Textination Newsline

Reset
104 results
A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from. Photo: © Fraunhofer IPMS. A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from.
10.10.2023

Checking clothing using a smartphone, AI and infrared spectroscopy

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Infrared spectrometers are powerful measuring instruments when it comes to non-destructive analysis of organic materials. The Fraunhofer Institute for Photonic Microsystems IPMS in Dresden has recently developed a spectral analyzer system that recognizes and analyzes textile fabrics. The system can also reliably recognize mixed fabrics. Possible applications range from checking fabrics when out shopping to cleaning garments correctly, and even sustainable, sorted recycling. The spectrometer is so tiny, it can be integrated into a smartphone.

Researchers at Fraunhofer rely on near-infrared (NIR) spectroscopy to achieve the required reliability and accuracy when identifying textiles. The system works for wavelengths between 950 and 1900 nanometers, which is close to the visible spectrum. Advantages of near-infrared technology include being easy to use and having a wide range of applications. “We combine NIR spectroscopy with imaging and AI to achieve higher accuracy when recognizing and analyzing objects,” explains Dr. Heinrich Grüger, research scientist in the Sensoric Micromodules department at Fraunhofer IPMS.

How textile analysis works
Firstly, a conventional camera module captures an image of the garment. The AI selects a specific point from the fabric’s image data to be examined by the spectral analyzer module. Light reflected from the fabric is captured by the spectrometer module. There, it passes through an entrance slit, is transformed into parallel light beams using a collimating mirror and projected onto a grating using a scanning mirror. Depending on the angle of incidence and exit, the grating splits the light beams into different wavelengths. Light reflected from the grating is directed by the scanner mirror to a detector which captures the light as an electrical signal. An A/D converter then digitizes these signals, which are subsequently analyzed in the signal processor. The resulting spectrometric profile for the textile fabric reveals which fibers it is made from by comparing to a reference database.“ The optical resolution is 10 nanometers. This high resolution means the NIR spectrometer can also use AI to identify mixed fabrics such as items of clothing made from polyester and cotton,” says Grüger. Measuring just 10 mm × 10 mm and being 6.5 mm thick, the system is so compact it could easily be integrated into a standard smartphone.

Recycling old clothing
Grüger sees an important application for the AI-controlled spectrometer when it comes to recycling. According to the Federal Statistical Office of Germany, approximately 176,200 tons of textile and clothing waste was collected from private homes in Germany in 2021. NIR spectroscopy could improve recycling efficiency and reduce the mountain of old clothing. This would enable companies that recycle old clothing to sort it more efficiently and faster. Textiles that are still in one piece, for instance, go to the second-hand trade. Damaged textiles are sorted for recycling, and the fibers they are made from, such as linen, silk, cotton or lyocell, can be reused. Severely soiled textiles would be incinerated or processed into insulation mats, for example. Spectroscopic identifies and sorts textiles more accurately and much faster than a human can.

If NIR spectroscopy was to be integrated into a smartphone, end-users might also benefit from the Fraunhofer institute’s technology. When buying clothes, a quick check with a smartphone reveals whether that expensive silk scarf is genuinely made from silk, or whether that exclusive dress from the fashion label is not instead a counterfeit, exposed through an alternative mix of fabrics. And should the label with the cleaning instructions no longer be legible, the smartphone has a textile scanner to identify the fabric and so determine the appropriate wash cycle.

Food check and dermatology
Researchers at Fraunhofer IPMS can even envisage applications beyond the textile industry. Smartphones fitted with spectrometers might be used to provide information about the quality of groceries such as fruit and vegetables when out shopping. The technology might conceivably also be used to examine skin. A quick scan with the cell phone spectrometer could identify particularly dry or greasy patches. Perhaps applications in medical diagnostics might even be conceivable — examining patches of skin where a melanoma is suspected, for example — but this would need professional involvement too.

Source:

Fraunhofer Institute for Photonic Microsystems

Carbon U Profil (c) vombaur GmbH & Co. KG
19.09.2023

"After all, a spaceship is not made off the peg."

Interview with vombaur - pioneers in special textiles
Technical narrow textiles, custom solutions, medium-sized textile producer and development partner for filtration textiles, composite textiles and industrial textiles: vombaur. Digitalisation, sustainability, energy prices, pioneering work and unbroken enthusiasm – Textination spoke to two passionate textile professionals: Carl Mrusek, Chief Sales Officer (CSO), and Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles, at vombaur GmbH, which, as well as JUMBO-Textil, belongs to the Textation Group.
 

Interview with vombaur - pioneers in special textiles
Technical narrow textiles, custom solutions, medium-sized textile producer and development partner for filtration textiles, composite textiles and industrial textiles: vombaur. Digitalisation, sustainability, energy prices, pioneering work and unbroken enthusiasm – Textination spoke to two passionate textile professionals: Carl Mrusek, Chief Sales Officer (CSO), and Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles, at vombaur GmbH, which, as well as JUMBO-Textil, belongs to the Textation Group.
 
If you look back at your history and thus to the beginnings of the 19th century, you will see a ribbon manufactory and, from 1855, a production of silk and hat bands. Today you produce filtration textiles, industrial textiles and composites textiles. Although you still produce narrow textiles today, the motto "Transformation as an opportunity" seems to be a lived reality at vombaur.
 
Carl Mrusek, Chief Sales Officer: Yes, vombaur has changed a few times in its almost 220-year history.  Yet the company has always remained true to itself as a narrow textiles manufacturer. This testifies to the willingness of the people in the company to change and to their curiosity. Successful transformation is a joint development, there is an opportunity in change. vombaur has proven this many times over the past almost 220 years: We have adapted our product portfolio to new times, we have built new factory buildings and new machinery, we have introduced new materials and developed new technologies, we have entered into new partnerships – as most recently as part of the Textation Group. We are currently planning our new headquarters. We are not reinventing ourselves, but we will go through a kind of transformation process with the move into the brand new, climate-friendly high-tech space.

 

Could you describe the challenges of this transformation process?
 
Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles: A transformation usually takes place technically, professionally, organisationally and not least – perhaps even first and foremost – culturally. The technical challenges are obvious. Secondly, in order to manage and use the new technologies, appropriate expertise is needed in the company. Thirdly, every transformation entails new processes, teams and procedures have to be adapted. And finally, fourthly, the corporate culture also changes. Technology can be procured, expertise acquired, the organisation adapted. Time, on the other hand, cannot be bought. I therefore consider the greatest challenge to be the supply of human resources: In order to actively shape the transformation and not be driven by development, we need sufficient skilled workers.

 

Visiting your website, the claim "pioneering tech tex" immediately catches the eye. Why do you see your company as a pioneer, and what are vombaur's groundbreaking or pioneering innovations?

Carl Mrusek: With our unique machine park, we are pioneers for seamless circular woven textiles. And as a development partner, we break new ground with every order. We are always implementing new project-specific changes: to the end products, to the product properties, to the machines. It happens regularly that we adapt a weaving machine for a special seamless woven shaped textile, sometimes even develop a completely new one.
 
With our young, first-class and growing team for Development and Innovation led by Dr. Sven Schöfer, we repeatedly live up to our promise of "pioneering tech tex" by developing special textile high-tech solutions with and for our customers. At the same time, we actively explore new potentials. Most recently with sustainable materials for lightweight construction and research into novel special filtration solutions, for example for the filtration of microplastics. A state-of-the-art textile technology laboratory is planned for this team in the new building.

 

The development of technical textiles in Germany is a success story. From a global perspective, we manage to succeed with mass-produced goods only in exceptional cases. How do you assess the importance of technical textiles made in Germany for the success of other, especially highly technological industries?

Carl Mrusek: We see the future of industry in Europe in individually developed high-tech products. vombaur stands for high-quality, reliable and durable products and made-to-order products. And it is precisely this – custom-fit products, instead of surplus and throwaway goods – that is the future for sustainable business in general.

 

What proportion of your production is generated by being project-based as opposed to a standard range, and to what extent do you still feel comfortable with the term "textile producer"?

Johannes Kauschinger: Our share of special solutions amounts to almost 90 percent. We develop technical textile solutions for our customers' current projects. For this purpose, we are in close contact with the colleagues from our customers' product development departments. Especially in the field of composite textiles, special solutions are in demand. This can be a component for space travel – after all, a spaceship is not manufactured off the peg. We also offer high-quality mass-produced articles, for example in the area of industrial textiles, where we offer round woven tubulars for conveyor belts. In this sense, we are a textile producer, but more than that: we are also a textile developer.

 

In August, Composites Germany presented the results of its 21st market survey. The current business situation is viewed very critically, the investment climate is becoming gloomier and future expectations are turning negative. vombaur also has high-strength textile composites made of carbon, aramid, glass and hybrids in its portfolio. Do you share the assessment of the economic situation as reflected in the survey?

Carl Mrusek: We foresee a very positive development for vombaur because we develop in a very solution-oriented way and offer our customers genuine added value. This is because future technologies in particular require individual, reliable and lightweight components. This ranges from developments for the air taxi to wind turbines. Textiles are a predestined material for the future. The challenge here is also to offer sustainable and recyclable solutions with natural raw materials such as flax and recycled and recyclable plastics and effective separation technologies.

 

There is almost no company nowadays that does not use the current buzzwords such as climate neutrality, circular economy, energy efficiency and renewable energies. What is your company doing in these areas and how do you define the importance of these approaches for commercial success?

Carl Mrusek: vombaur pursues a comprehensive sustainability strategy. Based on the development of our mission statement, we are currently working on a sustainability declaration. Our responsibility for nature will be realised in a very concrete and measurable way through our new building with a green roof and solar system. In our product development, the high sustainability standards – our own and those of our customers – are already flowing into environmentally friendly and resource-saving products and into product developments for sustainable projects such as wind farms or filtration plants.

 

Keyword digitalisation: medium-sized businesses, to which vombaur belongs with its 85 employees, are often scolded for being too reluctant in this area. How would you respond to this accusation?

Johannes Kauschinger:

We often hear about the stack crisis at the present time. Based on this, we could speak of the stack transformation. We, the small and medium-sized enterprises, are transforming ourselves in a number of different dimensions at the same time: Digital transformation, climate neutrality, skilled labour market and population development, independence from the prevailing supply chains. We are capable of change and willing to change. Politics and administration could make it a bit easier for us in some aspects. Key words: transport infrastructure, approval times, energy prices. We do everything we can on our side of the field to ensure that small and medium-sized enterprises remain the driving economic force that they are.

 

 

How do you feel about the term shortage of skilled workers? Do you also take unconventional paths to find and retain talent and skilled workers in such a specialised industry? Or does the problem not arise?

Carl Mrusek: Of course, we are also experiencing a shortage of skilled workers, especially in the industrial sector. But the development was foreseeable. The topic played a major role in the decision to move together with our sister company JUMBO-Textil under the umbrella of the Textation Group. Recruiting and promoting young talent can be better mastered together – for example with cross-group campaigns and cooperations.

 

If you had to describe a central personal experience that has shaped your attitude towards the textile industry and its future, what would it be?

Johannes Kauschinger: A very good friend of my family pointed out to me that we live in an area with a very active textile industry, which at the same time has problems finding young talents. I visited two companies for an interview and already on the tour of each company, the interaction of people, machines and textiles up to the wearable end product was truly impressive. In addition, I was able to learn a profession with a very strong connection to everyday life. To this day, I am fascinated by the wide range of possible uses for textiles, especially in technical applications, and I have no regrets whatsoever about the decision I made back then.

Carl Mrusek: I came into contact with the world of textiles and fashion at a young age. I still remember the first time I went through the fully integrated textile production of a company in Nordhorn with my father Rolf Mrusek. Since then, the subject has never left me. Even before I started my studies, I had made a conscious decision to pursue a career in this industry and to this day I have never regretted it, on the contrary. The diversity of the special solutions developed in the Textation Group fascinates me again and again.

 

vombaur is a specialist for seamless round and shaped woven narrow textiles and is known throughout the industry as a development partner for filtration textiles, composite textiles and industrial textiles made of high-performance fibres. Technical narrow textiles from vombaur are used for filtration – in the food and chemical industries, among others. As high-performance composite materials, they are used, for example, in aircraft construction or medical technology. For technical applications, vombaur develops specially coated industrial textiles for insulation, reinforcement or transport in a wide range of industrial processes – from precision mechanics to the construction industry. The Wuppertal-based company was founded in 1805. The company currently employs 85 people.

Sectors

  • Aviation & Automotive
  • Sports & Outdoor   
  • Construction & Water Management
  • Safety & Protection   
  • Chemistry & Food
  • Plant construction & electronics   
  • Medicine & Orthopaedics

 

Heimtextil Trends 24/25 © SPOTT trends & business for Heimtextil
12.09.2023

Heimtextil Trends 24/25: New Sensitivity

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

How does New Sensitivity translate into something concrete in the lifestyle industry, and what does having a sensitive approach to design and products mean? Also the adoption of Artificial General Intelligence (AGI) is transforming current times. AGI has the potential to bring innovative solutions and help tackle significant challenges, also in the textile industry. However, AGI can have the opposite effect on society. AGI needs the mindset of New Sensitivity that helps simplify complexity, expand creativity, and find unseen solutions, also within the world of textiles.
     
"With Heimtextil Trends 24/25: New Sensitivity, we encourage the textile industry to approach the future with thoughtfulness and consideration. Specifically, we see this change in three different trends for a more sensitive world of textiles: biotechnical, plant-based and technological," Bisgaard Gaede continues.

Plant-based: textiles made from plant crops or plant by-products
Plant-based textiles mean that the fibres are derived from something that grows rather than being synthetically produced. The sustainable advantage of plant-based textiles is that their origin is natural and, therefore, more able to recirculate in existing ecosystems. They can be divided into two groups. The first group of textiles are made from plant crops. New resilient crops like cactus, hemp, abaca, seaweed, and rubber offer new sustainable textile solutions. Because of mechanical extraction, they can grow despite climate changes and require fewer chemicals in their development. The second group consists of textiles made of plant by-products which are leftover raw materials from production such as banana, olive, persimmon and hemp.

Technological: technology and technical solutions transforming textiles
Technology can support the transformation of textiles through the use of different methods: upcycling and recycling of textiles, textile construction, and textile design. Due to decades of production, textiles are now a material available in abundance. Developing technologies for recycling textile waste and methods for upcycling textiles increases the circular usage of existing textiles. Furthermore, old textile construction techniques also offer pathways to sustainable solutions: For instance, using knitting technology for furniture upholstery produces less fabric waste; alternatively, weaving technique allows the creation of several colours using only a few coloured yarns. Textile Design Thinking is another method that addresses critical issues such as energy usage and durability of natural fibres and enhances these through technological textile advancement.

Bio-engineered: engineered to enhance bio-degrading
To a certain degree, bio-engineered textiles represent a fusion of plant-based and technological textiles. Bio-engineering bridges nature and technology and transforms the way textiles are made. They can be divided into two directions: fully bio-engineered and bio-degradable textiles. In the production of fully bio-engineered textiles nature-inspired strategies are adopted. Instead of growing plants and extracting their fibres, textiles are made from the protein, carbohydrates, or bacteria in corn, grass, and cane sugar. Manufacturing involves a bio-molecular process that creates filaments which are made into yarn. The sustainable advantage of bio-engineered textiles is that they can have some of the same functionalities as synthetically produced textiles, while still being biodegradable because of their natural origin. Biodegradable fibres can be added to conventional textiles like polyester to enhance the conventional textiles’ ability to revert to materials found in nature and hence biodegrade in natural environments such as water or soil. Although not biodegrading completely, these bio-enhanced textiles will biodegrade up to 93 % compared to conventional textiles.

Heimtextil Trends 24/25: new colourways
A sensitive approach to colouring methods is expressed by a dynamic yet subtle colour palette created through natural pigments deriving from the earth, as traditional colouring processes are brought to the next level through innovative bioengineering technology. In pursuit of creating colours that evoke emotions in our senses while at the same time respecting our values in protecting the environment, we see colour bacteria growing pigments generating hues with great richness and depth.
               
This New Sensitivity includes acceptance of natural colour flows, as colours may fade with time or morph into new colourways. The colourways for Heimtextil Trends 24/25 were inspired by natural colours deriving from avocado seeds, algae, living bacteria, antique pigments such as raw sienna, and bio-engineered indigo and cochineal. The high black component in most colours allows for widespread application and a greater variety of combinations. The punchy saturated accents enhance our senses as they lift our spirits. In contrast, the grounding neutrals in different shades of grey, terra and even dark purple allow for calmness and tranquillity.

Future Materials: regenerative design
How are regenerative textiles and materials defined? Regenerative design is dedicated to developing holistic creative practices that restore or renew resources, have a positive impact on the environment, and encourage communities to thrive. For Heimtextil 2024, design futures consultancy FranklinTill is curating a global showcase of cutting-edge textiles and materials to illustrate the principles of regenerative design and recognize pioneering designers, producers and manufacturers who are at the forefront of regenerative design.
The Trend Space at Heimtextil in Frankfurt, Germany, January 9-12, 2023, will showcase these pioneering solutions in an inspiring way. In addition, Heimtextil Trends will offer visitors orientation and insights into the future of home and contract textiles in the form of workshops, lectures and other interactive formats.

Source:

Heimtextil, Messe Frankfurt

Photo unsplash.com
05.09.2023

Ananas Anam and TENCEL™ collaborate with Calvin Klein

The search for better, planet-friendly footwear material reveals a solution in one unlikely ingredient: pineapple leaves. This unique textile ingredient is the recent focus of the latest footwear design collaboration between Ananas Anam, TENCEL™ and Calvin Klein, launching Calvin Klein’s first-ever trainer featuring a knitted upper made of PIÑAYARN® blended with TENCEL™ Lyocell fibers.

Known as “The Sustainable Knit Trainer”, the trainers are a timeless closet staple, available in classic colors such as black and off-white and etched with the signature Calvin Klein logo. The PIÑAYARN® knit upper, made of 70% TENCEL™ Lyocell and 30% Anam PALF™ pineapple leaf fiber, is both from botanic origin and bio-based.

The search for better, planet-friendly footwear material reveals a solution in one unlikely ingredient: pineapple leaves. This unique textile ingredient is the recent focus of the latest footwear design collaboration between Ananas Anam, TENCEL™ and Calvin Klein, launching Calvin Klein’s first-ever trainer featuring a knitted upper made of PIÑAYARN® blended with TENCEL™ Lyocell fibers.

Known as “The Sustainable Knit Trainer”, the trainers are a timeless closet staple, available in classic colors such as black and off-white and etched with the signature Calvin Klein logo. The PIÑAYARN® knit upper, made of 70% TENCEL™ Lyocell and 30% Anam PALF™ pineapple leaf fiber, is both from botanic origin and bio-based.

As the fashion sector has begun to realize the negative environmental effects of synthetic materials, a lot of brands have turned towards plant-based materials such as PIÑAYARN®. Using a low-impact manufacturing process, PIÑAYARN® is derived from pineapple leaf waste and involves a water-free spinning process. The addition of TENCEL™ Lyocell, a fiber made from wood pulp obtained from responsibly managed forests and produced using a solvent spinning process that recycles both the solvent and water at a recovery rate of more than 99%, offers full traceability of the TENCEL™ fiber in the final blended yarn.

Melissa Braithwaite, PIÑAYARN® Product Development Manager at Ananas Anam said “The inspiration for PIÑAYARN® came from the need to provide the textile industry with an alternative to overused, often polluting, conventional fibers, such as cotton or polyester. We have an abundance of available raw material within our business, and broadening our product offering means we can valorize more waste, increasing our positive impact on the environment and society.”

Indeed, as the consumer demand for more eco-responsible textile products and footwear grows, so too has the popularity of wood-based fibers as a material alternative. Ananas Anam and TENCEL™’s collaboration with Calvin Klein has been a success in that the physical characteristics and planet-conscious benefits of both PIÑAYARN® and TENCEL™ fibers complement each other perfectly, creating a blended material that is soft and usable for various woven and knitted applications.

For material developers like Ananas Anam seeking the ideal fiber blend partner to create PIÑAYARN®, TENCEL™ Lyocellfibers are celebrated for their versatility and ability to be blended with a wide range of textiles such as hemp, linen and of course Anam PALF™ pineapple leaf fiber, to enhance the aesthetics, performance and functionality of fabrics. Additionally, beyond being used in shoe uppers, TENCEL™ Lyocell fibers can be used in every part of the shoe including the upper fabric, lining, insoles, padding, laces, zipper and sewing thread. TENCEL™ Lyocell can also be used in powder form for use in the outsoles of shoes.

“We are extremely excited about this collaboration with Ananas Anam for the launch of The Sustainable Knit Trainer by Calvin Klein, an eco-responsible and planet-friendly shoe for conscious consumers. This partnership is the perfect example of our commitment to provide education and expertise to support anyone who chooses to improve the environmental and social credentials of their products by using more responsible materials,” said Nicole Schram, Global Business Development Manager at Lenzing.

Source:

Lenzing AG

(c) NC State
07.08.2023

Wearable Connector Technology - Benefits to Military, Medicine and beyond

What comes to mind when you think about “wearable technology?” In 2023, likely a lot, at a time when smartwatches and rings measure heart rates, track exercise and even receive text messages. Your mind might even drift to that “ugly” light-up sweater or costume you saw last Halloween or holiday season.

At the Wilson College of Textiles, though, researchers are hard at work optimizing a truly new-age form of wearable technology that can be proven useful in a wide range of settings, from fashion and sports to augmented reality, the military and medicine.

Currently in its final stages, this grant-funded project could help protect users in critical situations, such as soldiers on the battlefield and patients in hospitals, while simultaneously pushing the boundaries of what textiles research can accomplish.

What comes to mind when you think about “wearable technology?” In 2023, likely a lot, at a time when smartwatches and rings measure heart rates, track exercise and even receive text messages. Your mind might even drift to that “ugly” light-up sweater or costume you saw last Halloween or holiday season.

At the Wilson College of Textiles, though, researchers are hard at work optimizing a truly new-age form of wearable technology that can be proven useful in a wide range of settings, from fashion and sports to augmented reality, the military and medicine.

Currently in its final stages, this grant-funded project could help protect users in critical situations, such as soldiers on the battlefield and patients in hospitals, while simultaneously pushing the boundaries of what textiles research can accomplish.

“The goals set for this research are quite novel to any other literature that exists on wearable connectors” says Shourya Dhatri Lingampally, Wilson College of Textiles graduate student and research assistant involved in the project alongside Wilson College Associate Professor Minyoung Suh.

Ongoing since the fall of 2021, Suh and Lingampally’s work focuses on textile-integrated wearable connectors, a unique, high-tech sort of “bridge” between flexible textiles and external electronic devices. At its essence, the project aims to improve these connectors’ Technology Readiness Level — a key rating used by NASA and the Department of Defense used to assess a particular technology’s maturity.

To do this, Lingampally and her colleagues’ research examines problems that have, in the past, affected the performance of wearable devices.

Sure, these advances may benefit fashion, leading to eccentric shirts, jackets, or accessories — “to light up or change its color based on the wearer’s biometric data,” Lingampally offers — the research has roots in a much deeper mission.

Potential benefits to military, medicine and beyond
The project is funded through more than $200,000 in grant money from Advanced Functional Fabrics of America (AFFOA), a United States Manufacturing Innovation Institute (MII) located in Cambridge, Massachusetts. The mission of AFFOA is to support domestic manufacturing capability to support new technical textile products, such as textile-based wearable technologies.

A key purpose of the research centers around improving the functionality of wearable monitoring devices with which soldiers are sometimes outfitted to monitor the health and safety of their troops remotely.

Similar devices allow doctors and other medical personnel to remotely monitor the health of patients even while away from the bedside.

Though such technology has existed for years, it’s too often required running wires and an overall logistically-unfriendly design. That could soon change.

“We have consolidated the electronic components into a small snap or buckle, making the circuits less obtrusive to the wearer,” Lingampally says, explaining the team’s innovations, which include 3D printing the connector prototypes using stereolithography technology.

“We are trying to optimize the design parameters in order to enhance the electrical and mechanical performance of these connectors,” she adds.

To accomplish their goals, the group collaborated with NC State Department of Electrical and Computer Engineering Assistant Research Professor James Dieffenderfer. The team routed a variety of electrical connections and interconnects like conductive thread, epoxy and solder through textile materials equipped with rigid electronic devices.

They also tested the components for compatibility with standard digital device connections like USB 2.0 and I2C.

Ultimately, Lingampally hopes their work will make wearable technology not only easier and more comfortable to use, but available at a lower price, too.

“I would like to see them scaled, to be mass manufactured, so they can be cost efficient for any industry to use,” she explains.

In a bigger-picture sense, though, her team’s work is reinforcing the far-reaching boundaries of what smart textile research can accomplish; a purpose that stretches far beyond fashion or comfort.

Pushing the boundaries of textiles research
Suh and Lingampally’s work is just the latest breakthrough research originating from the Wilson College of Textiles that’s aimed at solving critical problems in the textile industry and beyond.

“The constant advancements in technology and materials present immense potential for the textile industry to drive positive change across a range of fields from fashion to healthcare and beyond,” Lingampally, a graduate student in the M.S. Textiles program, says, noting the encouragement she feels in her program to pursue innovation and creativity in selecting and advancing her research.

Additionally, in the fiber and polymer science doctoral program, which Suh does research with, candidates focus their research on a seemingly endless array of STEM topics, ranging from forensics to medical textiles, nanotechnology and, indeed, smart wearable technology (just to name a few).

In this case, Suh says, the research lent itself to “unexpected challenges” that required intriguing adaptations “at every corner.” But, ultimately, it led to breakthroughs not previously seen in the wearable technology industry, attracting interest from other researchers outside the university, and private companies, too.

“This project was quite exploratory by nature as there hasn’t been any prior research aiming to the same objectives,” Suh says.

Meanwhile, the team has completed durability and reliability testing on its textile-integrated wearable connectors. Eventually, the group would like to increase the sample size for testing to strengthen and validate the findings. The team also hopes to evaluate new, innovative interconnective techniques, as well as other 3D printing techniques and materials as they work to further advance wearable technologies.

Source:

North Carolina State University, Sean Cudahy

Functional textiles – an alternative to antibiotics University of Borås
04.07.2023

Functional textiles – an alternative to antibiotics

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

His work involves research and teaching activities within the area of textile material technology. The current research involves resource-efficient inkjet printing of functional materials on various textile surfaces for advanced applications.
 
The conventional textile industry devours natural resources in the form of water, energy, and chemicals. A more resource-efficient way to produce textiles is with ink jet printing. Tuser Biswas, who recently defended his doctoral thesis in Textile Material Technology, seeks to develop methods for functional textiles. He has shown that it is possible to print enzymes on textiles. These are proteins that function as catalysts in the body, as they set chemical processes in motion without themselves changing. They could, for example, be used in medical textiles with antimicrobial properties or to measure biological or chemical reactions.

“Ever since the industrial revolution, our society has used an abundance of synthetic and harsh chemicals. Our research works to replace these chemicals with environmentally friendly and bio-based materials,” said Tuser Biswas.
 
Promising results with enzymes on textiles
Developing a good enzyme ink was not entirely easy and it took a number of attempts before he finally, to his great joy, had successful results. Tuser Biswas explained that the most important result is to show how a printed enzyme could bind another enzyme to the surface of a fabric. Although the activity of the enzymes decreased by 20-30 percent after printing, the results are still promising for future applications. At the same time, the work has provided new knowledge about many fundamental questions about printing biomaterials on fabric.

“Before starting the project, we found several related studies that focused on producing a finished product. But we wanted to study the fundamental challenges of this subject, and now we know how to make it work,” said Tuser Biswas.

He is now seeking funding to continue researching the subject and has so far received a grant from the Sjuhärad Savings Bank Foundation. During the Days of Knowledge event in April 2023, he presented his research to representatives from the City of Borås and business, the Sjuhärad Savings Bank Foundation, and the University of Borås.
     
Medical textiles instead of antibiotics
Tuser Biswas hopes that continued research in textile technology can provide alternatives to using antibiotics. With increasing antibiotic resistance, it is an important issue not only locally but worldwide.

“Instead of treating the patient with a course of antibiotics, one can act preventively and more effectively by damaging the bacteria on the surface where they start to grow. In a wound dressing, for example. Nanoparticle-based antimicrobials can reduce growth effectively. It is possible as nanoparticles can interact better with the bacterial membrane and reach the target more easily than conventional antimicrobials.”

Source:

Lina Färm. Translation by Eva Medin. University of Borås

Photo: Unsplash
13.06.2023

The impact of textile production and waste on the environment

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

The textile sector was the third largest source of water degradation and land use in 2020. In that year, it took on average nine cubic metres of water, 400 square metres of land and 391 kilogrammes (kg) of raw materials to provide clothes and shoes for each EU citizen.

Water pollution
Textile production is estimated to be responsible for about 20% of global clean water pollution from dyeing and finishing products.

Laundering synthetic clothes accounts for 35% of primary microplastics released into the environment. A single laundry load of polyester clothes can discharge 700,000 microplastic fibres that can end up in the food chain.

The majority of microplastics from textiles are released during the first few washes. Fast fashion is based on mass production, low prices and high sales volumes that promotes many first washes.

Washing synthetic products has caused more than 14 million tonnes of microplastics to accumulate on the bottom of the oceans. In addition to this global problem, the pollution generated by garment production has a devastating impact on the health of local people, animals and ecosystems where the factories are located.

Greenhouse gas emissions
The fashion industry is estimated to be responsible for 10% of global carbon emissions – more than international flights and maritime shipping combined.

According to the European Environment Agency, textile purchases in the EU in 2020 generated about 270 kg of CO2 emissions per person. That means textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes.

Textile waste in landfills and low recycling rates
The way people get rid of unwanted clothes has also changed, with items being thrown away rather than donated. Less than half of used clothes are collected for reuse or recycling, and only 1% of used clothes are recycled into new clothes, since technologies that would enable clothes to be recycled into virgin fibres are only now starting to emerge.

Between 2000 and 2015, clothing production doubled, while the average use of an item of clothing has decreased.

Europeans use nearly 26 kilos of textiles and discard about 11 kilos of them every year. Used clothes can be exported outside the EU, but are mostly (87%) incinerated or landfilled.

The rise of fast fashion has been crucial in the increase in consumption, driven partly by social media and the industry bringing fashion trends to more consumers at a faster pace than in the past.

The new strategies to tackle this issue include developing new business models for clothing rental, designing products in a way that would make re-use and recycling easier (circular fashion), convincing consumers to buy fewer clothes of better quality (slow fashion) and generally steering consumer behaviour towards more sustainable options.

Work in progress: the EU strategy for sustainable and circular textiles
As part of the circular economy action plan, the European Commission presented in March 2022 a new strategy to make textiles more durable, repairable, reusable and recyclable, tackle fast fashion and stimulate innovation within the sector.

The new strategy includes new ecodesign requirements for textiles, clearer information, a Digital Product Passport and calls companies to take responsibility and act to minimise their carbon and environmental footprints

On 1 June 2023, MEPs set out proposals for tougher EU measures to halt the excessive production and consumption of textiles. Parliament’s report calls for textiles to be produced respecting human, social and labour rights, as well as the environment and animal welfare.

Existing EU measures to tackle textile waste
Under the waste directive approved by the Parliament in 2018, EU countries are obliged to collect textiles separately by 2025. The new Commission strategy also includes measures to, tackle the presence of hazardous chemicals, calls producers have to take responsibility for their products along the value chain, including when they become wasteand help consumers to choose sustainable textiles.

The EU has an EU Ecolabel that producers respecting ecological criteria can apply to items, ensuring a limited use of harmful substances and reduced water and air pollution.

The EU has also introduced some measures to mitigate the impact of textile waste on the environment. Horizon 2020 funds Resyntex, a project using chemical recycling, which could provide a circular economy business model for the textile industry.

A more sustainable model of textile production also has the potential to boost the economy. "Europe finds itself in an unprecedented health and economic crisis, revealing the fragility of our global supply chains," said lead MEP Huitema. "Stimulating new innovative business models will in turn create new economic growth and the job opportunities Europe will need to recover."

Photo unsplash
21.02.2023

Consortium for enzymatic textile recycling gains new supporters

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

The two-year cooperation project will not only enable the biological recycling of polyester articles on an industrial scale, but also develop thorough sorting and disassembly technologies for complex textile waste. Existing members voted unanimously for PVH Corp. to join the consortium, saying the common goal is to support the development of viable solutions that address the fashion industry's contribution to climate change..

Carbios has developed a technology using highly selective enzymes that can recycle mixed feedstocks, reducing the laborious sorting required by current thermomechanical recycling processes. For textiles made from blended fibres, the patented enzyme acts only on the PET polyester contained within. This innovative process produces recycled PET (r-PET) that is equivalent in quality to virgin PET and can be used to produce new textile fibres.

Textile waste treatment and recycling
Globally, only 13% of textile waste is currently recycled, mainly for low-value applications such as upholstery, insulation or rags. The remaining 87% is destined for landfill or incineration. To work on improving textile recycling technologies, consortium members will supply feedstock in the form of clothing, underwear, footwear and sportswear. In 2023, a new PET textile waste facility will be commissioned at the Carbios demonstration plant, notably as part of the LIFE Cycle of PET project co-funded by the European Union.  This is in anticipation of future regulations, such as the separate collection of textile waste, which will be mandatory in Europe from 1 January 2025.

From fibre to fibre: circularity of textiles
Today, the textile industry relies largely on non-renewable resources to produce fibres and fabrics, partly turning to recycled PET bottles for recycled polyester fibres. However, this resource will become scarce as PET bottles are used exclusively for the production of new bottles in the food and beverage industry. In a circular economy, the materials used to produce textiles are obtained from recycled or renewable raw materials produced by regenerative processes. In addition to supplying raw materials for the demonstration plant, the consortium members also aim to produce new products from r-PET fibres using the company's biorecycling process.

"Partnering with Carbios and its consortium members demonstrates our continued commitment to incorporating more circular materials into our collections," said Esther Verburg, EVP, Sustainable Business and Innovation, Tommy Hilfiger Global and PVH Europe. "We are excited to support the development of Carbios' enzymatic recycling technology and to leverage new solutions that can help us drive fashion sustainably."

More information:
Carbios textile recycling enzymatic
Source:

Carbios / Textination

04.01.2023

Circular Economy: It could all be so simple... or not

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

I'm a very curious guy by nature. That's why I offered to help out at a well-known hot dog station in Münster (Germany) this year, to draw attention to the shortage of staff in the gastronomy. I wrote an article about it on LinkedIn, which was in turn reacted to by Ines Chucholowius.
From her profile, I could see that she is a consultant for strategic marketing and communication in the textile industry. Not entirely serious, she offered me a job in her office. Like pushing a button, the pictures in my mind set in: Textile industry, exciting! Merchandising, contacts in the industry, collaborations, and I agreed to a short chat, at the end of which we spoke on the phone and arranged to meet.
 
She told me about her website TEXTINATION.de. And we were already involved in an exciting, heated exchange about perception and truth in the textile industry. Without further ado, we left it at that and I went home with a chunk of new information about an exciting field. Our dialogue on social media continued and eventually Ines offered me the chance to feed my die-hard curiosity with the support of TEXTINATION.de. I could write a blog on the site, about people, products, service providers, producers, startups or trends that interest me, to add to my half-knowledge about the textile industry.

Textile waste into the front ... new T-shirt out the back
During this exchange and a long brainstorming session, certain terms kept tickling my attention:
Circular economy, recycling, recyclable material loops. Circular Economy, Recycling, Recyclables. Even though there are many different definitions and some even distinguishing between different aspects: the former thought from waste that flows back into production as a secondary raw material, a more modern approach avoiding waste already in production - the general consensus is really only that circular economy is a cycle in which waste is used as a source for something new.

Sounds like useful additions for all areas of the manufacturing real economy to me. Ines introduced me to Robert Kapferer: He runs a startup called Circularity Germany in Hamburg. His company, founded in 2021 and consisting of Robert and another partner, is an offshoot of the Dutch-based company Circularity B.V. Its founder Han Hamers, with a degree in child psychology and a professional background in the textile dyeing industry, had the idea five years ago for a production facility that spins new yarn exclusively from textile production waste and old textiles turning it into T-shirts, polo shirts and sweatshirts.
Whether this works, and if so, how, is what I wanted to find out, and Ines and I arranged to meet Robert for a 90-minute online conference.

Robert, originally an industrial engineer, comes from a less sustainable industry. He worked for 11 years as managing director for AVECO Material und Service GmbH, where he was responsible for the workwear of more than 50,000 employees.

At the beginning of our conversation, he emphasizes that a moment in January 2021 changed his life and from then on, he wanted to dedicate himself to the topic of circular economy with all his might. That was when he met Han Hamers, who inspired him to found Circularity Germany. His enthusiasm and passion for the subject sound credible, and he begins to describe the differences between chemical and mechanical recycling methods. In summary, the mechanical process of shredding and the subsequent spinning shortens the fibers and thus restricts their properties for further processing. The advantage lies primarily in the comparatively uncomplicated, fast and more cost-efficient process. In the chemical variant, chemical waste remains, but the processed materials are broken down again into their basic building blocks in such a way that they have almost all the same properties as a so-called virgin raw material. Circularity Germany stands for the mechanical process.

And then comes the sentence that gets all our attention: "We've advanced a spinning technology so much that it relies exclusively on waste-based raw materials."
This sentence almost doesn't stand out because Robert still talks - quite excitingly - about the fact that they are planning a production and manufacturing facility where everything from knitting yarn to relatively fine thread can be spun and then further processed into fabric. And here Ines and I ask intensively: Essential requirements for industrial production still seem to be unresolved, and necessary processes are still in the planning stage. For example, the question of whether to work with pre-consumer or post-consumer waste. Pre-consumer waste is cutting waste from the production of clothes, which corresponds to about 10% of the processed material. Post-consumer waste we know as used textiles.

As long as production still takes place in India, Circularity currently uses mainly pre-consumer waste. These come exclusively from sewing factories in the Tirupur region in the south of India. When using used textiles, which exist in large quantities in Germany (according to a study, 28-40% of all garments produced are thrown away unworn), Circularity produces blended yarns of cotton and polyester. The company does not offer pure cotton yarns.

Textiles are treated with chemicals to varying degrees - workwear in particular cannot do without them. The fact that Han Hemers is also collecting used textile stocks from the Dutch army in order to reintroduce them renewed into the consumer cycle is therefore not reassuring. Military clothing has to be finished with all kinds of additives.

Therefor I ask how he can dispel doubts in a consumer’s mind like mine, with a healthy half-knowledge of mask deals and greenwashing, that a well-intentioned vision will be followed by a dark awakening. This concern cannot yet be resolved after the conversation.

We limit ourselves to what is planned: Robert has the dream of reversing the globalized process of textile production. He wants to end the decoupling of cotton growing regions and far-flung production such as Asia with subsequent shipping of ready-made goods to Europe. In the future, existing used textiles and/or cutting wastes are to be collected on site, recycled and processed locally into new textiles.

I believe him in having this dream. However, some of my questions about sustainability remain unanswered - which is why I have my doubts about whether the idea is currently capable of performing and competing.
What are the reasons for this? For one thing, I think it's always difficult to do necessary pioneering work. Especially when listening to smart comments at the regulars' table that large companies are already working intensively on the principle of circular economy. But sometimes, apart from the term "circular economy" and a vague commitment to it, not much remains.

Circularity Germany is committed to developing a technology based exclusively on waste. The interview points out that this also includes making production more environmentally friendly and eliminating transport routes, which further reduces the burden on the environment. When all the requirements for realizing this dream have been met and a product that is competitive in terms of both quality and price can be launched on the market, it is up to the consumer to decide. Here one would have the credible argument of sustainability and a socially and environmentally fair process. Circularity would then not have to worry about PR.

It needs to be given time and, above all, attention. But perhaps the industry should get involved right here and now, and invest in startups like this and make sure that problems are cleared out of the way. Because one thing has become clear to us in this conversation:

It could all be so simple. Circular economy is achievable, but the road there is still costly and rocky. That's why we wish Robert and his team every success and, above all, perseverance. Thank you for the interview.

Short and sweet: the profile of the company in the attached factsheet for download.

 

 

A shirt that monitors breathing. Bild EMPA
28.12.2022

Wearables for healthcare: sensors to wear

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

The desire for a healthy lifestyle has triggered a trend towards self-tracking. Vital signs should be available at all times, for example to consistently measure training effects. At the same time, among the continuously growing group of people over 65, the desire to maintain performance into old age is stronger than ever. Preventive, health-maintaining measures must be monitored if they are to achieve the desired results. The search for measurement systems that reliably determine the corresponding health parameters is in full swing. In addition to the leisure sector, medicine needs suitable and reliable measurement systems that enable efficient and effective care for an increasing number of people in hospital and at home. After all, the increase in lifestyle diseases such as diabetes, cardiovascular problems or respiratory diseases is putting a strain on the healthcare system.

Researchers led by Simon Annaheim from Empa's Biomimetic Membranes and Textiles laboratory in St. Gallen are therefore developing sensors for monitoring health status, for example for a diagnostic belt based on flexible sensors with electrically conductive or light-conducting fibers. However, other, less technical properties can be decisive for the acceptance of continuous medical monitoring by patients. For example, the sensors must be comfortable to wear and easy to handle – and ideally also look good.

This aspect is addressed by a cooperation between the Textile and Design Alliance, or TaDA for short, in eastern Switzerland and Empa. The project showed how textile sensors can be integrated into garments. In addition to technical reliability and a high level of comfort, another focus was on the design of the garments. The interdisciplinary TaDA designer Laura Deschl worked electrically conductive fibers into a shirt that change their resistance depending on how much they are stretched. This allows the shirt to monitor how much the subjects' chest and abdomen rise and fall while they breathe, allowing conclusions to be drawn about breathing activity. Continuous monitoring of respiratory activity is of particular interest for patients during the recovery phase after surgery and for patients who are being treated with painkillers. Such a shirt could also be helpful for patients with breathing problems such as sleep apnea or asthma. Moreover, Deschl embroidered electrically conductive fibers from Empa into the shirt, which are needed to connect to the measuring device and were visually integrated into the shirt's design pattern.

The Textile and Design Alliance is a pilot program of the cultural promotion of the cantons of Appenzell Ausserrhoden, St.Gallen and Thurgau to promote cooperation between creative artists from all over the world and the textile industry. Through international calls for proposals, cultural workers from all disciplines are invited to spend three months working in the textile industry in eastern Switzerland. The TaDA network comprises 13 cooperation partners – textile companies, cultural, research and educational institutions – and thus offers the creative artists direct access to highly specialized know-how and technical means of production in order to work, research and experiment on their textile projects on site. This artistic creativity is in turn made available to the partners as innovative potential.

(c) INNATEX – international trade fair for sustainable textiles
06.12.2022

51st INNATEX targets the topic of conventional retail

International trade fair for Green Fashion focuses on new formats and strategic partnerships:

From 21 to 23 January 2023, INNATEX will be taking place for the 51st time in ac-cordance with its usual daily schedule. So far, well over 200 brands have regis-tered from Saturday to Monday in Hofheim-Wallau, near Frankfurt am Main, getting back towards pre-COVID levels. Its motto, ‘One Goal, Endless Styles’, refers not only to the diversity and solidarity in the INNATEX community but also to the fact that Green Fashion is a fundamental business area for the future.

International trade fair for Green Fashion focuses on new formats and strategic partnerships:

From 21 to 23 January 2023, INNATEX will be taking place for the 51st time in ac-cordance with its usual daily schedule. So far, well over 200 brands have regis-tered from Saturday to Monday in Hofheim-Wallau, near Frankfurt am Main, getting back towards pre-COVID levels. Its motto, ‘One Goal, Endless Styles’, refers not only to the diversity and solidarity in the INNATEX community but also to the fact that Green Fashion is a fundamental business area for the future.

Sustainability: a business model fit for the future
“We are seeking to promote constant new development in a sustainable textile industry through new formats and cooperation agreements,” says Alexander Hitzel, INNATEX Project Manager. “We are currently working with the Retail Federation (HDE) on addressing conventional retailers. In addition, we are planning creative and entirely novel concepts for the presentation of labels, as well as a business panel designed to deliver insights and hard facts for the trade. Sustainability projects are only truly sustainable if they are also selfsupporting business models.

From live presentations and strategic communication to fundraising campaigns
But, he says, the demand for established natural fibres and specifically designed production and certification options is also rising. The International Association of the Natural Textile Industry (IVN) will again be on site to offer its expertise and provide information on the implementation of the new German Supply Chain Act. The DesignDiscoveries support program, which will be on display in a freshly designed Special Area, offers selected newcomer labels a platform for their creative ideas. Applications are still open until 15 December.

“At INNATEX, retailers can seek out trends and discover new ideas and products, directly compare an unbeatable range of collections and articles from different suppliers, and get down to networking – those are the benefits of this ordering fair,” says Hitzel.

INNATEX is collaborating for the first time with the organisation Europe Cares, which provides humanitarian assistance for ‘people on the move’. Surplus goods that exhibitors can donate to the campaign will be used for the benefit of refugees at Europe’s borders.

Source:

INNATEX

Photo: Pim Top for FranklinTill
29.11.2022

Heimtextil Trends 23/24: Textiles Matter

The Heimtextil Trend Preview 23/24 presented future-oriented design concepts and inspiration for the textile furnishing sector. With ‘Textiles Matter’, Heimtextil 2023 wants to set the benchmark for tomorrow’s forward-facing and sustainable textile furnishing. Hence, the focus is on circularity. Marta Giralt Dunjó of futures research agency FranklinTill (Great Britain) presented the design prognoses for 23/24. At the coming Heimtextil in Frankfurt am Main from 10 to 13 January 2023, the presentations of new products will generate stimulating impulses in the Trend Space.

The Heimtextil Trend Preview 23/24 presented future-oriented design concepts and inspiration for the textile furnishing sector. With ‘Textiles Matter’, Heimtextil 2023 wants to set the benchmark for tomorrow’s forward-facing and sustainable textile furnishing. Hence, the focus is on circularity. Marta Giralt Dunjó of futures research agency FranklinTill (Great Britain) presented the design prognoses for 23/24. At the coming Heimtextil in Frankfurt am Main from 10 to 13 January 2023, the presentations of new products will generate stimulating impulses in the Trend Space.

The Heimtextil Trend Council – consisting of FranklinTill Studio (London), Stijlinstituut Amsterdam and Denmark’s SPOTT Trends & Business agency – offers insights into the future of the national and international market. The focus is more than ever before on sustainability and the circular economy, the main factors in setting the trends for the season 23/24.

Textiles Matter: bear responsibility
Textiles are an integral part of modern life. The material applications and the manufacturing processes are no less multifarious than user expectations. And this represents a great challenge for the international textile industry, which obtains its raw materials from a broad spectrum of sources and uses numerous processes to make a huge variety of products. This offers a great potential for the sustainable development of the textile industry in the future. The Heimtextil Trends show ways in which this potential can be utilized and sustainable developments promoted. Under the motto ‘Textiles Matter’, visitors can explore concepts for increased circularity, which will generate new impulses for the sustainable market of the future.

"Considering the state of environmental emergency we are currently living through, the textile industry has a responsibility to examine its processes, and change for the better. That is why for this edition of the Heimtextil Trends we are taking a material’s first approach, and focusing on the sourcing, design, and sustainability of materials. Textiles Matter showcases the potential of circularity and celebrates design initiatives that are beautiful, relevant and importantly sustainable”, explains Marta Giralt Dunjó of FranklinTill.

Change via circularity
The Trend Space at the coming Heimtextil 2023 will revolve around ideas and solutions for circularity in the textile sector. How can textiles be produced in a sustainable way? What recycling options are there? What does the optimum recycling of textile products look like? Within the framework of the circular economy, materials are continuously reused. On the one hand, this reduces the need for new raw materials and, on the other hand, cuts the amount of waste generated. In the technical cycle, inorganic materials, such as nylon, polyester, plastic and metal, can be recycled with no loss of quality. In the biological cycle, organic materials, such as linen and bast fibres, are returned to nature at the end of their useful life. This is the basis of the four trend themes: ‘Make and Remake’, ‘Continuous’, ‘From Earth’ and ‘Nature Engineered’.

Make and Remake
Pre-used materials, deadstock and remnant textiles are given a new lease of life with the focus shifting to the aesthetics of repair and taking the form of a specific design element of the recycled product. Bright and joyful colours and techniques, such as overprinting, overdyeing, bricolage, collage and patchwork, result in new and creative products. Layered colour patterns and graphics lead to bold and maximalist, yet conscious, designs.

Continuous
The Continuous trend theme describes closed-loop systems in which materials are recycled into new, waste-free products again and again. Putative waste materials are separated out and reprocessed as new fibres, composites and textiles. Thus, synthetic and cellulose yarns can be produced zero-waste. Thanks to technically advanced reclamation processes, the materials retain their original quality and aesthetic. Practicality, essentialism and longevity determine the design of Continuous products.

From Earth
This theme focuses on the natural world and harmony with the nature of organic materials. Natural colours communicate warmth and softness. Imperfect textures, signs of wear and irregularities create ecological and earth-born aesthetics. Earthen and botanic shades, natural variation and tactile richness dominate the From Earth segment. Unrefined and raw surfaces, unbleached textiles and natural dyes celebrate materials in their original states.

Nature Engineered
Nature Engineered uses mechanical means to elevate and perfect organic materials, such as bast fibres, hemp, linen and nettles. Cutting-edge techniques process natural textiles into sophisticated and smart products. Combined with shades of beige and brown, clean lines and shapes are the distinguishing features of this theme.

More information:
Heimtextil Trends FranklinTill
Source:

Heimtextil, Messe Frankfurt

(c) Empa
05.04.2022

In the heat of the wound: Smart bandage

A bandage that releases medication as soon as an infection starts in a wound could treat injuries more efficiently. Empa researchers are currently working on polymer fibers that soften as soon as the environment heats up due to an infection, thereby releasing antimicrobial drugs.

It is not possible to tell from the outside whether a wound will heal without problems under the dressing or whether bacteria will penetrate the injured tissue and ignite an inflammation. To be on the safe side, disinfectant ointments or antibiotics are applied to the wound before the dressing is applied. However, these preventive measures are not necessary in every case. Thus, medications are wasted and wounds are over-treated.

A bandage that releases medication as soon as an infection starts in a wound could treat injuries more efficiently. Empa researchers are currently working on polymer fibers that soften as soon as the environment heats up due to an infection, thereby releasing antimicrobial drugs.

It is not possible to tell from the outside whether a wound will heal without problems under the dressing or whether bacteria will penetrate the injured tissue and ignite an inflammation. To be on the safe side, disinfectant ointments or antibiotics are applied to the wound before the dressing is applied. However, these preventive measures are not necessary in every case. Thus, medications are wasted and wounds are over-treated.

Even worse, the wasteful use of antibiotics promotes the emergence of multi-resistant germs, which are an immense problem in global healthcare. Empa researchers at the two Empa laboratories Biointerfaces and Biomimetic Membranes and Textiles in St. Gallen want to change this. They are developing a dressing that autonomously administers antibacterial drugs only when they are really needed.

The idea of the interdisciplinary team led by Qun Ren and Fei Pan: The dressing should be "loaded" with drugs and react to environmental stimuli. "In this way, wounds could be treated as needed at exactly the right moment," explains Fei Pan. As an environmental stimulus, the team chose a well-known effect: the rise in temperature in an infected, inflamed wound.

Now the team had to design a material that would react appropriately to this increase in temperature. For this purpose, a skin-compatible polymer composite was developed made of several components: acrylic glass (polymethyl methacrylate, or PMMA), which is used, for example, for eyeglass lenses and in the textile industry, and Eudragit, a biocompatible polymer mixture that is used, for example, to coat pills. Electrospinning was used to process the polymer mixture into a fine membrane of nanofibers. Finally, octenidine was encapsulated in the nanofibers as a medically active component. Octenidine is a disinfectant that acts quickly against bacteria, fungi and some viruses. In healthcare, it can be used on the skin, on mucous membranes and for wound disinfection.

Signs of inflammation as triggers
As early as in the ancient world, the Greek physician Galen described the signs of inflammation. The five Latin terms are still valid today: dolor (pain), calor (heat), rubor (redness), tumor (swelling) and functio laesa (impaired function) stand for the classic indications of inflammation. In an infected skin wound, local warmth can be as high as five degrees. This temperature difference can be used as a trigger: Suitable materials change their consistency in this range and can release therapeutic substances.

Shattering glove
"In order for the membrane to act as a "smart bandage" and actually release the disinfectant when the wound heats up due to an infection, we put together the polymer mixture of PMMA and Eudragit in such a way that we could adjust the glass transition temperature accordingly," says Fei Pan. This is the temperature, at which a polymer changes from a solid consistency to a rubbery, toughened state. Figuratively, the effect is often described in reverse: If you put a rubber glove in liquid nitrogen at –196 degrees, it changes its consistency and becomes so hard that you can shatter it like glass with one blow.

The desired glass transition temperature of the polymer membrane, on the other hand, was in the range of 37 degrees. When inflammation kicks in and the skin heats up above its normal temperature of 32 to 34 degrees, the polymer changes from its solid to a softer state. In laboratory experiments, the team observed the disinfectant being released from the polymer at 37 degrees – but not at 32 degrees. Another advantage: The process is reversible and can be repeated up to five times, as the process always "switches itself off" when it cools down. Following these promising initial tests, the Empa researchers now want to fine-tune the effect. Instead of a temperature range of four to five degrees, the smart bandage should already switch on and off at smaller temperature differences.

Smart and unsparing
To investigate the efficacy of the nanofiber membranes against wound germs, further laboratory experiments are now in the pipeline. Team leader Qun Ren has long been concerned with germs that nestle in the interface between surfaces and the environment, such as on a skin wound. "In this biological setting, a kind of no man's land between the body and the dressing material, bacteria find a perfect biological niche," says the Empa researcher. Infectious agents such as staphylococci or Pseudomonas bacteria can cause severe wound healing disorders. It was precisely these wound germs that the team allowed to become acquainted with the smart dressing in the Petri dish. And indeed: The number of bacteria was reduced roughly 1000-fold when octenidine was released from the smart dressing. "With octenidine, we have achieved a proof of principle for controlled drug release by an external stimulus," said Qun Ren. In future, she said, the technology could be applied to other types of drugs, increasing the efficiency and precision in their dosage.

The smart dressing
Empa researchers are working in interdisciplinary teams on various approaches to improve medical wound treatment. For example, liquid sensors on the outside of the dressing are to make it visible when a wound is healing poorly by changing their color. Critical glucose and pH values serve as biomarkers.

To enable bacterial infections to be contained directly in the wound, the researchers are also working on a polymer foam loaded with anti-inflammatory substances and on a skin-friendly membrane made of plant material. The cellulose membrane is equipped with antimicrobial protein elements and kills bacteria extremely efficiently in laboratory tests.

Moreover, digitalization can achieve more economical and efficient dosages in wound care: Empa researchers are developing digital twins of the skin that allow control and prediction of the course of a therapy using real-time modeling.

Further information:
Prof. Dr. Katharina
Maniura Biointerfaces
Phone +41 58 765 74 47
Katharina.Maniura@empa.ch

Prof. Dr. René Rossi
Biomimetic Membranes and Textiles
Phone +41 58 765 77 65
Rene.rossi@empa.ch

Source:

EMPA, Andrea Six

(c) Ligne Roset
22.02.2022

Home textile trends for 2022: A craving for constancy

Sometimes loud, sometimes very gentle – but always on the move: the world of textiles has real expertise in the art of the quick change. The home textile trends for 2022 see nature quietly and discreetly settling inside our homes, making a clear statement – it’s time to take a fresh look at familiar things.

Home textile trends for 2022: back to basics
Before the pandemic, our homes were just one part of our lives. We spent much of the day out and about. The coronavirus pandemic changed all that. Many people spent more time within their own four walls than ever before – our homes took on a central role in our lives. “Home living” became an inescapable theme last year. In times when instability seems to be everywhere, many people switch their focus to the essentials and crave security and peace, turning their homes into a natural refuge where they can recharge their batteries. This trend is also influencing the interiors and lifestyle sector.

Sometimes loud, sometimes very gentle – but always on the move: the world of textiles has real expertise in the art of the quick change. The home textile trends for 2022 see nature quietly and discreetly settling inside our homes, making a clear statement – it’s time to take a fresh look at familiar things.

Home textile trends for 2022: back to basics
Before the pandemic, our homes were just one part of our lives. We spent much of the day out and about. The coronavirus pandemic changed all that. Many people spent more time within their own four walls than ever before – our homes took on a central role in our lives. “Home living” became an inescapable theme last year. In times when instability seems to be everywhere, many people switch their focus to the essentials and crave security and peace, turning their homes into a natural refuge where they can recharge their batteries. This trend is also influencing the interiors and lifestyle sector.

Pure nature in colour and form
The connection between nature and home living is becoming increasingly important when it comes to textile design. It’s a matter of creating a symbiosis between natural materials, colours and textiles to infuse rooms with a warm atmosphere. Soft textures, amorphous shapes and muted earthy tones define the home textile trends for 2022.

Rediscovering the classics: bouclé & corduroy
When most people think of bouclé, the first image that springs to mind is probably the world-famous and timeless Coco Chanel suit from the 1950s. In the 1980s and 1990s, the fabric disappeared from the trend radar. But this year it’s celebrating a fantastic comeback in interior design. Bouclé hits just the right spot between soft and hard-wearing. The upholstery is typically made of cotton and is especially durable. Whether on a sofa, armchair, cushion or as curtains, bouclé fabric is a real all-rounder and gives any room a cosy vibe. Paired with wood or metal, it softens the more hard-edged elements.

Another tactile highlight from days gone by is enjoying a revival, too – corduroy. A timeless classic that is quite rightly settling back in to our homes. Its soft structure means the fabric is well-suited for sofas and seating furniture of various kinds, with its characteristic vertical furrows making the material particularly exciting. And best of all, corduroy fits into any interior design style with ease – contrary to its stereotype of being stuffy.

A mix & match of natural materials and shapes
Natural materials like linen, wool and wood immediately lend an organic, vibrant quality to any home. The natural connection is especially apparent from last year’s DIY boom, with many walls now adorned by macramé – decorative art made by knotting wool. Cushions and blankets made of woven and braided wool in muted cream tones also create a natural and cosy look. Organic patterns and structures inspired by nature are now a must in every home.

Catapulted straight into the 2022 textile trends from the fashion world, “organic camouflage” gives camo patterns a makeover. In warm earth and pastel shades, this on-trend motif calls to mind soft, sandy beaches, the sea or the forest. On a rug or a cushion, “organic camouflage” creates a vibrant look when paired with a low-key couch.

Take the plunge with bold patterns
Whether on wallpaper, rugs or accessories, floral prints in sumptuous colour combinations are still in fashion when it comes to fabric design. In dark shades of green, they forge an elegant connection to nature, and dramatic floral prints on wallpaper make a statement in any room. But even small accessories and decorative elements like floral cushions or blankets on a monochrome sofa or armchair can have a big impact. Combined with light hues and patterns, the overall result is a harmonious interplay of colours and textures. Alongside floral textiles, upholstered furniture with geometric prints is a trend that demands the courage to be different. Large and small geometric patterns add depth to any material and are an artful way of bringing life into the home.

Sustainable materials and textiles
The global sustainability trend also raises questions concerning textile production. Where does the product come from? Is the manufacturing process environmentally friendly? The textile industry has responded with fabrics made from recycled polyester or resource-friendly hemp, cork as a substitute for wood, or fair-trade organic cotton. Alternatives to animal-derived fabrics are also becoming more common in the textile industry. Vegetarian or vegan leather can be produced from many natural resources, from apples and pineapples to mushrooms and cacti. The range of sustainable and environmentally friendly textiles has expanded in recent years and is expected to continue to grow.

Source:

imm cologne / Koelnmesse

Photo: pixabay, Hilary Clark
01.02.2022

Cotton Fibers 2.0: Fireproof and comfortable

A new chemical process developed by Empa turns cotton into a fire-resistant fabric, that nevertheless retains the skin-friendly properties of cotton.

Conventional flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the inherently positive properties of cotton fibers, which account for three-quarters of the world's demand for natural fibers in clothing and home textiles. Cotton is skin-friendly because it can absorb considerable amounts of water and maintain a favorable microclimate on the skin.

A new chemical process developed by Empa turns cotton into a fire-resistant fabric, that nevertheless retains the skin-friendly properties of cotton.

Conventional flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the inherently positive properties of cotton fibers, which account for three-quarters of the world's demand for natural fibers in clothing and home textiles. Cotton is skin-friendly because it can absorb considerable amounts of water and maintain a favorable microclimate on the skin.

For firefighters and other emergency service personnel, protective clothing provides the most important barrier. For such purposes, cotton is mainly used as an inner textile layer that needs additional properties: For example, it must be fireproof or protect against biological contaminants. Nevertheless, it should not be hydrophobic, which would create an uncomfortable microclimate. These additional properties can be built into the cotton fibers by suitable chemical modifications.

Durability vs. toxicity
"Until now, it has always taken a compromise to make cotton fireproof," says Sabyasachi Gaan, a chemist and polymer expert who works at Empa's Advanced Fibers lab. Wash-durable flame retardant cotton in industry is produced by treating the fabric with flame retardants, which chemically links to the cellulose in the cotton. Currently, the textile industry has no other choice than to utilize formaldehyde-based chemicals – and formaldehyde is classified as a carcinogen. This has been an unsolved problem for decades. While formaldehyde-based flame retardant treatments are durable, they have additional drawbacks: The -OH groups of cellulose are chemically blocked, which considerably reduces the capability of cotton to absorb water, which results in an uncomfortable textile.

Gaan knows the chemistry of cotton fibers well and has spent many years at Empa developing flame retardants based on phosphorus chemistry that are already used in many industrial applications. Now he has succeeded in finding an elegant and easy way to anchor phosphorous in form of an independent network inside the cotton.

Independent network between cotton fibers
Gaan and his colleagues Rashid Nazir, Dambarudhar Parida and Joel Borgstädt utilized a tri-functional phosphorous compound (trivinylphosphine oxide), which has the capability of reacting only with specifically added molecules (nitrogen compounds like piperazin) to form its own network inside cotton. This makes the cotton permanently fire-resistant without blocking the favorable -OH groups. In addition, the physical phosphine oxide network also likes water. This flame retardant treatment does not include carcinogenic formaldehyde, which would endanger textile workers during textile manufacturing. The phosphine oxide networks, thus formed, does not wash out: After 50 launderings, 95 percent of the flame retardant network is still present in the fabric.

To render additional protective functionalities to the flame retardant cotton developed at Empa, the researchers also incorporated in situ generated silver nanoparticles inside the fabric. This works nicely in a one-step process together with generating the phosphine oxide networks. Silver nanoparticles provide the fiber with antimicrobial properties and survive 50 laundry cycles, too.

A high-tech solution from the pressure cooker
"We have used a simple approach to fix the phosphine oxide networks inside the cellulose," Gaan says. "For our lab experiments, we first treated the cotton with an aqueous solution of phosphorus and nitrogen compounds and then steamed it in a readily available pressure cooker to facilitate the crosslinking reaction of the phosphorus and the nitrogen molecules." The application process is compatible with equipment used in the textile industry. "Steaming textiles after dyeing, printing and finishing is a normal step in textile industry. So it doesn't require an additional investment to apply our process," states the Empa chemist.

Meanwhile, this newly developed phosphorus chemistry and its application is protected by a patent application. "Two important hurdles remain," Gaan says. "For future commercialization we need to find a suitable chemical manufacturer who can produce and supply trivinylphosphine oxide. In addition, trivinylphosphine oxide has to be REACH-registered in Europe."

Contact:
Dr. Sabyasachi Gaan
Advanced Fibers
Phone: +41 58 765 7611
sabyasachi.gaan@empa.ch
 
Contact:
Prof. Dr. Manfred Heuberger
Advanced Fibers
Phone: +41 58 765 7878
manfred.heuberger@empa.ch

A gel that releases drugs
The novel phosphorus chemistry can also be used to develop other materials, e.g. to make hydrogels that can release drugs upon changes in pH. Such gels could find application in treating wounds that heal slowly. In such wounds, the pH of the skin surface increases and the new phosphorus-based gels can be triggered to release medication or a dye that alerts doctors and nurses to the problem. Empa has also patented the production of such hydrogels.

Source:

EMPA, Rainer Klose

(c) Schoeller Textil AG
18.01.2022

A jacket from a jacket from a jacket ...

Manufacture, wear, wash, incinerate: This typical life cycle of garments, which pollutes the environment, is to be changed in the future – towards principles of circular economy with recycling at its core. Using an outdoor jacket made from PET bottles and recycled materials, Empa researchers have investigated whether the product actually delivers what the idea promises.

At first glance, it's a normal rain jacket: three layers of polyester, a lining on the inside, a water vapor-permeable membrane on top and water-repellent fabric on the outside, with a hood. But the zipper makes you wonder. Instead of ending at collar height, it pulls up over the forehead ... – who would pull it that far?

Manufacture, wear, wash, incinerate: This typical life cycle of garments, which pollutes the environment, is to be changed in the future – towards principles of circular economy with recycling at its core. Using an outdoor jacket made from PET bottles and recycled materials, Empa researchers have investigated whether the product actually delivers what the idea promises.

At first glance, it's a normal rain jacket: three layers of polyester, a lining on the inside, a water vapor-permeable membrane on top and water-repellent fabric on the outside, with a hood. But the zipper makes you wonder. Instead of ending at collar height, it pulls up over the forehead ... – who would pull it that far?

The explanation is given by Annette Mark from textile manufacturer BTK Europe, who contributed to this product. The zipper is intended to be an eye-catcher – and is primarily for recycling: Sewn tight with a thread that dissolves in boiling water, it is easier to remove than two fasteners. "Pull once and you're done," says the expert on textiles and recycling. The light green color is also due to recycling: The raw material, a granule made from a mixture of different but single-variety textiles, is dark green – and melting and spinning out the material for new yarns lightens it.

Circular economy within textile industry
Magnetic buttons, seams, hems: Every detail of the jacket follows the Design2Recycle approach, as it says on the Wear2wear website. Six companies from Europe's textile industry have joined forces in this consortium to promote circular economy. After all, more than 70 percent of all textiles produced worldwide end up in landfills or incinerators without being recycled.

How can circular economy be acheived in this industry? A team from Empa's Technology and Society lab took a closer look at the jacket and its environmental impact using life cycle analyses over a four-year period of use; including washing it three times. The candidates: a jacket produced without circular economy methods, the "starter version" of the jacket available since 2019 in blue – with an outer layer made of polyester derived from used PET bottles – and the green version from the subsequent recycling process, in which unavoidable material losses are replaced by new polyester.

The researchers' analyses show that the recycled products perform better – in eleven environmental risk categories, including global warming, toxicity to ecosystems and water scarcity. There are strikingly large advantages in air pollution, for example, because fewer pollutants are released without incineration, as well as in water scarcity, especially for the green jacket after the first recycling "loop," for which PET bottles are no longer used.

Other insights from the analyses: In terms of greenhouse effect, the maximum benefit is a good 30 percent. And the use of PET bottles does not bring any major ecological benefits. What is decisive, on the other hand, is the number of recycling cycles to produce new jackets: The balance improves from jacket to jacket – provided the quality of the polyester remains high enough.

In practice, this is challenging, as Mark explains: "Depending on the origin, the raw material sometimes differs significantly." If the fibers have been coated with certain additives, the nozzles of the spinning machines can become clogged. And in general, the quality decreases with the number of recycling cycles: more irregular structures of the yarn and lower strength.

Annette Mark's conclusion on the Empa analyses: "very realistic" and useful for improvements. "The cooperation was very good," she says, "full transparency and no compromises." The researchers also found the collaboration fruitful. "Open collaboration between science and industry is enormously important," says former team member Gregor Braun, who has since left Empa and now works as a consultant for sustainability. "Sustainability and circular economy can work well together."

Will the jacket become a market success? "The textile industry is in a state of upheaval. A rethinking is taking place right now that we shouldn't miss," says Annette Mark. But large corporations that are already developing similar products "have completely different options." After all, talks are underway with a sportswear manufacturer – for a fleece jacket, for which the Empa findings could also be useful.

Microplastic fibers from textiles
Textiles made of polyester are making the headlines because of the release microplastic fibers – for instance, during washing – which is sometimes considered a threat to humans and the environment. Empa experts have studied the formation and release of microplastic fibers. Their results: Fibers are released primarily at the fabric's edges. Their formation and release depends, among other things, on the type of fiber, surface treatment and the type of cutting. Compared to other textiles, significantly fewer fibers are released from laser-cut textiles during washing. Empa is conducting studies with industrial partners to further reduce the formation of these fibers during textile production. In Swiss wastewater treatment plants, however, microfibers are largely removed from wastewater and incinerated with the sludge.

More information:
Empa PET Recycling polyester
Source:

EMPA, Norbert Raabe

photo: pixabay
04.01.2022

EU Project: System Circularity & Innovative Recycling of Textiles

SCIRT stands for System Circularity & Innovative Recycling of Textiles. Coordinated by VITO, an independent Flemish research organisation in the cleantech and sustainable development sector, SCIRT is a three year EU-funded project from the Horizon 2020 Programme.

It aims to demonstrate a complete textile-to-textile recycling system for discarded clothing—or post-consumer textiles—involving stakeholders throughout the value chain and focusing on the recycling of natural fibres, synthetic fibres and fibre blends. To reach this goal, the project has set four main objectives.

SCIRT stands for System Circularity & Innovative Recycling of Textiles. Coordinated by VITO, an independent Flemish research organisation in the cleantech and sustainable development sector, SCIRT is a three year EU-funded project from the Horizon 2020 Programme.

It aims to demonstrate a complete textile-to-textile recycling system for discarded clothing—or post-consumer textiles—involving stakeholders throughout the value chain and focusing on the recycling of natural fibres, synthetic fibres and fibre blends. To reach this goal, the project has set four main objectives.

  • Deliver a closed-loop recycling solution for discarded textiles.
  • Stimulate and encourage conscious design as well as production practices.
  • Create new business opportunities by boosting textile value chain activity.
  • Raise awareness of the environmental and social impacts of buying clothes.

Gathering 18 partners from five countries, the SCIRT project held its virtual kick-off meeting in mid-2021 to begin tackling the issue of clothing waste and recyclability, one of the biggest challenges faced in the fashion industry today.

As clothing brands are setting ambitious targets and making promises to incorporate recycled fibres in their products, discarded textiles are piling up in abundance around the globe. Though it would seem that the stars of supply and demand have aligned for this part of the circular economy, the truth is that less than 1% of textile waste is recycled into new textile fibres, according to an Ellen MacArthur Foundation report published in 2017. This miniscule percentage is indicative of a greater problem-achieving circularity in the fashion industry is not just a question of supply and demand, but of the connection between the two. There is a lack of knowledge surrounding the technological, economic and environmental feasibility of recycling fibre mixtures, and a need to align the quality and cost of recycling processes with the demands of textile companies and fashion brands.

SCIRT will develop solutions to support systemic innovation towards a more circular fashion system and bridge this supply-demand gap. To address the demand side of the equation, SCIRT will demonstrate a complete textile-to-textile recycling system for discarded clothing, otherwise known as post-consumer textiles, involving stakeholders throughout the value chain and focusing on the recycling of natural and synthetic fibres, as well as fibre blends. With the support of technical partners and research institutes, clothing brands Decathlon, Petit Bateau, Bel & Bo, HNST and Xandres, will develop, prototype and produce six different representative types of apparel using post-consumer recycled fibres. These include formal and casual wear, sportswear, underwear and uniforms. Through this endeavour, SCIRT will prioritise quality and cost-effectiveness in order to ensure market confidence and encourage the broad uptake of post-consumer recycled fibres.

From a non-technological perspective, SCIRT will develop supporting policy measures and tools to facilitate the transition towards a circular system for apparel. This includes a framework for an eco-modulated Extended Producer Responsibility (EPR) system and a True Cost Model to quantify circularity and increase value chain transparency. Special attention will also be given to the consumer perspective. To this end, Citizen Labs engaging consumers in various European locations, as well as a wider online engagement platform, will be developed to engage citizens throughout the project in order to understand the perceptions, motivations and emotions shaping their behaviour regarding the purchase, use, and disposal of textiles.

Over the next three years, SCIRT project partners will work to overcome current technological, economic, socio-economic and regulatory barriers faced in textiles recycling to achieve a real, lasting circular fashion economy.

2021:
The SCIRT project kicks off and partners identify the current state-of-the-art in apparel design, production and recycling, challenges and market trends, and stakeholder needs.

2022:
Designing and testing a fibre-to-fibre system by producing recycled yarns and filaments, free from harmful substances.

2023:
Formal wear, casual wear, sportswear, underwear and uniforms will be designed and produced using the optimized yarns developed.

Partners

  • Fashion companies: Bel&Bo, HNST, Decathlon, Xandres, Petit Bateau
  • Research organisations: VITO, CETI, Prospex Institute
  • Universities: BOKU, TU Wien, ESTIA
  • Industry players: Altex, AVS Spinning - A European Spinning Group (ESG) Company, Valvan
  • SMEs: Circular.fashion, FFact
  • Non-profit organisations: Flanders DC, IID-SII

 

ALTEX
ALTEX is a textile recycling company based in Germany that employs state-of-the-art machinery to recycle textile waste into new high-quality products. Its products include teared fibres, natural fibres, synthetic fibres and fibre blends among others.

Bel & Bo
Bel&Bo is a family-owned Belgian business with about 95 retail stores located throughout Belgium. Its mission is to offer colourful, fashionable and sustainably produced clothing for men, women and children at an affordable price.

CETI
The European Center for Innovative Textiles (CETI) is a non-profit organisation dedicated to conceiving, experimenting with and prototyping innovative textile materials and products through both private and collaborative R&D projects.

circular.fashion
circular.fashion offers software for circular design, intelligent textile sorting and closed-loop recycling, including the Circular Design Software and the circularity.ID®, as well as training and hands-on support to fashion brands in their transitions.

Decathlon
With over 315 stores in France, and 1,511 around the world, Decathlon has been innovating since 1976 to become the main player for athletic people. It has been engaged in reducing its environmental impact through a number of actions.

ESG
The European Spinning Group (ESG) is a textile group based in Belgium that offers a range of yarns produced with a highly technological open-end spinning mill for different applications, such as for interiors, fashion and technical textiles.

ESTIA
ESTIA is a French institute that has provided education and training in the areas of industrial technologies for 20 years. Since 2017, ESTIA has had a program focused on new materials and disruptive process in the fashion and textile industry.

FFACT
FFact is a unique group of management consultants that facilitates the implementation of sustainability from a business perspective, and translates facts into useful management information. FFact is based in the Netherlands and Belgium.

Flanders DC
The Flanders District of Creativity, a non-profit organisation based in Belgium, informs, coaches, promotes and inspires creative entrepreneurs in various sectors, including the fashion industry, who want to build or grow their business.

HNST
HNST is a Belgian circular denim brand that recovers post-consumer denim and recycles it into new fabric in the EU, creating durable and 100% recyclable jeans that use 82% less water and emit 76% less carbon dioxide than conventional jeans.

Petit Bateau
Petit Bateau is a French apparel brand that specialises in knit products. As a vertical company, Petit Bateau carries out its own knitting, dyeing, making up and store management with the support of its 3,000 employees.

Prospex Institute
The Prospex Institute aims to promote the participation of citizens and stakeholders in socially relevant decision-making dialogue and development by engaging with theorists and practitioners both in Belgium and abroad.

IID-SII
The Sustainable Innovation Institute is a French non-profit association based in Paris. Initiated by LGI, a French SME, the purpose of IID-SII is to act as a think and do tank on sustainable innovation to support the adoption of novel solutions.

TU Wien
TU Wien is an open academic institution where research, teaching and learning have taken place under the motto “Technology for people” for the past 200 years. One of its key areas of research is on recycling technology and fibre innovation.

BOKU
Research at the Institute for Environmental Biotechnology of BOKU based in Vienna, Austria focus on the exploitation of enzymes as powerful biocatalysts for biomaterials processing within recycling applications.

Valvan
Valvan Baling Systems has 30 years of experience in designing and constructing custom-made machinery, specialising in Baling Machines and Sorting Facilities for fibre producers, collectors, sorters and recyclers of textiles.

VITO
VITO, a leading independent European research and technology organisation in the cleantech and sustainable development sectors, aims to accelerate the transition towards a sustainable society by developing sustainable technologies.

Xandres
Xandres is a brand inspired by and for women. It is rooted in a highly respected tradition of fashion, driven by quality and created for the life women lead today. Xandres offers innovative designs with respect for luxury and the environment.

Es ist unendlich… © Jutta Jung
29.12.2021

Textile Designer Jutta Jung "WOMEN'S STORIES AND DREAMSCAPES"

  • ▪ Painting and Drawing by Jutta Jung
  • ▪ Exhibition in the gallery ART ROOM in Düsseldorf-Gerresheim (Germany) from 05-02-2022 – 04-03-2022
  • ▪ From Neo-Pop Art to Magic Realism

The creative signature of textile designer Jutta Jung cannot be pigeonholed - in her artistic expression, she moves between Neo-Pop Art, Figurative Expressionism and Magical Realism. In her upcoming exhibition at the ART ROOM-Düsseldorf gallery, the Neuss-based artist will be showing new realistic-expressive paintings with motifs of women, in which she combines textile-like structures with luminous pours of paint.

Jutta Jung: "We all live in one world, and yet we do not. We all see the same thing, but perceive it differently. The diversity of external and internal views has always fascinated me."

  • ▪ Painting and Drawing by Jutta Jung
  • ▪ Exhibition in the gallery ART ROOM in Düsseldorf-Gerresheim (Germany) from 05-02-2022 – 04-03-2022
  • ▪ From Neo-Pop Art to Magic Realism

The creative signature of textile designer Jutta Jung cannot be pigeonholed - in her artistic expression, she moves between Neo-Pop Art, Figurative Expressionism and Magical Realism. In her upcoming exhibition at the ART ROOM-Düsseldorf gallery, the Neuss-based artist will be showing new realistic-expressive paintings with motifs of women, in which she combines textile-like structures with luminous pours of paint.

Jutta Jung: "We all live in one world, and yet we do not. We all see the same thing, but perceive it differently. The diversity of external and internal views has always fascinated me."

As a counterpoint to her paintings of women, some of which are autobiographical in origin or can also stimulate the viewer's imagination for stories of their own, she is presenting a current series of surface paintings in the gallery. These are presented in her typical colourfulness and overlapping forms and structures.

This is complemented by an excerpt from her collection of "Women's Stories and Dream Landscapes" with expressive portrait drawings and abstract paintings. On large canvas formats, Jutta Jung works out in a painterly-gestural way what she wants to make visible. Power meets colour. Fine strokes and drawings are combined with painting on paper and in smaller formats - from contemplative to impulsive. Worlds of colour, abstracted landscapes, compositions that take up symbols and signs, figurative elements or depictions of people: Jutta Jung combines a variety of materials and artistic techniques in her paintings to depict her perspectives and ways of seeing. "There are always new worlds to discover," she says.

On the occasion of its 50th anniversary, the Kreismuseum Zons is showing the special event "Art to the Last Corner" from 13 May to 26 June 2022. Jutta Jung is one of seven selected artists and will present works on her theme "Global Ethno". The museum as part of a former castle with buildings from the 17th to the end of the 20th century gives exhibitions a special presentation framework. It also contains the 900 works of Prof. Helmut Hahn's life's work from forty years of activity.

Vita
Jutta Jung lives and works in the Rhineland. She completed her design studies (specialising in textile design) at the Niederrhein University of Applied Sciences in Krefeld with a diploma under Professor Helmut Hahn with the grade "very good". Her main subjects were free drawing, free painting, illustration, colour composition, conception & design, art science, design theory. In addition to her many years of work as a textile designer and collection designer in the Rhineland textile industry, she has been working as a freelance designer and artist in her own studio since 2003:
▪ Textile design and collection design for companies in Europe and Asia. (including fabric designs, porcelain decors and designs for handmade carpets).
▪ Free painting and sale of works to private collectors.
Since 2010, Jutta Jung has concentrated exclusively on free artistic work in painting and drawing. She is a member of Kunst.Neuss e.V. and the artist network crossart international.

Contact:
E-Mail: jutta-jung-artwork@gmx.de
Web: https://juttajungartwork.com/

(c) STFI
14.12.2021

Funding Project Raw Material Classification of Recycled Fibers

For centuries, old textiles have been used to make tear fibers and processed into new textile products. This effective recycling is one of the oldest material cycles in the world. Today, it is not only clothing that is recycled, but also high-quality technical textiles. As the products of the textile industry evolve, so do the demands on textile recycling. The basis for this is a clear assessment and classification of raw materials.

For centuries, old textiles have been used to make tear fibers and processed into new textile products. This effective recycling is one of the oldest material cycles in the world. Today, it is not only clothing that is recycled, but also high-quality technical textiles. As the products of the textile industry evolve, so do the demands on textile recycling. The basis for this is a clear assessment and classification of raw materials.

In the research project of the German Institutes of Textile and Fiber Research Denkendorf (DITF) and the Sächsisches Textilforschungsinstitut e.V. (STFI - Saxony Textile Research Institute), a methodology is being developed that will make it possible to analyze the tearing as well as the subsequent processes with regard to fiber quality. The systematic analysis should make it possible to optimize the subsequent spinning processes in such a way that the recycled content of the yarn can be increased without the yarn properties differing significantly from those of a yarn consisting of 100% good fibers. These yarns can then be processed into sustainable textile products such as clothing or composite components.

The project, which is funded by the BMWi/IGF, is scheduled to run for two years and will end on December 31, 2022. The main benefits for the participating companies are to enable them to make greater use of secondary raw materials, to open up new markets through technologies or products developed in the project, to initiate synergies and long-term cooperation, and to prepare a joint market presence.    

The project includes several steps:

  • Material selection and procurement
    Cotton fibers to be processed are obtained from used textiles (T-shirts) and waste from the cotton spinning mill. Aramid fibers are processed from used protective clothing and technical textiles.
  • Optimization of the preparation / dissolution of the textiles
    To ensure that the fibers are detached from the corresponding textiles as gently as possible and with a not too high reduction, exact settings have to be found for the tearing process, which are technologically very demanding and require a lot of experience.
  • Determination of the quality criteria for the evaluation of the fiber dissolution
    In order to define the quality criteria, the fibers coming from the tearing mill are determined by means of an MDTA-4 measuring device from Textechno GmbH & Co. KG. The criteria determined are to be used to characterize the (lowest possible) fiber shortening caused by the tearing process.
  • Determination of optimized settings in the spinning process
    In order to determine the optimum settings for producing a yarn from the recycled fibers, they are spun after the rotor spinning process. By adjusting the spinning process, the aim is to produce a yarn that has good uniformity and also appropriate firmness.
  • Production and comparison of yarns from recycled raw materials
    In order that the recycled fibers - consisting of aramid and cotton - can each be used to produce an area-measured material, the material is to be processed at industrial scale. For this purpose, the fibers are processed over a complete blowroom line with following sliver production over adapted cards. After drawing and the following roving production, yarns are produced according to the rotor or ring spinning process. The finished yarns are used to produce knitted fabrics.
  • Coordination, analysis of results and preparation of reports
    The final report is prepared by the DITF and the STFI. The results will be transferred through publications, technical information to associations and trade fair presentations. Regular meetings with the participating companies are planned.

Textination spoke with Stephan Baz, Deputy Head of the Competence Center Staple Fiber, Weaving & Simulation, Head of Staple Fiber Technology and Markus Baumann, Research Associate at the Competence Center Staple Fiber, Weaving & Simulation (both DITF) as well as Bernd Gulich, Head of Department Nonwovens/Recycling and Johannes Leis, Research Associate Focus Nonwovens/Recycling (both STFI) about the current status of the funding project.

What is the current status of the project?
We are currently in the phase of carrying out trials and the iterative optimization of several project components. As expected, several loops are necessary for the mechanical preparation itself and also for the adjustment of the spinning process with the different variants. Ultimately, after all, the project aims at coordinating the processes of mechanical preparation and spinning as processing in order to achieve optimum results. At the same time, determining the quality criteria of the fibers produced is not trivial. This also requires the further development of processes and test methods that can be implemented productively in industry and that allow the quality of the fibers produced to be assessed effectively and unaffected by residual yarns, for example. What is really remarkable is the interest and willingness of the industry to drive the project work forward. The considerable quantities of materials required for our trials were purchased from ReSales Textilhandel und -recycling GmbH, Altex Textil-Recycling GmbH & Co. KG and Gebrüder Otto GmbH & Co. KG. Furthermore, with Temafa Maschinenfabrik GmbH, Nomaco GmbH & Co. KG, Schill + Seilacher GmbH, Spinnerei Neuhof GmbH & Co. KG and Maschinenfabrik Rieter AG, many members of the project-supporting committee are actively involved in the project, from consulting to the providing of technologies. The company Textechno Herbert Stein GmbH & Co. KG has provided a testing device of the type MDTA4 for the duration of the project and supports our work with regard to the evaluation of the mechanically prepared fibers. We are of course particularly pleased about this, as it has allowed us to look at and analyze several technologies in both mechanical preparation, testing and spinning. We expect to be able to make more detailed statements at the beginning of the coming year.

Which approaches do you think are particularly promising?
With regard to technologies, we must refer to the evaluation and analysis of the trials, which are currently still ongoing. We will be able to go into more detail in the first quarter of next year.

Of course, things are already emerging. With meta-aramid waste, promising approaches could be found very quickly; with post-consumer cotton, this is considerably more complex. Obviously, there is a link between the quality of the raw material and the quality of the products. In some cases, we have already been able to determine very low average fiber lengths in the procured goods; to a certain extent, these are of course directly reflected in the output of our processes. From this, and this is not a new finding, a great importance of the design of the textiles is again derived.

What are the challenges?
In addition to the expected high short fiber content, the residual yarns after the tearing process are an issue of particular focus. The proportion of these residual yarns can vary between the materials and preparation technologies, but the further dissolution of the products of the tearing process is essential.

If the processes are considered further in a utilization phase, the question of design naturally also arises for the best possible use of recycled fibers. Many problems, but also the approaches to solutions for the use of comparatively short fibers, can also be expected to apply to the (multiple) use of mechanically recycled fibers.

Can we speak of upcycling in the final product?
We see yarn-to-yarn recycling neither as upcycling nor downcycling, but as closed-loop recycling. The background is that the products are to go into the same application from which they came and have to compete with primary material. This means that certain specific requirements have to be met and at the same time there is considerable price pressure. In the case of downcycling, a significant reduction in properties is accepted, while in the case of upcycling, the higher-priced application can make up for the reprocessing effort. In the attempt to produce yarn material again from yarn material, both are only permissible to a small extent. This represents the particular challenge.

What does a recyclate prepared from used textiles mean for the spinning process?
Part of this question is to be answered in the project by the detailed classification of the processed fibers and is thus the subject of the tests currently underway. It turns out that, in addition to the rather obvious points such as significantly reduced fiber length, process disturbances due to undissolved fabrics and yarn pieces, there are also less obvious aspects to be considered, such as a significantly increased outgoing quantity for processing in the spinning process. The outgoing quantity is of particular interest here, because in the end the newly produced yarn should also contain a considerable proportion of prepared fibers.

What consequences does this have for textile machinery manufacturing?
The consequences that can already be estimated at the present time are that, particularly in the processing of cotton, the machinery in the spinning preparatory mill is specialized in the processing of (new) natural fibers with a certain amount of dirt. In contrast to new fibers, processed fibers are clean fibers with a significantly higher proportion of short fibers. Elements that are good at removing dirt also reject an increased amount of short fibers, which can lead to unintentionally high waste quantities under certain circumstances. It is therefore necessary to adapt the established machine technology to the new requirement profile of the raw material "processed fibers". Analogous adaptations are probably necessary along the entire processing chain up to the yarn. In the drafting system of the spinning machine, of course, this is due more to the high short fiber ratio than to elements that have been optimized for cleaning out dirt and foreign substances.

Source:

Textination GmbH

(c) Toray
23.11.2021

Toray Industries: A Concept to change Lives

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

The fibers’ and textiles’ business is both the starting point and the foundation of Toray's business development today. We started producing viscose yarns in 1926 and conducted our own research and development in nylon fibers as early as 1940. And since new materials usually require new processing methods, Toray also began investing in its own process technology at an early stage. On the one hand, we want to increase our sales, and on the other hand, we want to expand the application possibilities for our materials. For this reason, Toray also began to expand its business from pure fibers to textiles and even clothing. This allows us to better respond to our customers' needs while staying at the forefront of innovation.

Over the decades, Toray has accumulated a great deal of knowledge in polymer chemistry and organic synthesis chemistry - and this know-how is the foundation for almost all of our other business ventures. Today, we produce a wide range of advanced materials and high-value-added products in plastics, chemicals, foils, carbon fiber composites, electronics and information materials, pharmaceuticals, medicine and water treatment. However, fibers and textiles remain our most important business area, accounting for around 40% of the company's sales.

What understanding, what heritage is still important to you today? And how do you live out a corporate philosophy in the textile sector that you formulate as "Contributing to society through the creation of new value with innovative ideas, technologies and products"?

Toray has consistently developed new materials that the world has never seen before. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. For textiles, this means we use new polymer structures, spinning technologies and processing methods to develop yarns with unprecedented properties. We always focus on the needs and problems of the market and our customers.

This approach enables us to integrate textiles with new functions into our everyday lives that natural fibers and materials cannot accomplish. For example, we offer sportswear and underwear that absorb water excellently and dry very quickly, or rainwear and outdoor clothing with excellent water-repellent properties that feature a less bulky inner lining. Other examples include antibacterial underwear, uniforms, or inner linings that provide a hygienic environment and reduce the growth of odor-causing bacteria. People enjoy the convenience of these innovative textiles every day, and we hope to contribute to their daily comfort and improve their lives in some way.

In 2015, the United Nations adopted 17 sustainable development goals – simply known as the 2030 Agenda, which came into force on January 01, 2016. Countries were given 15 years to achieve them by 2030. In your company, there is a TORAY VISION 2030 and a TORAY SUSTAINABILITY VISION. How do you apply these principles and goals to the textile business? What role does sustainability play for this business area?

Sustainability is one of the most important issues facing the world today - not only in the textile sector, but in all industries. We in the Toray Group are convinced that we can contribute to solving various problems in this regard with our advanced materials. At the same time, the trend towards sustainability offers interesting new business approaches. In our sustainability vision, we have set four goals that the world should achieve by 2050. And we have defined which problems need to be addressed to achieve this.

We must:

  1. accelerate measures to combat climate change,
  2. implement sustainable, recycling-oriented solutions in the use of resources and in production,
  3. provide clean water and air, and
  4. contribute to better healthcare and hygiene for people around the world.

We will drive this agenda forward by promoting and expanding the use of materials that respond to environmental issues. In the textile sector, for example, we offer warming and cooling textiles – by eliminating the need for air conditioning or heating in certain situations, they can help reduce energy costs. We also produce environmentally friendly textiles that do not contain certain harmful substances such as fluorine, as well as textiles made from biomass, which use plant-based fibers instead of conventional petrochemical materials. Our product range also includes recycled materials that reduce waste and promote effective use of resources.

The TORAY VISION 2030, on the other hand, is our medium-term strategic plan and looks at the issue of sustainability from a different angle: Toray has defined the path to sustainable and healthy corporate growth in it. In this plan, we are focusing on two major growth areas: Our Green Innovation Business, which aims to solve environmental, resource and energy problems, and the Life Innovation Business, which focuses on improving medical care, public health, personal safety and ultimately a longer expectancy of life.

Innovation by Chemistry is the claim of the Toray Group. In a world where REACH and Fridays for Future severely restrict the scope of the chemical industry, the question arises as to what position chemistry can have in the textile industry. How do chemistry, innovation and sustainability fit together here?

The chemical industry is at a turning point today. The benefits that this industry can bring to civilization are still enormous, but at the same time, disadvantages such as the waste of resources and the negative impact on the environment and ecosystems are becoming increasingly apparent. In the future, the chemical industry will have to work much more towards sustainability - there is no way around it.

As far as textiles are concerned, we believe there are several ways to make synthetic materials more sustainable in the future. One of these, as I said, is materials made from plants instead of petrochemical raw materials. Another is to reduce the amount of raw materials used in production in the first place – this can be achieved, for example, by collecting and recycling waste materials from production or sales. Biodegradable materials that reduce the impact of waste products on the environment are another option worth pursuing, as is the reduction of environmentally harmful substances used in the production process. We are already looking at all of these possibilities in Toray's synthetic textiles business. At the same time, by the way, we make sure to save energy in our own production and minimize the impact on the environment.

Toray's fibers & textiles segment focuses on synthetic fibers such as nylon, polyester and acrylic, as well as other functional fibers. In recent years, there has been a clear trend on the market towards cellulosic fibers, which are also being traded as alternatives to synthetic products. How do you see this development – on the one hand for the Toray company, and on the other hand under the aspect of sustainability, which the cellulosic competitors claim for themselves with the renewable raw material base?

Natural fibers, including cellulose fibers and wool, are environmentally friendly in that they can be easily recycled and are rapidly biodegradable after disposal. However, to truly assess their environmental impact, a number of other factors must also be considered: Primarily, there is the issue of durability: precisely because natural fibers are natural, it is difficult to respond to a rapid increase in demand, and quality is not always stable due to weather and other factors.

Climatic changes such as extreme heat, drought, wind, floods and damages from freezing can affect the quantity and quality of the production of natural fibers, so that the supply is not always secured. In order to increase production, not only does land have to be cleared, but also large amounts of water and pesticides have to be used to cultivate it – all of which is harmful to the environment.

Synthetic fibers, on the other hand, are industrial products manufactured in controlled factory environments. This makes it easier to manage fluctuations in production volume and ensure consistent quality. In addition, certain functional properties such as resilience, water absorption, quick drying and antibacterial properties can be embedded into the material, which can result in textiles lasting longer in use.

So synthetic fibers and natural fibers, including cellulose fibers, have their own advantages and disadvantages – there is no panacea here, at least not at the moment. We believe: It is important to ensure that there are options that match the consumer's awareness and lifestyle. This includes comfort in everyday life and sustainability at the same time.

To what extent has the demand for recycled products increased? Under the brand name &+™, Toray offers a fiber made from recycled PET bottles. Especially with the "raw material base: PET bottles", problems can occur with the whiteness of the fiber. What distinguishes your process from that of other companies and to what extent can you compete with new fibers in terms of quality?

During the production of the "&+" fiber, the collected PET bottles are freed from all foreign substances using special washing and filtering processes. These processes have not only allowed us to solve the problem of fiber whiteness – by using filtered, high-purity recycled polyester chips, we can also produce very fine fibers and fibers with unique cross sections. Our proven process technologies can also be used to incorporate specific textures and functions of Toray into the fiber. In addition, "&+" contains a special substance in the polyester that allows the material to be traced back to the recycled PET bottle fibers used in it.

We believe that this combination of aesthetics, sustainability and functionality makes the recycled polyester fiber "&+" more competitive than those of other companies. And indeed, we have noticed that the number of requests is steadily increasing as companies develop a greater awareness of sustainability as early as the product planning stage.

How is innovation management practiced in Toray's textile division, and which developments that Toray has worked on recently are you particularly proud of?

The textile division consists of three sub-divisions focusing on the development and sale of fashion textiles (WOMEN'S & MEN'S WEAR FABRICS DEPT.), sports and outdoor textiles (SPORTS WEAR & CLOTHING MATERIALS FABRICS DEPT.) and, specifically for Japan, textiles for uniforms used in schools, businesses and the public sector (UNIFORM & ADVANCED TEXTILES DEPT.).

In the past, each division developed its own materials for their respective markets and customers. However, in 2021, we established a collaborative space to increase synergy and share information about textiles developed in different areas with the entire department. In this way, salespeople can also offer their customers materials developed in other departments and get ideas for developing new textiles themselves.

I believe that the new structure will also help us to respond better to changes in the market. We see, for example, that the boundaries between workwear and outdoor are blurring – brands like Engelbert Strauss are a good example of this trend. Another development that we believe will accelerate after the Corona pandemic is the focus on green technologies and materials. This applies to all textile sectors, and we need to work more closely together to be at the forefront of this.

How important are bio-based polyesters in your research projects? How do you assess the future importance of such alternatives?

I believe that these materials will play a major role in the coming years. Polyester is made from purified terephthalic acid (PTA), which again consists of paraxylene (PX) and ethylene glycol (EG). In a first step, we already offer a material called ECODEAR™, which uses sugar cane molasses waste as a raw material for EG production.

About 30% of this at least partially bio polyester fiber is therefore biologically produced, and the material is used on a large scale for sportswear and uniforms. In the next step, we are working on the development of a fully bio-based polyester fiber in which the PTA component is also obtained from biomass raw materials, such as the inedible parts of sugar cane and wood waste.

Already in 2011, we succeeded in producing a prototype of such a polyester fiber made entirely from biomass. However, the expansion of production at the PX manufacturer we are working with has proven to be challenging. Currently, we are only producing small sample quantities, but we hope to start mass production in the 2020s.

Originally starting with yarn, now a leading global producer of synthetic fibers for decades, you also work to the ready-made product. The range extends from protective clothing against dust and infections to smart textiles and functional textiles that record biometric data. What are you planning in these segments?

In the field of protective clothing, our LIVMOA™ brand is our flagship material. It combines high breathability to reduce moisture inside the garment with blocking properties that keep dust and other particles out. The textile is suitable for a wide range of work environments, including those with high dust or grease levels and even cleanrooms. LIVMOA™ 5000, a high quality, also demonstrates antiviral properties and helps to ease the burden on medical personnel. The material forms an effective barrier against bacteria and viruses and is resistant to hygroscopic pressure. Due to its high breathability, it also offers high wearing comfort.

Our smart textile is called hitoe™. This highly conductive fabric embeds a conductive polymer – a polymer compound that allows electricity to pass through - into the nanofiber fabric. hitoe™ is a high-performance material for detecting biosignals, weak electrical signals that we unconsciously emit from our bodies.

In Japan, Toray has developed products for electrocardiographic measurements (ECGs) that meet the safety and effectiveness standards of medical devices. And in 2016, we submitted an application to the Japanese medical administrative authorities to register a hitoe™ device as a general medical device – this registration process is now complete. Overall, we expect the healthcare sector, particularly medical and nursing applications, to grow – not least due to increasing infectious diseases and growing health awareness among the elderly population. We will therefore continue to develop and sell new products for this market.

In 1885, Joseph Wilson Swan introduced the term "artifical silk" for the nitrate cellulose filaments he artificially produced. Later, copper, viscose and acetate filament yarns spun on the basis of cellulose were also referred to as artifical silk. Toray has developed a new innovative spinning technology called NANODESIGN™, which enables nano-level control of the fineness and shape of synthetic fibers. This is expected to create functions, aesthetics and textures that have not existed before. For which applications do you intend to use these products?

In NANODESIGN™ technology, the polymer is split into a number of microscopic streams, which are then recombined in a specific pattern to form a new fiber. By controlling the polymer flow with extreme precision, the fineness and cross-sectional shape of the fiber can be determined much more accurately than was previously possible with conventional microfiber and nanofiber spinning technologies. In addition, this technology enables the combination of three or more polymer types with different properties in one fiber – conventional technologies only manage two polymer types. This technology therefore enables Toray to specify a wide range of textures and functions in the production of synthetic fibers that were not possible with conventional synthetic fibers – and even to outperform the texture and feel of natural fibers. Kinari, our artificial silk developed with NANODESIGN technology, is a prime example here, but the technology holds many more possibilities – especially with regard to our sustainability goals.

What has the past period of the pandemic meant for Toray's textile business so far? To what extent has it been a burden, but in which areas has it also been a driver of innovation? What do you expect of the next 12 months?

The Corona catastrophe had a dramatic impact on the company's results: The Corona catastrophe had a dramatic impact on the company's results: In the financial year 2020, Toray's total sales fell by about 10% to 188.36 billion yen (about 1.44 billion euros) and operating profit by about 28% to 90.3 billion yen (about 690 million euros). The impact on the fiber and textile business was also significant, with sales decreasing by around 13% to 719.2 billion yen (approx. 5.49 billion euros) and operating profit by around 39% to 36.6 billion yen (approx. 280 million euros).

In the financial year 2021, however, the outlook for the fibers and textiles sector is significantly better: So far, the segment has exceeded its goals overall, even if there are fluctuations in the individual areas and applications. In the period from April to June, we even returned to the level of 2019. This is partly due to the recovering sports and outdoor sector. The fashion apparel market, on the other hand, remains challenging due to changing lifestyles that have brought lock-downs and home-office. We believe that a full recovery in business will not occur until the travel and leisure sector returns to pre-Corona levels.

Another side effect of the pandemic that we feel very strongly, is the growing concern about environmental issues and climate change. As a result, the demand for sustainable materials has also increased in the apparel segment. In the future, sustainability will be mandatory for the development and marketing of new textiles in all market segments. Then again, there will always be the question of how sustainable a product really is, and data and traceability will become increasingly important. In the coming years, the textile division will keep a close eye on these developments and develop materials that meet customers' needs.

About the person:
Koji Sasaki joined Toray in 1987. In his more than 30 years with the company, he has held various positions, including a four-year position as Managing Director of Toray International Europe GmbH in Frankfurt from 2016 to 2020. Since 2020, Koji Sasaki has been responsible for Toray's textile division and serves as acting chairman of Toray Textiles Europe Ltd. In these roles, he supervises the company's development, sales and marketing activities in the apparel segment, including fashion, sports and work or school uniforms.

The interview was conducted by Ines Chucholowius, Managing partner Textination GmbH