitting machines. Capable of knitting an entire garment in one piece without the need for linking or sewing while using only the material required to knit one garment at a time, WHOLEGARMENT® knitting is famous for promoting sustainability in the knit factory.

The company is showing its MACH2®XS153 WHOLEGARMENT® knitting machine in 15L gauge, as well as its SWG®091N2 "Mini" WHOLEGARMENT® knitting machine in 15 gauge. MACH2®XS features 4 needle beds and SHIMA SEIKI's original SlideNeedle™, capable of producing high-quality fine gauge WHOLEGARMENT® knitwear in all needles. SWG®091N2 provides opportunities in WHOLEGARMENT® knitting across a wide range of items in a compact, economical package. A different approach to WHOLEGARMENT knitting is also shown in the form of the N.SVR®183 machine. SHIMA SEIKI's global standard in shaped knitting, the N.SVR® series now features a model for producing WHOLEGARMENT® knitwear using every other needle in fine gauge. Shown in 18 gauge at DTG, N.SVR®183 is the ideal machine for flexible, entry-level WHOLEGARMENT® production, with the versatility to respond to fluctuating market demand.

Demonstrations are performed on SHIMA SEIKI's SDS®-ONE APEX4 design system. At the core of the company’s "Total Fashion System" concept, it provides comprehensive support throughout the supply chain, integrating production into one smooth and efficient workflow from yarn development, product planning and design, to machine programming, production and even sales promotion.

Source:

SHIMA SEIKI MFG., LTD.

DITF: Recyclable event and trade fair furniture made of paper (c) DITF
Structurally wound paper yarn element with green sensor yarn.
26.01.2024

DITF: Recyclable event and trade fair furniture made of paper

A lot of waste is generated in the trade fair and event industry. It makes sense to have furniture that can quickly be dismantled and stored to save space - or simply disposed of and recycled. Paper is the ideal raw material here: locally available and renewable. It also has an established recycling process. The German Institutes of Textile and Fiber Research (DITF) and their project partners have jointly developed a recycling-friendly modular system for trade fair furniture. The "PapierEvents" project was funded by the German Federal Environmental Foundation (DBU).

Once the paper has been brought into yarn form, it can be processed into a wide variety of basic elements using the structure winding process, creating a completely new design language.

A lot of waste is generated in the trade fair and event industry. It makes sense to have furniture that can quickly be dismantled and stored to save space - or simply disposed of and recycled. Paper is the ideal raw material here: locally available and renewable. It also has an established recycling process. The German Institutes of Textile and Fiber Research (DITF) and their project partners have jointly developed a recycling-friendly modular system for trade fair furniture. The "PapierEvents" project was funded by the German Federal Environmental Foundation (DBU).

Once the paper has been brought into yarn form, it can be processed into a wide variety of basic elements using the structure winding process, creating a completely new design language.

The unusual look is created in the structure winding process. In this technology developed at the DITF, the yarn is deposited precisely on a rotating mandrel. This enables high process speeds and a high degree of automation. After the winding process, the individual yarns are fixed, creating a self-supporting component. A starch-based adhesive, which is also made from renewable and degradable raw materials, was used in the project for the fixation.

The recyclability of all the basic elements developed in the project was investigated and confirmed. For this purpose the research colleagues at the project partner from the Department of Paper Production and Mechanical Process Engineering at TU Darmstadt (PMV) used the CEPI method, a new standard test procedure from the Confederation of European Paper Industries.

Sensor and lighting functions were also implemented in a recycling-friendly manner. The paper sensor yarns are integrated into the components and detect contact.

Also, a modular system for trade fair and event furniture was developed. The furniture is lightweight and modular. For example, the total weight of the counter shown is well under ten kilograms and individual parts can easily be shipped in standard packages. All parts can be used several times, making them suitable for campaigns lasting several weeks.

A counter, a customer stopper in DIN A1 format and a pyramid-shaped stand were used as demonstrators. The research work of the DITF (textile technology) and PMV (paper processing) was supplemented by other partners: GarnTec GmbH developed the paper yarns used, the industrial designers from quintessence design provided important suggestions for the visual and functional design of the elements and connectors and the event agency Rödig GmbH evaluated the ideas and concepts in terms of usability in practical use.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

Selection of looks of the What Goes Around Comes Around exhibition Photographer: Elzo Bonam
Selection of looks of the What Goes Around Comes Around exhibition
25.01.2024

Fashion for Good Museum: Final exhibition “What goes around comes around”

The Fashion for Good museum in Amsterdam marks its 6 year journey with a special fashion exhibition focused on circularity, called What Goes Around Comes Around. Honing in on how circularity plays out in different circles of influence, the exhibition showcases inspirational displays that make tangible what a circular fashion industry will look like.

What Goes Around Comes Around pays homage to the extraordinary work of pioneering artists, innovators and designers working to shift the fashion industry with new solutions. The exhibition opens January 27, 2024 and will be open to the public for 5 months. It is the grand finale, as the Museum is closing its doors. As such it will be the Museum’s final call to collective action, which the fashion industry still so highly needs.

The Fashion for Good museum in Amsterdam marks its 6 year journey with a special fashion exhibition focused on circularity, called What Goes Around Comes Around. Honing in on how circularity plays out in different circles of influence, the exhibition showcases inspirational displays that make tangible what a circular fashion industry will look like.

What Goes Around Comes Around pays homage to the extraordinary work of pioneering artists, innovators and designers working to shift the fashion industry with new solutions. The exhibition opens January 27, 2024 and will be open to the public for 5 months. It is the grand finale, as the Museum is closing its doors. As such it will be the Museum’s final call to collective action, which the fashion industry still so highly needs.

“We are highlighting three areas in What Goes Around Comes Around", explains curator Sophie Jager-van Duren at the Fashion for Good Museum. “First: new work by local artists Atelier Reservé and The Patchwork Family, design collectives working towards circularity, demonstrating what is happening right now. We are also showing looks from established designers BOTTER, Ronald van der Kemp and Marga Weimans, Yuima Nakazato and Nicole McLaughlin. Second, the community, with an installation for visitors to participate in, planting the seed that we need each other to change the fashion system. Lastly, the industry - honing in on examples of innovations and technologies. We invited designers to create new work with circular materials including Living Ink, MIRUM, Altmat and Biophilica.”

Today’s fashion industry is caught in a vicious cycle of ‘take-make-waste’ and this system has a growing negative impact on people and the planet. For instance, in Europe, the average consumer is responsible for 15 kilos of textile waste per year and these numbers are increasing. To address this, we need action from individuals, the industry and society alike to go from a linear take-make-waste model into one that is circular by design.

The Fashion for Good Museum is inviting anybody to come visit its final exhibition and learn from concrete examples, to understand the current state of the fashion industry, gain the tools for taking individual or collective action and be inspired by circular fashion available today.

Designing for circularity means designing without creating waste or pollution, as all materials are continually reused instead of discarded. A circular system is restorative and regenerative and reduces pressure on natural resources. The ultimate goal of the exhibition is to put circularity into practice, help people envision a circular economy based on community practices and empower visitors to take collective action, starting in the museum but extending to their homes and daily lives.

Through the exhibition and its public programme, which consists of interactive workshops and educational events, the museum functions as a community space where visitors are invited to learn, gain new perspectives and are exposed to inspiring examples, building the skills and knowledge to create positive change. The upcoming few months there are multiple events, educational toolkits and other opportunities to join us, all open for the public, keep an eye out on our website and social media channels for the latest updates.

The exhibition is open for the public from Saturday 27th of January until June 5th 2024, marking World Environment Day on June 5th as the final closing day of the museum.

Source:

Fashion for Good 

Celanese and Under Armour introduce elastane alternative (c) Celanese Corporation
24.01.2024

Celanese and Under Armour introduce elastane alternative

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

NEOLAST™ fibers will be produced using recyclable elastoester polymers. As end users transition to a more circular economy, Celanese and Under Armour are exploring the potential of the fibers to improve the compatibility of stretch fabrics with future recycling systems and infrastructure.

In addition to the sustainability benefits, the new NEOLAST™ fibers deliver increased production precision, allowing spinners to dial power-stretch levels up or down and engineer fibers to meet a broader array of fabric specifications.

Source:

Celanese Corporation

The research group Water Engineering Innovation Photo: Aarhus University
The research group Water Engineering Innovation, led by Associate Professor Zongsu Wei, works to develop water purification technologies, especially in connection with PFAS. The group collaborates in this project with the research group Robotics from the Department of Mechanical and Production Engineering.
24.01.2024

Artificial intelligence to help remove PFAS

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

"In the project, we will design, construct and test a new, automated degradation technology for continuous PFAS degradation. We’re also going to set up an open database to identify significant and limiting factors for degradation reactions with PFAS molecules in the reactor," says Associate Professor Xuping Zhang from the Department of Mechanical and Production Engineering at Aarhus University, who is co-heading the project in collaboration with Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering.

Ever since the 1940s, PFAS (per- and polyfluoroalkyl substances) have been used in a myriad of products, ranging from raincoats and building materials to furniture, fire extinguishers, solar panels, saucepans, packaging and paints.

However, PFAS have proven to have a number of harmful effects on humans and the environment, and unfortunately the substances are very difficult to break down in nature. As a result, the substances continuously accumulate in humans, animals, and elsewhere in nature.

In Denmark, PFAS have been found in drinking water wells, in surface foam on the sea, in the soil at sites for fire-fighting drills, and in many places elsewhere, for example in organic eggs. It is not possible to remove PFAS from everything, but work is underway to remove PFAS from the groundwater in drinking water wells that have been contaminated with the substances.

Currently, the most common method to filter drinking water for PFAS is via an active carbon filter, an ion-exchange filter, or by using a specially designed membrane. All of these possibilities filter PFAS from the water, but they do not destroy the PFAS. The filters are therefore all temporary, as they have to be sent for incineration to destroy the accumulated PFAS, or they end in landfills.

The project is called 'Machine Learning to Enhance PFAS Degradation in Flow Reactor', and it aims to design and develop an optimal and permanent solution for drinking water wells and treatment plants in Denmark that constantly captures and breaks down PFAS, while also monitoring itself.

"We need to be creative and think outside the box. I see many advantages in linking artificial intelligence with several different water treatment technologies, but integrating intelligence-based optimisation is no easy task. It requires strong synergy between machine learning and chemical engineering, but the perspectives are huge," says Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering at Aarhus University.

More information:
PFAS Aarhuis University
Source:

Aarhus University
Department of Biological and Chemical Engineering
Department of Mechanical and Production Engineering

16.01.2024

Solvay: Capacity expansions in France and Italy

Solvay has announced capacity expansions at its Resolest®* and Solval® units, specifically designed for recycling residues from the flue gas cleaning process using the market-leading SOLVAir® solution. The rising demand for this advanced technology stems from the enforcement of stringent environmental standards governing emissions across various industries. By the end of 2025, Resolest® is poised to undergo a significant 60% surge in recycling capacity. Likewise, commencing January 2024, Solval® is set to witness a substantial 30% increase in its capacity.

Solvay has announced capacity expansions at its Resolest®* and Solval® units, specifically designed for recycling residues from the flue gas cleaning process using the market-leading SOLVAir® solution. The rising demand for this advanced technology stems from the enforcement of stringent environmental standards governing emissions across various industries. By the end of 2025, Resolest® is poised to undergo a significant 60% surge in recycling capacity. Likewise, commencing January 2024, Solval® is set to witness a substantial 30% increase in its capacity.

More information:
Solvay
Source:

Solvay