Textination Newsline

Reset
76 results
ISPO Awards (c) Messe München
03.12.2024

ISPO 2024: Awarded Innovations & Tomorrow’s Newcomers

ISPO Munich, the world’s leading trade fair for the sports industry and the world’s largest sports business event, is about to begin and will soon present the prestigious ISPO Awards to the most innovative products and newcomers of tomorrow. The ISPO Awards are regarded as a global driving force for the sports industry. Showcasing the latest trends and innovations in product design, materials and digital solutions, these awards set new standards for the future of the sports industry.

The best products of 2024 will be honoured at ISPO Munich in December and can be seen at the ISPO Award area in Hall B1 from 3 to 5 December 2024. At the same time, newcomers to the sports and outdoor industry will be given a stage at ISPO Brandnew, the largest start-up competition in the sports business, where they will present their innovative products in exciting live pitches during ISPO Munich. The grand finale will take place on the second day of the event on the Main Stage.

ISPO Munich, the world’s leading trade fair for the sports industry and the world’s largest sports business event, is about to begin and will soon present the prestigious ISPO Awards to the most innovative products and newcomers of tomorrow. The ISPO Awards are regarded as a global driving force for the sports industry. Showcasing the latest trends and innovations in product design, materials and digital solutions, these awards set new standards for the future of the sports industry.

The best products of 2024 will be honoured at ISPO Munich in December and can be seen at the ISPO Award area in Hall B1 from 3 to 5 December 2024. At the same time, newcomers to the sports and outdoor industry will be given a stage at ISPO Brandnew, the largest start-up competition in the sports business, where they will present their innovative products in exciting live pitches during ISPO Munich. The grand finale will take place on the second day of the event on the Main Stage.

The ISPO Award seal of quality is given to sports products with a particularly high level of innovation, thus providing a curated overview of the most important trends in the industry. For the brands, innovations are enormously important and indispensable, whether in the textile sector, where much has changed in terms of materials, or in the integration of AI into all sub-sectors of the sporting goods industry. An expert jury of business professionals and regularly changing, sports-loving retail consumers from the ISPO Collaborators Club will review the submitted product innovations in advance and award prizes to the ones that meet the relevant criteria.

The submitted products make it possible to identify and observe trends. In 2024, the spectrum of trends continues to include sustainability in relation to textile innovations, the circular economy and recycling, as well as retail consumers’ desire for multipurpose use of diverse products. The integration of technology and the ever-growing role of AI numbers among the most exciting observations.

SUSTAINABILITY AS THE STANDARD
New EU legislation has led to an acceleration in the development of sustainable, functional materials. At this year’s ISPO Award jury meetings, numerous exciting material innovations were observed, especially in the textile sector. Progress in chemical treatments, such as PFC-free DWRs and textiles, is also remarkable. “Sustainability is increasingly becoming the norm, which means that consumers are coming to expect it as standard”, says juror and textile expert Dr Regina Henkel. “Progress is visible, for example, in the use of mono-materials or bio-based fabrics such as wool-Tencel blends”, which are used, for example, in this year’s ISPO Award winner Icebreaker with the Merino Blend 800 RealFleece Classic Pile LS Zip.

The ISPO Award entries also make it obvious that the performance of sustainable products made from recycled fibres has improved markedly so that the functionality of these products is now fully on a par with non-recycled items. Nevertheless, recycling will not be the solution to all future challenges, which is why manufacturers are increasingly incorporating into their collections natural fibres and biodegradable sports textiles, either in pure form or as a blend.

MULTI-USE REMAINS A TOP TREND
The trend towards multifunctional products reflects consumers’ desire for practical solutions. Particularly in Asia, multifunctional hardware products are perceived positively, while in Europe the focus is on textiles for multifunctional use. “High-quality, high-performance materials and designs are being adapted as everyday fashion, thus appealing to a broader target group”, explains trade journalist Dr Martina Wengenmeir, who is also one of the ISPO Award’s jurors. The “urban outdoor” trend is continuing and multipurpose products are also coming into focus in the area of commitment. One example of this is the Outdoor Backpack 45L from Peak Design, which combines fashionable and multifunctional design with full performance.

ISPO Award juror Dr Wengenmeir has identified another trend: “There is a growing focus on technical sports products designed specifically for women. These include football shoes with a design that is genuinely their own. This development goes beyond simple adjustments and includes well-thought-out designs in terms of fit and functionality.” These also include the BettHer - Bra Antishock+: the bra relies on a patented thermoplastic gel technology that provides excellent shock absorption and protection during intense activities.

INTEGRATION OF TECHNOLOGY
A trend from Asia that is also arriving in Europe is the integration of technology into clothing, for example through sensors and warmth apps. The personalisation of garments using technologies such as AI and sensor technology for temperature regulation is regarded as a potential growth area, despite concerns about sustainability.

Technology is also playing an increasingly important role for brick-and-mortar retailers, for example, when it comes to analysing the right product for the customer. Treadmills for running analysis are well known, but this year’s ISPO Award winner, the Skimulator, is a patented world first for a perfect fit of ski boots. This state-of-the-art simulator precisely simulates slope gradients, thus enabling the perfect fit of the ski boot.

ISPO BRANDNEW AWARD
ISPO Munich also provides a stage for the most innovative and creative newcomers in the sports and outdoor industry. Previous ISPO Brandnew winners include pioneering brands from all over the world that have redefined the boundaries of their respective fields with innovative materials, cutting-edge technology and sustainable action. Four start-ups each from the categories “Outdoor & Adventure & Snowsports”, “Performance, Body & Mind (physical product)”, “Sustainability” and “Sports Technology & Platforms” will pitch their ideas live on the main stage. A sneak peek at the innovations on show includes: BreezeLabs, which monitors breathing patterns during exercise; no normal coffee, coffee in a tube; and the AeroGraph Puffer Jacket, a weather-insulating jacket. The winner will be announced in the grand finale on the second day of the fair (4 December 2024).

Source:

Messe München

PhD scholar Nayanatara Ruppegoda Gamage (left) and Dr Chamila Gunasekara with concrete samples made using textiles. Credit: RMIT University
19.11.2024

Carpet fibres stop concrete cracking

Engineers in Australia have found a way to make stronger and crack-resistant concrete with scrap carpet fibres, rolling out the red carpet for sustainability in the construction sector.

The research team is engaging with partners including Textile Recyclers Australia, Godfrey Hirst Australia and councils in Victoria to conduct field studies of on-ground slabs made of reclaimed textiles.

Lead researcher Dr Chamila Gunasekara from RMIT University said the team had developed a technique using waste carpet fibres to reduce early-age shrinkage cracking in concrete by up to 30%, while also improving the concrete’s durability.

This research addresses a major challenge in the construction sector, as the annual cost of repair for cracks in reinforced concrete structures in Australia is about A$8 billion. In the US, the cost is estimated at US$76 billion per year.

Engineers in Australia have found a way to make stronger and crack-resistant concrete with scrap carpet fibres, rolling out the red carpet for sustainability in the construction sector.

The research team is engaging with partners including Textile Recyclers Australia, Godfrey Hirst Australia and councils in Victoria to conduct field studies of on-ground slabs made of reclaimed textiles.

Lead researcher Dr Chamila Gunasekara from RMIT University said the team had developed a technique using waste carpet fibres to reduce early-age shrinkage cracking in concrete by up to 30%, while also improving the concrete’s durability.

This research addresses a major challenge in the construction sector, as the annual cost of repair for cracks in reinforced concrete structures in Australia is about A$8 billion. In the US, the cost is estimated at US$76 billion per year.

Publishing their latest results in the Construction and Building Materials journal, the team has shown that waste carpet material can be used to improve concrete.

With state-of-the-art textile research facilities at RMIT, the team of civil engineers and textile researchers has also been able to use other discarded textiles including clothing fabrics to make concrete stronger.

“Cracking in early-age concrete slabs is a long-standing challenge in construction projects that can cause premature corrosion, not only making a building look bad but also risking its structural integrity and safety,” said Gunasekara, an ARC DECRA fellow from the School of Engineering.

“Scrap carpet fibres can be used to increase concrete’s strength by 40% in tension and prevent early cracking, by reducing shrinkage substantially.”

Laboratory concrete samples have been created using the various textile materials and shown to meet Australian Standards for engineering performance and environmental requirements.

Addressing a big waste challenge
The disposal of carpets and other textiles including discarded fabrics poses an enormous environmental challenge, Gunasekara said.

“Australia is the second largest consumer of textiles per person in the world, after the US. The average Australian purchases 27kg of new clothing and textiles every year, and discards 23kg into landfill,” he said.

“Burning carpet waste releases various toxic gases, creating environmental concerns.”

Dr Shadi Houshyar, a textile and material scientist at RMIT, said firefighting clothes waste also posed a challenge, as the same qualities that made these materials ideal for firefighting also made them difficult to recycle.

“Up to 70% of textile waste would be suitable for conversion into usable fibres, presenting an opportunity in the materials supply chain,” said Houshyar, from the School of Engineering.  

Working with industry and government to support the recycling of waste
Field trials conducted with support from industry and local government partners will help capture the unexpected conditions encountered in real-world construction projects.

The ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste Resources to Engineered Materials and Solutions for a Circular Economy (TREMS) and an early-career research grant will fund the field trials as well as computational modelling. TREMS is led by Professor Sujeeva Setunge from RMIT.

The team is collaborating with Professor Andrzej Cwirzen Luleå University of Technology in Sweden on computational modelling.

Source:

Will Wright, RMIT University

TARPAUFIFE / Aimplas
29.10.2024

TARPAULIFE: Polyolefin-coated fabrics as an alternative to PVC

Making bags for transporting fresh water by sea: Tarpaulins are large sheets of strong, flexible, water-resistant material used for protection from extreme conditions. The most common material used to make them is PVC-coated polyester, which is characterized by its low price and good resistance. However, recycling these products represents a major challenge because there are no large-scale commercial solutions for tarpaulin recycling. Companies have been trying for decades to replace PVC-coated fabrics with a polymer that is more recyclable. Although some alternatives are available, they are generally too costly to compete with PVC-coated fabrics and do not fully address stringent safety and recyclability requirements.
 

Making bags for transporting fresh water by sea: Tarpaulins are large sheets of strong, flexible, water-resistant material used for protection from extreme conditions. The most common material used to make them is PVC-coated polyester, which is characterized by its low price and good resistance. However, recycling these products represents a major challenge because there are no large-scale commercial solutions for tarpaulin recycling. Companies have been trying for decades to replace PVC-coated fabrics with a polymer that is more recyclable. Although some alternatives are available, they are generally too costly to compete with PVC-coated fabrics and do not fully address stringent safety and recyclability requirements.
 
The European TARPAULIFE Project aims to demonstrate the possibility of manufacturing large-area polyolefin coated fabrics such as polyethylene and polypropylene that can compete in terms of cost with PVC-coated fabrics while maintaining their properties of strength, flexibility, impermeability and lower environmental impact. This new material will be used to manufacture bags for transporting fresh water by sea, although this innovative, more sustainable and recyclable fabric can also be applied to other products, such as tarpaulins commonly used in lorries and coverings.

Rina Consulting is coordinating this project co-financed by the European LIFE Programme with the participation of the companies Ziplast, Nowa and Giovanardi, and AIMPLAS.

The main result of the project will be a production facility of three-metre-wide polyolefin-coated fabrics with a production capacity of 250,000 m2/year one year after termination of the project, which started in May 2024 and will last for two years. The main application selected is water bags, which represent an innovative way of transporting large amounts of fresh water by sea, as opposed to the usual forms of transport in tankers.

Solving water supply problems in a sustainable way
This technology was developed mainly to transport water from high-production areas that are relatively close to areas with supply problems due to episodes of drought, seasonal increases in demand due to tourism and even to respond to emergency situations. This initiative has already resulted in the REFRESH and XXL-REFRESH Projects financed by the European Commission, in which AIMPLAS, RINA and Ziplast participated, and which successfully tested a floating water bag with a modular design and a zip connection. The aim of the TARPAULIFE Project is to go one step further with the coating material of these polyester bags and replace PVC with polyolefins so they are more sustainable and easier to recycle.
 
As demonstrators of the project, two 2,500 m³ water bags will therefore be made with the new material for testing in two locations in Europe. Demonstration of the water bag will provide a backup freshwater reservoir in the North Sea off the coast of Iceland and in the Mediterranean.

Thanks to this new production plant for polyolefin-coated fabrics, which will be located at the Ziplast facility in Milan, it is anticipated that more than 100 water bags will be produced three years after project end and more than two million cubic metres of water will be stored at three fresh water storage sites. The proposed solution will help avoid incineration of more than 2,000 tonnes of PVC and prevent more than 13 tonnes of CO2 from being released into the environment.
 
General goals

  • PRODUCTION
    the set-up of a production facility of a monomaterial POLYOLEFIN-based coated structural fabrics, width 3 metres, with a production capacity of 250.000 square meters per year already 1 year after the project end.
  • PROTOTYPING
    the prototyping of two 2.5 million litres waterbags made with the new POLYOLEFIN-based coated fabrics and the quantification of the environmental and LCA-LCC benefits compared to the use of PVC-coated fabrics.
  • DEMONSTRATION
    the demonstration of the waterbag to be used as backup freshwater reservoir in two locations in Europe, offshore Iceland and in the Mediterranean.
  • EXPLOITATION and REPLICATION
    Exploitation and replication of project results in other sectors, namely for the production of eco-friendly truck tarps and glacier ice covers, and demonstration of sustainability with the quantification of the environmental and LCA-LCC benefits compared to the use of PVC-coated fabrics for all the intended applications.
  • DISSEMINATION & COMMUNICATION
    An effective dissemination and communication of the project results, targeting stakeholders worldwide.    

Specific goals

  • Processing plant with a new coating machine capable of coating up to a fabric width of 3,000 mm.
  • Procurement of equipment: a weaving machine for production of high-strength textiles with a width of 3,000 mm from polyolefin fibres.
  • Integration of components and testing: checking and monitoring that the different system components are fully integrated and meet expectations in terms of performance is fundamental.
  • Production runs, fixing errors and validation.
  • Prototype design.
  • Procurement of raw materials and ancillary components.
  • Production of zip and tarpaulin patterns.
  • Waterbag demo under dry conditions.
  • Waterbag demo at sea (Northern Europe).
  • Waterbag demo in the Mediterranean.
  • Economic and environmental sustainability.
  • Management of project innovation by using a careful exploitation and IPR management strategy, and ensuring the economic viability of all key project results.
  • Studying replication of the developed solutions for different markets and applications. Initial exploitation of the TARPAULIFE results will be in Europe.
  • Preparation of communication material.
  • Dissemination across different channels.
  • Compliance with EU indications in terms of alternative products to PVC and additive-free products.

The project also includes replication of the results in other sectors, namely, the production of eco-friendly truck tarps and glacier tarpaulins, and a demonstration of the sustainability of the new polyolefin fabric coating solution by quantifying the environmental and LCA-LCC benefits compared to the use of PVC-coated fabrics for all intended applications.

The TARPAULIFE Project is co-financed by the European Union through the LIFE Programme with file number 101147948 – LIFE23-ENV-IT-TARPAULIFE.   

Source:

TARPAUFIFE / Aimplas

Image AI generated, Pixabay
22.10.2024

NABU Study: Textile recycling has huge potential

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 
A variety of approaches are needed to reduce the significant environmental impacts of textile production. The priorities are to extend the useful life of textiles and to change the way we consume them. However, the recycling of used textiles that can no longer be reused must also be expanded in terms of both quantity and quality. The Oeko-Institut has therefore been commissioned by NABU to analyse the obstacles to and potential for textile recycling in Germany and In addition to clothing, textiles include home textiles such as bed linen and curtains, as well as technical textiles used, for example, in car manufacturing or in medicine.

High-quality textile recycling alone is not financially viable; rather, a legal framework is needed to promote it in the future. ‘We don't need more cleaning rags,’ says Anna Hanisch, NABU expert on circular economy, ‘Our study shows that there is great potential for higher-quality recycling so that old textiles can be turned into new textiles again. To achieve this, fibre-to-fibre recycling must be expanded. The prerequisite for this is automatic sorting by fibre composition. This is because non-reusable used textiles must be sorted before recycling. This is currently done by hand. A technical solution is what makes recycling economically viable in the first place.’
 
The mechanical recycling that has been used most of the time so far shortens the fibres, so that only a few recycled fibres are suitable for use in new textiles. For this reason, depolymerisation processes are being developed. These require more energy and chemicals, but enable higher-quality recycled fibres for new textiles. According to NABU, extended producer responsibility is necessary to finance and establish these processes. This would have to supplement the EU's mandatory separate collection of used textiles, which will come into force in 2025.

In order to reduce the environmental impact associated with textile production, various approaches are needed: the priority should be to use textiles for longer. However, recycling used textiles that can no longer be used is also part of the solution and must be expanded in terms of both quantity and quality.

Technologically, all approaches have their merits for certain mass flows in order to increase the recycling and use of recycled materials from used textiles in new products. The technologies complement each other. After sorting for reuse, recycling processes should be prioritised as follows:

  1. First mechanical recycling, as it requires the least energy.
  2. Then comes solvent-based processing and depolymerisation, which require a similar amount of effort.
  3. Finally, there is feedstock recycling, which consumes the most resources.

Hanisch: ‘A circular economy starts with the design. For example, in order for textiles to be recycled, they should contain as few different materials as possible. To achieve this, we need ambitious ecodesign requirements for textiles. The focus here must be on durability and recyclability. Above all, however, incentives are needed to reuse recycled raw materials from old textiles. So far, this has hardly happened voluntarily.’   

Water hyacinth Photo: Pixabay, Hồng Vũ
15.10.2024

DITF: Water hyacinth plant pots

Together with Fiber Engineering GmbH, the DITF presents a process for the production of biodegradable plant pots. The products are cost effective and competitive. At the same time, the production process combats the spread of the invasive water hyacinth, whose biomass serves as the raw material for the plant pots.

Combating an invasive species and reaping economic benefits at the same time? What sounds like a contradiction in terms has been successfully achieved by DITF scientists in a joint project with several companies.

Together with Fiber Engineering GmbH, the DITF presents a process for the production of biodegradable plant pots. The products are cost effective and competitive. At the same time, the production process combats the spread of the invasive water hyacinth, whose biomass serves as the raw material for the plant pots.

Combating an invasive species and reaping economic benefits at the same time? What sounds like a contradiction in terms has been successfully achieved by DITF scientists in a joint project with several companies.

Water hyacinth is a rapidly spreading plant that has been recognized as a threat to existing ecosystems in many countries around the world. In particular, Lake Victoria in Africa is suffering from the widespread spread of water hyacinth. Fish deaths due to oxygen depletion, the production of climate-damaging methane gas during decomposition, and the obstruction of shipping and energy production are among the most prominent problems. They offer a grim preview of what is on the horizon in many other countries. As an invasive species, water hyacinth is spreading into many ecosystems around the world as a result of human activities, threatening the quality of human life.

Several approaches have been taken to control the spread of water hyacinth. The main focus is on removing the carpet of plants from the water and then recycling the resulting biomass. This is also the starting point for the research project co-led by the DITF, which aims to produce a new, cost-effective composite material from the fibrous plant material. The result is a prototype plant pot that is competitive and meets all the technical requirements of the project objectives.

At the beginning of the project, the project partners defined the material requirements for the plant pot. These include good dimensional stability, which must also be ensured when the pot is filled with wet soil. The use of physiologically harmless materials for contact with food plants is also an important requirement, as is a cost-effective and therefore competitive production method. However, the main focus is on complete biodegradability and thus the unrestricted compostability of the plant pot.

The biomaterial for the production of the plant pots comes from Louisiana and is directly marketed by In-Between International under the product name CYNTHIA®. This raw material has been extensively tested and modified at the DITF with regard to its composition and suitability for technical processing. It consists mainly of cellulose and must first be screened and treated with a hydrophobic agent for further processing. Hydrophobing is necessary to give the plant pots a certain resistance to moisture.

The prepared raw material now needs to be combined with a binder. The binder binds the plant fibers and ensures the dimensional stability of the plant pot. Laboratory tests with various binders have identified those that guarantee good processability and dimensional stability of the fiber composite. A thermoplastic was selected that was easy to process in a hot press and that fully met the requirements for biodegradability.

Further laboratory tests determined the ideal ratio of binder to fiber raw material. Tests in an industrial composting plant showed that the material was fully biodegradable and that the plant pots would decompose within a reasonable period of time - a stability of 4-6 weeks was the project goal.

The researchers produced test samples for all these preliminary tests in the form of fiber composite panels on a hot press. The next step was to produce the first prototypes of plant pots from the pre-treated fiber material with the appropriate binder. This part was carried out by the project partner, Fiber Engineering GmbH from Karlsruhe. This company has extensive expertise in the field of fiber injection molding (FIM), which makes it possible to produce 3-dimensional molded parts from fibers in simple and fast process steps. Fiber Engineering GmbH has optimized its existing process for processing the water hyacinth fiber material. It produced a series of plant pots and thus realized the last step of the project objective.

A cost calculation, taking into account all the materials and processes used, confirmed that the plant pots could be produced extremely cheaply at a production price of less than five cents per pot, making them marketable. In daily use, garden centers will appreciate the haptic advantages - strength and moisture resistance despite the fact that the material is completely biodegradable. The fact that the material used is helping to solve a global environmental problem should be another plus when it comes to marketing the product.

Recycling can avoid large quantities of greenhouse gas emissions. Image: © Fraunhofer UMSICHT
08.10.2024

Closing new loops with recycling

Recycling protects resources. This is confirmed by the latest study, which Fraunhofer UMSICHT prepared on behalf of Interzero. In 2023, the circular economy service provider avoided a total of 1.2 million tonnes of greenhouse gas emissions by recycling about 2.5 million tonnes of recyclable materials. At the same time, Interzero, together with its customers, was able to save over 11.1 million tonnes of primary resources.
 
To ensure that the transformation to a circular economy is successful, new cycles must also be established for material groups that have so far been given little consideration.
 

Recycling protects resources. This is confirmed by the latest study, which Fraunhofer UMSICHT prepared on behalf of Interzero. In 2023, the circular economy service provider avoided a total of 1.2 million tonnes of greenhouse gas emissions by recycling about 2.5 million tonnes of recyclable materials. At the same time, Interzero, together with its customers, was able to save over 11.1 million tonnes of primary resources.
 
To ensure that the transformation to a circular economy is successful, new cycles must also be established for material groups that have so far been given little consideration.
 
The recycling of raw materials is an effective lever for climate protection and ensures that Germany and Europe remain future-proof as places to live and do business. The study ‘resources SAVED by recycling’ proves that: Interzero was able to avoid a total of 1.2 million tonnes of greenhouse gas emissions in 2023 by recycling around 2.5 million tonnes of recyclable materials. At the same time, Interzero and its customers saved over 11.1 million tonnes of primary resources. Fraunhofer UMSICHT has been monitoring the environmental impact of recycling for Interzero for more than 15 years. The research institute's annual life cycle assessment proves the sustainable impact of recycling. ‘On the one hand, our studies provide a strategic basis for decision-making for sustainable action, and on the other hand, we also offer expertise in the process of transformation to a circular economy,’ explains Dr. Markus Hiebel, Head of Sustainability and Participation at Fraunhofer UMSICHT.
 
Textile recycling not yet well established
A complete transformation to a circular economy must include all material groups. Unlike packaging recycling, for example, textile recycling is still in its infancy: around 92 million tonnes of textiles are thrown away every year worldwide. So far, however, only one per cent of the material stream goes into fibre-to-fibre recycling and thus back into the production cycle.

Time is of the essence, because new EU regulations such as the separate collection requirement from 2025 or the planned extended producer responsibility (EPR) for textiles, as well as the German government's National Circular Economy Strategy (NKWS), are increasing the pressure to act.

‘When it comes to textiles as valuable materials, it is clear what enormous ecological potential lies in recycling – and why it is imperative to promote the circular transformation of the economy at all levels’, says Dr Axel Schweitzer, Chairman and Shareholder of Interzero. ‘This applies in particular to recyclable materials that are not yet consistently recycled. We want to work with the industry to close the textile loop and use our experience as an established system service provider to develop a holistic concept for take-back, sorting and recycling,’ emphasises Dr. Axel Schweitzer.

Plastics are an important component of textiles. Due to their property profile, plastics in particular are very important for the German economy and are being examined comprehensively in the Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE, which is coordinated by Fraunhofer UMSICHT. Whether bioplastics, additives used for this purpose, compounding, or mechanical and chemical recycling, the Fraunhofer CCPE combines the expertise of six Fraunhofer institutes and industrial partners for the transition from a linear to a circular plastics economy. The entire life cycle of plastic products is considered.

Source:

Fraunhofer UMSICHT / Interzero

The Materials Market Report 2024 (c) Textile Exchange
30.09.2024

Materials Market Report 2024: Fossil-based synthetics dominate

Textile Exchange launched the first Materials Market Report in 2013 as a comprehensive, annual publication that provides unique data and insights into global fiber and raw materials production.

The Materials Market Report shares best available data on global fibre and material production volumes alongside program-specific volumes and other insights such as the number of certified sites. For the purpose of this report, leather, rubber, and down are considered non-fibre raw materials and are therefore included separately from the section and charts on ‘global fibre’.

Textile Exchange launched the first Materials Market Report in 2013 as a comprehensive, annual publication that provides unique data and insights into global fiber and raw materials production.

The Materials Market Report shares best available data on global fibre and material production volumes alongside program-specific volumes and other insights such as the number of certified sites. For the purpose of this report, leather, rubber, and down are considered non-fibre raw materials and are therefore included separately from the section and charts on ‘global fibre’.

It helps inform the textile industry’s efforts to reduce emissions associated with raw material production in line with a 1.5-degree temperature rise pathway. The report highlights the urgency to accelerate the transition to fibres from preferred sources, intensify efforts to significantly reduce reliance on virgin fossil-based materials, and invest in strategies that separate value creation from the need for extracting new materials.

It’s important to note that the compilation of global market data for fibres and raw materials is challenging and the quality of available data is often limited. The collection of primary data from suppliers is beyond the scope of this report so Textile Exchange relies on secondary data from industry associations, international organizations, governmental organizations, standard setters, and research institutes.

While Textile Exchange has collected, analysed, and compiled this information in all good conscience and has cross-checked it wherever possible, the report is intended for general guidance and information purposes only. Data gaps and inconsistencies are common in global market data, so modelling has often had to be applied.

Global fibre production reached an all-time high of 124 million tonnes in 2023, according to the latest Materials Market Report– which looks at total volumes used for apparel, home textiles, footwear, or any other application.

The data shows that the market share of virgin fossil-based synthetics continued to increase in 2023, with a decline in that of cotton and recycled fibres. Other key takeaways from the report’s data include:

  • Record fibre production: Despite industry efforts, global fibre production has more than doubled since 2000. The last year’s 124 million tonnes represents a 7% increase from 116 million tonnes in 2022, and is expected to rise to 160 million tonnes in 2030 if current trends continue.
  • Synthetics continue to dominate: The production of virgin fossil-based synthetic fibres increased from 67 million tonnes in 2022 to 75 million tonnes in 2023. Polyester remained the most produced fibre globally, accounting for 57% of total fibre production.
  • Recycled synthetics face challenges: Although recycled polyester fibre production slightly increased in 2023, the overall market share of recycled polyester decreased from 13.6% to 12.5%. For polyamide (nylon), the second most used synthetic fibre, recycled fibres constituted only 2% of the total market share. These trends are attributed to the lower prices and continued production of virgin synthetics, as well as current limitations in recycling technologies. Less than 1% of the global fibre market came from pre- and post-consumer recycled textiles.

    The combined share of all recycled fibres slightly decreased in 2023, from around 7.9% to 7.7%, mainly due to an increase in the production of fossil-based polyester, which had lower prices than recycled polyester. Fossil based synthetics production increased from 67 million tonnes in 2022 to 75 million tonnes in 2023. Meanwhile, less than 1% of the global fibre market came from pre- and post-consumer recycled textiles.
  • Cotton production saw a slight decline: Total global cotton volumes fell slightly from 25.1 million tonnes in 2022 to 24.4 million tonnes in 2023. However, the share of cotton produced under sustainability programs remained stable, accounting for 29% of all cotton produced.
  • Certified wool climbs: Data showed positive trends for wool produced under standards such as the Responsible Wool Standard (RWS), ZQ, SustainaWOOL (GREEN and GOLD), Sustainable Cape Wool Standard (SCWS) and Climate Beneficial programs. This increased from 4.2% in 2022 to 4.8% in 2023. Recycled wool continued to account for around 6% of the global wool market.
  • Certified mohair and cashmere reached almost half of market share: Certified fibres such as mohair and cashmere saw notable growth, both with market shares of 47%.
  • Manmade cellulosic fibres production increased: Overall MMCF production increased from 7.4 million tonnes in 2022 to 7.9 million tonnes in 2023, representing 6% of the global fibre market.

The report highlights a continued reliance on new virgin fossil-based synthetic materials, threatening to undermine the industry’s commitments to its climate goals. It also shows the current limitations of textile-to-textile recycling and an urgent need for innovative solutions, with most recycled polyester still coming from PET bottles.

Amid these concerns, one positive trend that stands out is the increased industry demand for responsible animal fibres through programs like the Responsible Mohair Standard (RMS) and Responsible Alpaca Standard (RAS), both contributing to better animal welfare and environmental management. This indicates the potential of farm-level standards of this kind to increase market recognition of more sustainable practices on the ground.

“We hope this data serves as a clear call to action for the industry, highlighting both the successes and the critical areas where we must intensify our focus to meet climate targets,” said Claire Bergkamp, CEO of Textile Exchange.

“Unlocking textile-to-textile recycling pathways will be essential to reducing reliance on virgin synthetics. Equally important is continuing to support those on the ground who are driving the transition from conventional systems to preferred materials. It is more urgent than ever to support those who have already invested in preferred systems, while also enabling the transition away from conventional at scale.”

Download of the Materials Market Report 2024.

More information:
fibre production Market report
Source:

Textile Exchange

Project Remake Photo Anna Kjellsson
23.09.2024

Textile skills for unemployed individuals to enter a new industry

From 2025, municipalities will be required to collect and manage large volumes of textiles, following the EU's new waste directive. The project "Remake Textile" is preparing for this by providing skill development to long-term unemployed individuals. At the Swedish School of Textiles, participants learn about textiles and ways to breathe new life into old fabrics.

From 2025, municipalities will be required to collect and manage large volumes of textiles, following the EU's new waste directive. The project "Remake Textile" is preparing for this by providing skill development to long-term unemployed individuals. At the Swedish School of Textiles, participants learn about textiles and ways to breathe new life into old fabrics.

Three groups, each consisting of participants who have been out of the job market for an extended period, will take part in the project over nine months. The project began with a focus on health and working life before shifting its focus to textiles. The first group has just completed their time at the Swedish School of Textiles and is now moving on to internships in the second-hand industry.
“They have lea
rned how a fibre becomes yarn and then fabric. We have worked with printing and dyeing and how to create a product from the material. We have also worked on repairs – mending and fixing garments and textiles,” explains Tuser Biswas, postdoctoral researcher in textile technology who leads the Swedish School of Textiles' part of the project.

In addition to the Swedish School of Textiles at the University of Borås, other project partners include the Gothenburg Region, the organisations Doing Good and Coompanion, and it is financed by the European Social Fund.

“In this project, there was a demand for knowledge in an area that doesn't yet exist on the market – something that will be important in the future. With the waste directive, solutions are needed to handle textile waste, and the hope is that participants in this project will have valuable skills and be able to start working in this industry at short notice,” Tuser Biswas explains.

Education as Part of the Solution
“In this project, we are trying to address the upcoming waste challenge with education. However, this education is not as intensive as our regular courses and programmes. We have tried to be flexible and adapt to the participants’ prior knowledge and to what we can offer in two weeks,” says Tuser Biswas.

Positive Participants
Nino, one of the participants, previously had experience in creating and redesigning garments.
“I have done a lot on my own before too. I have always been punk in that way – if there are no resources, I still go ahead. These weeks at the Swedish School of Textiles have been fun; it has been very positive to try everything out and luxurious to come here, meet all the great teachers, and be in the facilities.”

Looking forward to the internship at a second-hand shop, Nino feels prepared:
“We will get to choose from textile waste that cannot be sold. Instead, we will create something new out of it!”

About the project Remake Textile
The objective of the project is to develop innovative solutions for managing the increasing amount of textile waste that municipalities will be responsible for from 2025 onwards. At the same time, it focuses on research training and skills development about textile recycling for unemployed people with good academic backgrounds.

Start date: 2024-03-01
End date: 2026-02-28

Through collaboration with various partners, the project aims to increase the workforce for textile sorting facilities in municipalities and recycling industries, while supporting cooperative and non-profit organizations in circular textile activities.

The outcome of the project is expected to promote a sustainable circular business model through textile sorting and recycling activities, which can serve as a model for the whole industry. The aim is to create a solution that both promotes sustainability in the textile industry and increases opportunities for those previously unemployed and economically vulnerable. At the same time, the municipalities will be well-informed and given the opportunity to use our developed training modules and personnel during or after the project period.

Source:

University of Borås, Anna Kjellsson

TheDigitalArtist, Pixabay
09.09.2024

“Used textiles recycling at risk of collapse”

The recycling of used textiles is facing a potential collapse. Industry experts agree that the current crisis is more serious than the COVID-19 crisis at the time.

In the case of Covid-19, there was a foreseeable period of a few months, after which the industry recovered quite quickly and the effect of pent-up demand caused prices to return to a normal level within a short period of time.
 
“We now have a completely different situation that threatens the existence of many of the established used textile recyclers in the industry,” says Stefan Voigt, Chairman of the bvse's Textile Recycling Association (FTR).
 
The global market for used textiles has been in a deep crisis for some time, which has now reached a level that can only be described as a free fall. Since the spring, the prices for original collected goods no longer cover the enormous costs for container provision, collection and administration.

The recycling of used textiles is facing a potential collapse. Industry experts agree that the current crisis is more serious than the COVID-19 crisis at the time.

In the case of Covid-19, there was a foreseeable period of a few months, after which the industry recovered quite quickly and the effect of pent-up demand caused prices to return to a normal level within a short period of time.
 
“We now have a completely different situation that threatens the existence of many of the established used textile recyclers in the industry,” says Stefan Voigt, Chairman of the bvse's Textile Recycling Association (FTR).
 
The global market for used textiles has been in a deep crisis for some time, which has now reached a level that can only be described as a free fall. Since the spring, the prices for original collected goods no longer cover the enormous costs for container provision, collection and administration.

The price of original goods traded on the market has now reached an all-time low, causing existential hardship for many market participants.

The sale of original and sorted goods has become almost impossible. The loss of established market players has destroyed supply chains that have been tried and tested for years, and stocks of original and sorted goods have reached unprecedented record levels. Some market participants are forced to replace the usual sales business with bartering.

According to industry information, downstream players in the recycling chain, such as shredding and spinning mills, are also under pressure and have made massive staff cuts. The production of cleaning cloths has also reached an all-time low. Due to the relocation of production abroad and reduced domestic production, demand for cleaning cloths has fallen and prices have slipped to a very low level.

Consumer behavior and international markets exacerbate the crisis
Due to the generally high cost burden on the population, the consumption of textiles has collapsed. The negative trend of consuming low-quality fast fashion is now being reinforced by ultra-fast fashion of even poorer quality. This has disastrous effects on value creation within the recycling chain for used textiles.

“During the sorting process, increasingly large quantities of relatively new textiles are being found that are already so defective that they are no longer suitable for further use and therefore have to be fed into the recycling process,” explains Voigt. However, there is no money to be made here either, as the same cost structures apply to this part of the original goods as to wearable goods and the recycling process is also very cost-intensive.

Industry calls for the introduction of an EPR system
Until now, the recycling of the proportion of sorted goods has been subsidised by the proceeds from wearable goods, but this system has not worked for some time. The industry is desperately waiting for the introduction of a national EPR system for textiles in order to stabilise costs.

The EU Commission's recently published draft of the revised EU Waste Framework Directive provides for the introduction of a system of extended producer responsibility for textiles. The existing collection and recycling structures in Germany, which enable the separate collection of used textiles close to the public, are to play a central role in this.

The draft of the National Circular Economy Strategy (NKWS) of the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) also emphasises the importance of the national recycling industry for used textiles. Without it, the establishment of a closed-loop system for textiles would not be feasible.

Crisis not limited to Germany
The crisis has also made ripples internationally. Countries such as the Netherlands, traditionally the largest buyer of used textiles from Germany, have already addressed the crisis in the national media. Almost 250 companies there are involved in the collection, sorting and international marketing of used textiles.

Around 60 per cent of the original goods are recycled as sustainable clothing after sorting, meaning that the industry is reliant on stable markets in which recycling proceeds can be generated. But this is precisely the problem. ‘Due to the effects of the Russian war of aggression in Ukraine, the Eastern European market can only be served in fragments,’ explains Voigt.

In addition, despite its potential, the African market is currently facing enormous challenges because there is practically no money left in the system, he adds, explaining the concerns he receives from many interviewees in the industry: ‘The enormous drop in the value of many currencies in various African countries    means that it is becoming increasingly difficult for African customers to buy urgently needed second-hand clothing for hard currency,’ Voigt continues.

For example, the currency in the extremely important African market of Ghana has lost roughly 20 per cent against the euro over the last six months of 2024. In addition, the transfer of foreign currency now takes up to two months, meaning that it now takes up to six months to return the proceeds of realisation.

In addition, the African market is increasingly dominated by Chinese influence. ‘The actually better quality of high-quality used European second-hand clothing can hardly compete with new Asian goods,’ reports Voigt. Ultra fast fashion from China is flooding the market with extremely low prices, making it increasingly difficult to market sorted, second-hand clothing.

In addition to economic problems, there are also logistical challenges. ‘Our customers are reporting increasing difficulties in obtaining the necessary visas for a business visit to Europe within an acceptable waiting period,’ explains Voigt. The waiting time for an appointment at the consulate can currently be up to two months.

Call for short-term measures
In order to prevent the system from collapsing in the short term, Voigt believes that the usual remuneration structures for local authorities and providers of parking spaces for collection containers need to be reconsidered. ‘Recycling revenues have not been realised for some time now, so they can no longer be paid out or must be adjusted to the current situation,’ says Voigt.

The industry expects the current crisis to last even longer. ‘Not everyone will survive,’ predicts Voigt. Many collection areas are already being offered on the open market and various collection capacities are being cancelled without replacement. The future of the used textile recycling industry remains uncertain and there is no end to the crisis in sight.

More information:
textile waste textile recycling
Source:

bvse-Bundesverband Sekundärrohstoffe und Entsorgung e.V.

Texcare Messe Frankfurt (c) Messe Frankfurt
06.09.2024

Circular economy long established in the textile care industry

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

With its ‘Green Deal’, the European Commission has, inter alia, initiated the transformation of the garment-manufacturing industry from a business model of short-lived consumption to a more sustainable, circular system. By 2030, fast fashion will be replaced increasingly by textile products that have a longer life cycle and thus contribute to reducing environmental pollution. To achieve this goal, textiles must be more durable, reusable, repairable, fibre-to-fibre recyclable and have a greater proportion of recycled fibres. For the textile-service sector, the circularity requirements defined in Brussels have long been standard practice because hiring out professional workwear and protective clothing, as well as hotel and hospital linen, mop covers and other items, requires precisely these characteristics, i.e., the fabrics must be durable, washable – and therefore reusable – and easy to repair. Thanks to these qualities, rental linen can remain in the service cycle for a long time and has thus become established as a sustainable alternative to outright purchasing.

Laundry in the circular system
The textile-rental service offers a variety of systems tailored to the needs of different groups of customers. Workwear and protective clothing is stocked by textile-service laundries in a wide range of sizes, so that each customer's employees can be supplied with a suitable outfit. This is then labelled and made available to the individual wearer. If the employee leaves the customer's employ, the garments are taken back and – provided they are in good condition – reused as replacement clothing. In the case of workwear in the healthcare sector, as well as bed linen, table linen and towelling, a pool solution is more common. A laundry pool comprises similar textiles that are supplied without being assigned to a specific customer or wearer, which significantly reduces the quantity of textiles used.

Local textile cleaning is another major area of commercial textile care that also helps extend the life of textiles with a wide range of goods being professionally processed on behalf of private and commercial customers by such businesses. High-quality outerwear and underwear, premium home textiles, delicate down jackets or heavily soiled workwear are all restored to a clean, fresh and usable condition. And if stains prove particularly stubborn even after cleaning, a specialist company can re-colour the goods, thus ensuring they can be reused.

The recycling benefits of textile rental services
Besides the two main requirements of ‘reuse’ and ‘repair’, the sector is also working hard on the recycling of old textiles, as called for by the EU textile strategy. Several workwear manufacturers have developed their own returns models, whereby customers can hand back their old workwear when buying new items. The old workwear is then reused or recycled by partner organisations. Large companies, including Deutsche Telekom and Ikea, have also introduced a centralised returns and recycling system for discarded workwear. Indeed, the furniture giant has even created its own home textiles line using old workwear. However, the easiest way to implement a system of this kind is to use a rental service, as the goods are always returned to the specialist company and sorted there. In other words, the used laundry is collected in one place after washing, where it forms a large volume of similar discarded textiles, which greatly simplifies both the collection logistics and the recycling process. These favourable conditions have already led to the establishment of an initial initiative in which several textile service companies pool their waste hotel linen and channel it into industrial cotton-to-pulp recycling. Whether individual or joint initiatives, this is a testament to the industry's commitment to the development of solutions for ‘waste materials’.

Textile upcycling for designer items
Solutions for rejected textiles are more varied than simply recycling them. For example, Sweden's Fristads company offers a repair service for its workwear. The British department store chain John Lewis goes one step further. In a field trial, customers can hand in their garments to selected stores for cleaning and repair. The garments are processed by Johnsons, a laundry and dry-cleaning chain belonging to the Timpson Group. Designers have also recognised second-life opportunities for discarded workwear and contract textiles. For example, they apply elaborate decorations to items from their collections or take them apart and reassemble them. The creatively enhanced goods are then returned to the market as designer items. There are also recycling solutions for large contract textiles, which are converted into bags or cosmetic accessories or, after a colour-changing process, into small batches of aprons. However, the effect of such concepts on reducing textile waste is as small as their diversity. Only the established second-hand model is able to return larger quantities to the economic cycle.

The pros and cons of recycled materials
While the textile-care industry is unanimous in its support for the requirements of the EU textile strategy and is contributing solutions, it disagrees on increasing the proportion of recycled fibres in its products. Although there are already numerous workwear collections and hotel-linen ranges that meet the requirements from Brussels, some of the products do not, however, meet the durability requirements because the fibre quality deteriorates with each recycling stage. Therefore, many contract-textile manufacturers still rely exclusively on virgin, brand-new fibre materials to ensure durability in industrial laundering. Texcare International offers the industry the perfect setting to discuss this conflict of objectives in depth.

Source:

Messe Frankfurt

Atacama desert Photo by Fernando Rodrigues on Unsplash
23.07.2024

Reducing environmental & health impacts of global trade of 2nd hand clothes

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

According to UN Comtrade data, in 2021 the European Union (30%), China (16%), and the United States (15%) were the leading exporters of discarded clothes, while Asia (28%, predominantly Pakistan), Africa (19%, especially Ghana and Kenya), and Latin America (16%, mainly Chile and Guatemala) were the leading importers.  

This has been facilitated by the advent of low-cost synthetic fibres and by trade liberalization that allowed the offshoring of production to countries with low-wage labour. Large proportions of clothing are made from difficult-to-separate blended fibres, making opportunities for economic reuse and recycling rare, particularly in developed countries.

“When did we normalize throwing clothes away?”, questions Lily Cole, Climate Activist and Advisor to UNECE. “As the world, mostly the Global North, has produced and consumed fashion at an unrelenting rate, a handful of countries, mainly in the Global South, have become cemeteries for the world’s unloved clothes. While visiting the Atacama Desert, my attention was brought to the textile mountains and the shifting cultural, economic, and political landscapes that birthed them. Consumer awareness is very helpful, yet, ultimately, we need policies to curb systemic trends, which is why this report and its recommendations are so necessary.”

Europe: sorting and recycling capacities lag behind  
In Europe only 15-20% of disposed textiles are collected, usually through containers, door-to-door collection and donations. About half of the collected textiles are downcycled to be used as, for example, insulation, filling, and single-use industrial wipes. Only 1% is recycled into higher value outputs such as new clothing, while the remainder is exported to developing countries.  

Of the 55% of collected clothes that are reusable, only 5 percentage points have a value on second-hand markets in the EU, while 50 percentage points have a value on export markets.  

The European Union has thus tripled its exports of used clothes over the past 2 decades, from 550,000 to 1.7 million tons. Europe, including the United Kingdom, accounts now for more than a third of global used clothing exports, and this share could continue to grow as collection rates are expected to rise.  

A design-led circular economy approach to clothing is still in its infancy. The EU Circular Economy Action Plan (CEAP) was adopted in 2020, the EU Strategy for Sustainable and Circular Textiles was adopted in 2022, and the EU Ecodesign for Sustainable Products Regulation was adopted in 2023. However, these policies are still to bear fruit in the form of large-scale upstream solutions to the problems of textile waste. 

“The used clothes global market is constantly growing, and with it, its negative impacts. The textile industry has a key responsibility to adopt more sustainable practices, exporters and importers to adopt relevant policy decisions to foster traceability, circularity and sustainability. UN/CEFACT policy recommendations and standards will support this transition. And of course, we all have a role to play, as consumers, to make sustainable choices,” stressed UNECE Executive Secretary Tatiana Molcean.

The case of Chile: mountains of used clothes visible from the moon  
Most countries in Latin America (including Argentina, Brazil, Colombia, Mexico, and Peru) have introduced clothing import bans to protect their national textile and fashion industries and avoid the threats posed by clothing dumps.

By contrast, Chile levies zero tariffs, and applies no quantity restrictions in imports, only requiring shipments to be sanitised (by fumigation). It has thus become one of the top 10 importers in the world, and the first in Latin America, receiving 126,000 tons of textiles in 2021. 40% of these entered the country through the northern port of Iquique, where they are manually sorted, primarily by women, and separated into first, second, and third quality.

75% of all imported used clothes were deemed non-reusable, 30,000 tons of which are covering today 30 hectares of the Atacama desert, generating pollution and creating hazard to local communities’ health. At the same time, trade in second-hand garments also provides employment and formal and informal income for national and migrant populations in established stores and open-air markets across the country, and this must be factored in when redefining public policies.

“To address the environmental and social issues of used textile trade, the EU and Chile must work together on creating robust regulatory frameworks. A partnership between the European Union and Chile could pioneer innovative approaches to regulate and reduce the impact of second-hand textile trade, including by setting global standards for the trade of used textiles, focusing on sustainability and social responsibility." Highlights UNECLAC Executive Secretary, Mr. José Manuel Salazar-Xirinachs.  

Multifold recommendations
The report contains a series of recommendations to the textile industry, exporters and importers.   

To exporting countries

  • Make circular economy considerations central to the design of clothing, with mandatory targets for fibre composition that improve quality, durability, repairability, and recyclability  
  • Introduce an Extended Producer Responsibility (EPR) system holding producers responsible for the products they manufacture  
  • Develop more sorting and recycling plants, through financial incentives  
  • Develop minimum EU criteria for second-hand clothing exports through the use of digital product passports (DPPs)  
  • Run awareness-raising campaigns to encourage consumers to make more informed choices about their clothes

To importing countries – the example of Chile

  • Improve customs procedures & administrative measures at the port of Iquique to ensure digital traceability of flows of used clothing and textile based on the UN/CEFACT traceability standard   
  • Establish a Circular Economy Strategy for Textiles  
  • Set-up public-private alliances for recycling projects through tax extension schemes and funds to support entrepreneurship, innovation, and job creation for vulnerable groups, particularly in the Tarapacá region  
  • Improve the legal framework for waste management   
  • Implement a Regional Solid Waste Control Plan, involving inspections of sanitary landfills, clean points, and dumps to increase the enforcement capacity of regional health authorities  
  • Accelerate the adoption of the Chilean draft law on environmental quality of soils.

The report also recommends making changes to international trade agreements, such as the2023 Interim Trade Agreement between the EU and Chile, which includes a chapter on Trade and Sustainable Development, to step up bilateral cooperation, and using it as a template for other bilateral trade agreements between the EU and other countries.   

Download the Executive Summary

Source:

United Nations Economic Commission for Europe

Biofibers made from gelatin in a rainbow of colors. © Utility Research Lab
25.06.2024

Designers make dissolvable textiles from gelatin

Introducing the fashion of the future: a T-shirt you can wear a few times, then, when you get bored with it, dissolve and recycle to make a new shirt.

Researchers at the ATLAS Institute at the CU Boulder are now one step closer to that goal. In a new study, the team of engineers and designers developed a DIY machine that spins textile fibers made of materials like sustainably sourced gelatin. The group’s “biofibers” feel a bit like flax fiber and dissolve in hot water in minutes to an hour.

The team, led by Eldy Lázaro Vásquez, a doctoral student in the ATLAS Institute, presented its findings in May at the CHI Conference on Human Factors in Computing Systems in Honolulu.

“When you don’t want these textiles anymore, you can dissolve them and recycle the gelatin to make more fibers,” said Michael Rivera, a co-author of the new research and assistant professor in the ATLAS Institute and Department of Computer Science.

Introducing the fashion of the future: a T-shirt you can wear a few times, then, when you get bored with it, dissolve and recycle to make a new shirt.

Researchers at the ATLAS Institute at the CU Boulder are now one step closer to that goal. In a new study, the team of engineers and designers developed a DIY machine that spins textile fibers made of materials like sustainably sourced gelatin. The group’s “biofibers” feel a bit like flax fiber and dissolve in hot water in minutes to an hour.

The team, led by Eldy Lázaro Vásquez, a doctoral student in the ATLAS Institute, presented its findings in May at the CHI Conference on Human Factors in Computing Systems in Honolulu.

“When you don’t want these textiles anymore, you can dissolve them and recycle the gelatin to make more fibers,” said Michael Rivera, a co-author of the new research and assistant professor in the ATLAS Institute and Department of Computer Science.

The study tackles a growing problem around the world: In 2018 alone, people in the United States added more than 11 million tons of textiles to landfills, according to the Environmental Protection Agency—nearly 8% of all municipal solid waste produced that year.

The researchers envision a different path for fashion.

Their machine is small enough to fit on a desk and cost just $560 to build. Lázaro Vásquez hopes the device will help designers around the world experiment with making their own biofibers.

“You could customize fibers with the strength and elasticity you want, the color you want,” she said. “With this kind of prototyping machine, anyone can make fibers. You don’t need the big machines that are only in university chemistry departments.”

Spinning threads
The study arrives as fashionistas, roboticists and more are embracing a trend known as “smart textiles.” Levi’s Trucker Jacket with Jacquard by Google, for example, looks like a denim coat but includes sensors that can connect to your smartphone.

But such clothing of the future comes with a downside, Rivera said:

“That jacket isn't really recyclable. It's difficult to separate the denim from the copper yarns and the electronics.”

To imagine a new way of making clothes, the team started with gelatin. This springy protein is common in the bones of many animals, including pigs and cows. Every year, meat producers throw away large volumes of gelatin that doesn’t meet requirements for cosmetics or food products like Jell-O. (Lázaro Vásquez bought her own gelatin, which comes as a powder, from a local butcher shop.)

She and her colleagues decided to turn that waste into wearable treasure.

The group’s machine uses a plastic syringe to heat up and squeeze out droplets of a liquid gelatin mixture. Two sets of rollers in the machine then tug on the gelatin, stretching it out into long, skinny fibers—not unlike a spider spinning a web from silk. In the process, the fibers also pass through liquid baths where the researchers can introduce bio-based dyes or other additives to the material. Adding a little bit of genipin, an extract from fruit, for example, makes the fibers stronger.

Other co-authors of the research included Mirela Alistar and Laura Devendorf, both assistant professors in ATLAS.

Dissolving duds
Lázaro Vásquez said designers may be able to do anything they can imagine with these sorts of textiles.

As a proof of concept, the researchers made small textile sensors out of gelatin fibers and cotton and conductive yarns, similar to the makeup of a Jacquard jacket. The team then submerged these patches in warm water. The gelatin dissolved, releasing the yarns for easy recycling and reuse.

Designers could tweak the chemistry of the fibers to make them a little more resilient, Lázaro Vásquez said—you wouldn’t want your jacket to disappear in the rain. They could also play around with spinning similar fibers from other natural ingredients. Those materials include chitin, a component of crab shells, or agar-agar, which comes from algae.

“We’re trying to think about the whole lifecycle of our textiles,” Lázaro Vásquez said. “That begins with where the material is coming from. Can we get it from something that normally goes to waste?”

More information:
Gelatin biofibres DIY
Source:

University of Colorado Boulder | Daniel Strain

Photo: 政徳 吉田, Pixabay
03.05.2024

Vehicle underbodies made from natural fibers and recycled plastics

In collaboration with industrial partners, researchers at the Fraunhofer WKI have developed a vehicle underbody made from natural fibers and recycled plastics for automotive construction. The focus at the Fraunhofer WKI was directed at the development of the materials for injection molding as well as the hydrophobization of flax and hemp fibers for natural-fiber-reinforced mixed-fiber non-wovens.

The component fulfills the stringent technical requirements in the underbody area and could replace conventional lightweight vehicle underbodies in the future. With this development, the climate and environmental balance is optimized throughout the entire product life cycle.

In collaboration with industrial partners, researchers at the Fraunhofer WKI have developed a vehicle underbody made from natural fibers and recycled plastics for automotive construction. The focus at the Fraunhofer WKI was directed at the development of the materials for injection molding as well as the hydrophobization of flax and hemp fibers for natural-fiber-reinforced mixed-fiber non-wovens.

The component fulfills the stringent technical requirements in the underbody area and could replace conventional lightweight vehicle underbodies in the future. With this development, the climate and environmental balance is optimized throughout the entire product life cycle.

The project partners Fraunhofer WKI, Thuringian Institute for Textile and Plastics Research (TITK), Röchling Automotive SE & Co. KG, BBP Kunststoffwerk Marbach Baier GmbH and Audi AG have succeeded in developing a sustainable overall concept for vehicle underbodies. The researchers have thereby taken a challenging component group with a high plastic content and made it accessible for the utilization of natural materials. Until now, natural-fiber-reinforced plastics have predominantly been used in cars for trim parts without significant mechanical functions. Structural components such as vehicle underbodies are, however, exposed to enormous loads and place high demands on the bending and crash behavior of the material. In modern lightweight vehicle concepts, high-performance materials made from glass-fiber-reinforced plastics are therefore utilized.

The project team was able to replace the glass fibers with natural materials such as flax, hemp and cellulose fibers and to produce underbody components with a natural-fiber content of up to 45%. In the area of polymers, virgin polypropylene was completely dispensed with and solely recyclates were utilized. All the challenges associated with this material changeover – both the lower initial mechanical properties of the materials and the temporally restricted processing windows – were solved by means of skillful compound combinations.

At the Fraunhofer WKI, materials for injection molding were developed. “Natural-fiber injection-molded compounds have so far been known primarily for their increased strength and stiffness compared to non-reinforced polymers. In the development of the vehicle underbody, we have furthermore succeeded in fulfilling the stringent requirements for low-temperature impact strength through an innovative combination of selected post-consumer recyclates (PCR) as a matrix and natural fibers of varying degrees of purity - without forfeiting the required stiffness and strength,” explained Moritz Micke-Camuz, Project Manager at the Fraunhofer WKI.

Within the framework of the development, fiber-composite components made from natural-fiber-reinforced mixed-fiber non-wovens (lightweight-reinforced thermoplastic, LWRT) were realized for the first time at the TITK and at Röchling. The developed product not only fulfills the mechanical requirements: It also withstands in particular the challenges posed by the humid environment in which it is used. For the hydrophobization of flax and hemp fibers for LWRT components, a continuous furfurylation process was developed at the Fraunhofer WKI. Through furfurylation, moisture absorption can be reduced by up to 35 percent without impairment of the bending strength of the subsequent components. The furfurylated fiber material can also be easily processed on a non-woven production line.

The prototype components produced were subsequently extensively tested both at component level and in road tests. Amongst others, the vehicles from the VW Group’s new “Premium Platform Electric” (PPE) were used for this purpose. Long-term experience has already been gathered within the framework of the series testing. The gratifying result of these tests: The newly developed biocomposites fulfill all standard requirements for underbody components and have proven to be suitable for series production. Neither the use of natural fibers nor of (post-consumer) recyclates leads to a significant impairment of the properties.

One major advantage of the innovation is the significantly improved carbon footprint: Compared to series production, 10.5 kilograms of virgin material (PP/glass fiber) can be replaced by 4.2 kilograms of natural fibers and 6.3 kilograms of post-consumer recyclate. As a result, CO2 emissions during production, use and product life have been reduced by up to 40 percent.

Within the scope of the development project, an innovative, holistic overall concept for vehicle underbodies, including recycling with cascading re-use of the components, was developed. From a technical point of view, vehicle underbodies can be manufactured entirely from the new, high-performance lightweight bio construction material in the future.

The project was funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) via the project management organization TÜV Rheinland.

Source:

Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut WKI

Nordic cooperation on circular innovation focusing on workwear Photo: Sven, pixabay
16.04.2024

Nordic cooperation on circular innovation focusing on workwear

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

Recently, the consortium partners convened for an initial meeting at The Swedish School of Textiles to discuss the project framework, which is a feasibility study intended to lead to a multi-year project involving workwear companies in the Öresund-Kattegat-Skagerrak (ÖKS) region, including their supply chains in Asia.

Kim Hjerrild, Strategic Partnerships Lead at the Danish think tank Circular Innovation Lab, Copenhagen, explained: "The goal is to assist workwear producers in Denmark, Sweden, and Norway in becoming more sustainable through circular product design, production, and service concepts. We are pleased to have The Swedish School of Textiles lead the project as they have a strong tradition of collaborating with textile companies."

Complex branch
The decision to focus specifically on workwear stems from it being a complex part of the textile industry, demanding strict standards, certifications, safety aspects, and specific functions depending on the application area, such as specific high-performance environments, healthcare, and hospitality. "To future-proof their operations, companies need to become more resource efficient and circular by producing durable and long lasting workwear that can be repaired and reused. Additionally, they must reduce their carbon footprint per product, as well as minimize problematic chemical usage, and increasingly use recycled materials" explained Kim Hjerrild.

Wants to provide companies with tools and knowledge
Apoorva Arya, founder and CEO of Circular Innovation Lab, elaborates: "Our first and primary goal is to equip Scandinavian workwear companies with tools and knowledge in order to comply with the upcoming EU directives and policies. This includes regulations on product-specific design requirements to labour conditions for employees, human rights, all the way from production to third-party suppliers. Ensuring these companies, especially their suppliers, can transition to a circular supply chain, and navigate the legislative landscape, while guaranteeing competitiveness in the global market."

Focus on new structures
Rudrajeet Pal, Professor of Textile Management at The Swedish School of Textiles, is pleased that the university can be the coordinator of the project. "From the perspective of my research group, this
is incredibly interesting given the focus on the examination and development of ‘new’ supply chain and business model structures that would enable sustainable value generation in textile enterprises, industry, and for the environment and society at large. We have conducted several projects where such global north-south value chain focus is eminent, and this time particularly in workwear companies’ value chain between Scandinavia and Asia. We are delighted to contribute expertise and our experience of working internationally."

About the pre-project North-South Circular Value Chains Within Textiles, NSCirTex
The project aims to support the circular transition in the Nordics by setting up a shared governance model to enable pre-competitive collaboration and the design of circular value chains between Scandinavian workwear companies in the ÖKS-region and producers in India, Bangladesh, Vietnam, and Türkiye.

The next step is to achieve a multi-year main project where workwear companies with their suppliers in Asian countries, can test tailored models for shared governance as a way to develop practical circular solutions, such as post-consumer recycling, circular material procurement, develop safe and resource efficient circular products, enhance social sustainability and due diligence, among others. The main project will thus develop solutions to reduce material footprint, and resource usage while generating both commercial viability and prepare for new regulation, reporting, and accountability.

Partners in this feasibility study: University of Borås, Aalborg University Business School, and Circular Innovation Lab. The feasibility study is funded by the EU through the Interreg Öresund-Kattegat-Skagerrak European Regional Development Fund.

Source:

University of Borås, Solveig Klug

textile waste AI generated image: Pete Linforth, Pixabay
02.04.2024

The Future of Circular Textiles: New Cotton Project completed

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 
The pioneering New Cotton Project launched in October 2020 with the aim of demonstrating a circular value chain for commercial garment production. Through-out the project the consortium worked to collect and sort end-of-life textiles, which using pioneering Infinited Fiber technology could be regenerated into a new man-made cellulosic fibre called Infinna™ which looks and feels just like virgin cotton. The fibres were then spun into yarns and manufactured into different types of fabric which were designed, produced, and sold by adidas and H&M, making the adidas by Stella McCartney tracksuit and a H&M printed jacket and jeans the first to be produced through a collaborative circular consortium of this scale, demonstrating a more innovative and circular way of working for the fashion industry.
 
As the project completes in March 2024, the consortium highlights eight key factors they have identified as fundamental to the successful scaling of fibre-to-fibre recycling.

The wide scale adoption of circular value chains is critical to success
Textile circularity requires new forms of collaboration and open knowledge exchange among different actors in circular ecosystems. These ecosystems must involve actors beyond traditional supply chains and previously disconnected industries and sectors, such as the textile and fashion, waste collection and sorting and recycling industries, as well as digital technology, research organisations and policymakers. For the ecosystem to function effectively, different actors need to be involved in aligning priorities, goals and working methods, and to learn about the others’ needs, requirements and techno-economic possibilities. From a broader perspective, there is also a need for a more fundamental shift in mindsets and business models concerning a systemic transition toward circularity, such as moving away from the linear fast fashion business models. As well as sharing knowledge openly within such ecosystems, it also is important to openly disseminate lessons learnt and insights in order to help and inspire other actors in the industry to transition to the Circular Economy.

Circularity starts with the design process
When creating new styles, it is important to keep an end-of-life scenario in mind right from the beginning. As this will dictate what embellishments, prints, accessories can be used. If designers make it as easy as possible for the recycling process, it has the bigger chance to actually be feedstock again. In addition to this, it is important to develop business models that enable products to be used as long as possible, including repair, rental, resale, and sharing services.

Building and scaling sorting and recycling infrastructure is critical
In order to scale up circular garment production, there is a need for technological innovation and infrastructure development in end-of-use textiles collection, sorting, and the mechanical pre-processing of feedstock. Currently, much of the textiles sorting is done manually, and the available optical sorting and identification technologies are not able to identify garment layers, complex fibre blends, or which causes deviations in feedstock quality for fibre-to-fibre recycling. Feedstock preprocessing is a critical step in textile-to-textile recycling, but it is not well understood outside of the actors who actually implement it. This requires collaboration across the value chain, and it takes in-depth knowledge and skill to do it well. This is an area that needs more attention and stronger economic incentives as textile-to-textile recycling scales up.

Improving quality and availability of data is essential
There is still a significant lack of available data to support the shift towards a circular textiles industry. This is slowing down development of system level solutions and economic incentives for textile circulation. For example, quantities of textiles put on the market are often used as a proxy for quantities of post-consumer textiles, but available data is at least two years old and often incomplete. There can also be different textile waste figures at a national level that do not align, due to different methodologies or data years. This is seen in the Dutch 2018 Mass Balance study reports and 2020 Circular Textile Policy Monitoring Report, where there is a 20% difference between put on market figures and measured quantities of post-consumer textiles collected separately and present in mixed residual waste. With the exception of a few good studies such as Sorting for Circularity Europe and ReFashion’s latest characterization study, there is almost no reliable information about fibre composition in the post-consumer textile stream either. Textile-to-textile recyclers would benefit from better availability of more reliable data. Policy monitoring for Extended Producer Responsibility schemes should focus on standardising reporting requirements across Europe from post-consumer textile collection through their ultimate end point and incentivize digitization so that reporting can be automated, and high-quality textile data becomes available in near-real time.

The need for continuous research and development across the entire value chain
Overall, the New Cotton Project’s findings suggest that fabrics incorporating Infinna™ fibre offer a more sustainable alternative to traditional cotton and viscose fabrics, while maintaining similar performance and aesthetic qualities. This could have significant implications for the textile industry in terms of sustainability and lower impact production practices. However, the project also demonstrated that the scaling of fibre-to-fibre recycling will continue to require ongoing research and development across the entire value chain. For example, the need for research and development around sorting systems is crucial. Within the chemical recycling process, it is also important to ensure the high recovery rate and circulation of chemicals used to limit the environmental impact of the process. The manufacturing processes also highlighted the benefit for ongoing innovation in the processing method, requiring technologies and brands to work closely with manufacturers to support further development in the field.

Thinking beyond lower impact fibres
The New Cotton Project value chain third party verified LCA reveals that the cellulose carbamate fibre, and in particular when produced with a renewable electricity source, shows potential to lower environmental impacts compared to conventional cotton and viscose. Although, it's important to note that this comparison was made using average global datasets from Ecoinvent for cotton and viscose fibres, and there are variations in the environmental performance of primary fibres available on the market. However, the analysis also highlights the importance of the rest of the supply chain to reduce environmental impact. The findings show that even if we reduce the environmental impacts by using recycled fibres, there is still work to do in other life cycle stages. For example; garment quality and using the garment during their full life span are crucial for mitigating the environmental impacts per garment use.
          
Citizen engagement
The EU has identified culture as one of the key barriers to the adoption of the circular economy within Europe. An adidas quantitative consumer survey conducted across three key markets during the project revealed that there is still confusion around circularity in textiles, which has highlighted the importance of effective citizen communication and engagement activities.

Cohesive legislation
Legislation is a powerful tool for driving the adoption of more sustainable and circular practices in the textiles industry. With several pieces of incoming legislation within the EU alone, the need for a cohesive and harmonised approach is essential to the successful implementation of policy within the textiles industry. Considering the link between different pieces of legislation such as Extended Producer Responsibility and the Ecodesign for Sustainable Products Regulation, along with their corresponding timeline for implementation will support stakeholders from across the value chain to prepare effectively for adoption of these new regulations.

The high, and continuously growing demand for recycled materials implies that all possible end-of-use textiles must be collected and sorted. Both mechanical and chemical recycling solutions are needed to meet the demand. We should also implement effectively both paths; closed-loop (fibre-to-fibre) and open -loop recycling (fibre to other sectors). There is a critical need to reconsider the export of low-quality reusable textiles outside the EU. It would be more advantageous to reuse them in Europe, or if they are at the end of their lifetime recycle these textiles within the European internal market rather than exporting them to countries where demand is often unverified and waste management inadequate.

Overall, the learnings spotlight the need for a holistic approach and a fundamental mindset shift in ways of working for the textiles industry. Deeper collaboration and knowledge exchange is central to developing effective circular value chains, helping to support the scaling of innovative recycling technologies and increase availability of recycled fibres on the market. The further development and scaling of collecting and sorting, along with the need to address substantial gaps in the availability of quality textile flow data should be urgently prioritised. The New Cotton Project has also demonstrated the potential of recycled fibres such as Infinna™ to offer a more sustainable option to some other traditional fibres, but at the same time highlights the importance of addressing the whole value chain holistically to make greater gains in lowering environmental impact. Ongoing research and development across the entire value chain is also essential to ensure we can deliver recycled fabrics at scale in the future.

The New Cotton Project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101000559.

 

Source:

Fashion for Good

Converting CO2 to Solid Carbon Nanofibers (c) Zhenhua Xie/Brookhaven National Laboratory and Columbia University; Erwei Huang/Brookhaven National Laboratory
22.01.2024

Converting CO2 to Solid Carbon Nanofibers

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

“You can put the carbon nanofibers into cement to strengthen the cement,” said Jingguang Chen, a professor of chemical engineering at Columbia with a joint appointment at Brookhaven Lab who led the research. “That would lock the carbon away in concrete for at least 50 years, potentially longer. By then, the world should be shifted to primarily renewable energy sources that don’t emit carbon.”

As a bonus, the process also produces hydrogen gas (H2), a promising alternative fuel that, when used, creates zero emissions.

Capturing or converting carbon?
The idea of capturing CO2 or converting it to other materials to combat climate change is not new. But simply storing CO2 gas can lead to leaks. And many CO2 conversions produce carbon-based chemicals or fuels that are used right away, which releases CO2 right back into the atmosphere.

“The novelty of this work is that we are trying to convert CO2 into something that is value-added but in a solid, useful form,” Chen said.

Such solid carbon materials—including carbon nanotubes and nanofibers with dimensions measuring billionths of a meter—have many appealing properties, including strength and thermal and electrical conductivity. But it’s no simple matter to extract carbon from carbon dioxide and get it to assemble into these fine-scale structures. One direct, heat-driven process requires temperatures in excess of 1,000 degrees Celsius.

“It’s very unrealistic for large-scale CO2 mitigation,” Chen said. “In contrast, we found a process that can occur at about 400 degrees Celsius, which is a much more practical, industrially achievable temperature.”

The tandem two-step
The trick was to break the reaction into stages and to use two different types of catalysts—materials that make it easier for molecules to come together and react.

“If you decouple the reaction into several sub-reaction steps you can consider using different kinds of energy input and catalysts to make each part of the reaction work,” said Brookhaven Lab and Columbia research scientist Zhenhua Xie, lead author on the paper.

The scientists started by realizing that carbon monoxide (CO) is a much better starting material than CO2 for making carbon nanofibers (CNF). Then they backtracked to find the most efficient way to generate CO from CO2.

Earlier work from their group steered them to use a commercially available electrocatalyst made of palladium supported on carbon. Electrocatalysts drive chemical reactions using an electric current. In the presence of flowing electrons and protons, the catalyst splits both CO2 and water (H2O) into CO and H2.

For the second step, the scientists turned to a heat-activated thermocatalyst made of an iron-cobalt alloy. It operates at temperatures around 400 degrees Celsius, significantly milder than a direct CO2-to-CNF conversion would require. They also discovered that adding a bit of extra metallic cobalt greatly enhances the formation of the carbon nanofibers.

“By coupling electrocatalysis and thermocatalysis, we are using this tandem process to achieve things that cannot be achieved by either process alone,” Chen said.

Catalyst characterization
To discover the details of how these catalysts operate, the scientists conducted a wide range of experiments. These included computational modeling studies, physical and chemical characterization studies at Brookhaven Lab’s National Synchrotron Light Source II (NSLS-II)—using the Quick X-ray Absorption and Scattering (QAS) and Inner-Shell Spectroscopy (ISS) beamlines—and microscopic imaging at the Electron Microscopy facility at the Lab’s Center for Functional Nanomaterials (CFN).

On the modeling front, the scientists used “density functional theory” (DFT) calculations to analyze the atomic arrangements and other characteristics of the catalysts when interacting with the active chemical environment.

“We are looking at the structures to determine what are the stable phases of the catalyst under reaction conditions,” explained study co-author Ping Liu of Brookhaven’s Chemistry Division who led these calculations. “We are looking at active sites and how these sites are bonding with the reaction intermediates. By determining the barriers, or transition states, from one step to another, we learn exactly how the catalyst is functioning during the reaction.”

X-ray diffraction and x-ray absorption experiments at NSLS-II tracked how the catalysts change physically and chemically during the reactions. For example, synchrotron x-rays revealed how the presence of electric current transforms metallic palladium in the catalyst into palladium hydride, a metal that is key to producing both H2 and CO in the first reaction stage.

For the second stage, “We wanted to know what’s the structure of the iron-cobalt system under reaction conditions and how to optimize the iron-cobalt catalyst,” Xie said. The x-ray experiments confirmed that both an alloy of iron and cobalt plus some extra metallic cobalt are present and needed to convert CO to carbon nanofibers.

“The two work together sequentially,” said Liu, whose DFT calculations helped explain the process.

“According to our study, the cobalt-iron sites in the alloy help to break the C-O bonds of carbon monoxide. That makes atomic carbon available to serve as the source for building carbon nanofibers. Then the extra cobalt is there to facilitate the formation of the C-C bonds that link up the carbon atoms,” she explained.

Recycle-ready, carbon-negative
“Transmission electron microscopy (TEM) analysis conducted at CFN revealed the morphologies, crystal structures, and elemental distributions within the carbon nanofibers both with and without catalysts,” said CFN scientist and study co-author Sooyeon Hwang.

The images show that, as the carbon nanofibers grow, the catalyst gets pushed up and away from the surface. That makes it easy to recycle the catalytic metal, Chen said.

“We use acid to leach the metal out without destroying the carbon nanofiber so we can concentrate the metals and recycle them to be used as a catalyst again,” he said.

This ease of catalyst recycling, commercial availability of the catalysts, and relatively mild reaction conditions for the second reaction all contribute to a favorable assessment of the energy and other costs associated with the process, the researchers said.

“For practical applications, both are really important—the CO2 footprint analysis and the recyclability of the catalyst,” said Chen. “Our technical results and these other analyses show that this tandem strategy opens a door for decarbonizing CO2 into valuable solid carbon products while producing renewable H2.”

If these processes are driven by renewable energy, the results would be truly carbon-negative, opening new opportunities for CO2 mitigation.

Source:

Brookhaven National Laboratory

Berndt Köll on the Stubai Glacier: Initial field tests showed convincing results. (c) Lenzing AG
22.11.2023

Glacier protection rethought: Nonwovens made of cellulosic fibers

Protection for snow and ice: Cellulosic LENZING™ fibers offer solution for preservation of glacier mass

In field trials on Austrian glaciers, nonwovens made of cellulosic LENZING™ fibers are being used to cover glacier mass. They are showing promising results and offer a sustainable solution for glacier protection. Nonwovens containing fossil-based synthetic fibers might cause negative environmental consequences such as microplastics on glaciers.

Protection for snow and ice: Cellulosic LENZING™ fibers offer solution for preservation of glacier mass

In field trials on Austrian glaciers, nonwovens made of cellulosic LENZING™ fibers are being used to cover glacier mass. They are showing promising results and offer a sustainable solution for glacier protection. Nonwovens containing fossil-based synthetic fibers might cause negative environmental consequences such as microplastics on glaciers.

Geotextiles are already widely used to protect snow and ice on glaciers from melting. The use of nonwovens made from cellulosic LENZING™ fibers is now achieving a sustainable turnaround. Geotextiles show great success in Austria in protecting glaciers, which are highly endangered by global warming. By covering glacier mass, its melting is slowed down and mitigated. So far, the nonwovens used to protect glaciers are usually made of fossil-based synthetic fibers. The problem with that might occur as microplastics left behind after the summer flow down into the valley and can enter the food chain through small organisms and animals.

Sustainability from production to reuse
An innovative and sustainable solution for the protection of snow and ice is now possible with the help of nonwovens made of cellulosic LENZING™ fibers. "LENZING™ fibers are derived from renewable, responsibly managed wood sources and are produced in an environmentally responsible process. Thanks to their botanic origin, they have the ability to break down, returning into nature after use" explains Berndt Köll, Business & Innovation Manager at Lenzing.

In a field trial on the Stubai Glacier, the covering of a small area with the new material containing cellulosic LENZING™ fibers was tested for the first time. The result was convincing: 4 meters of ice mass could be saved from melting. Due to its success, the project is now being expanded. In 2023 field tests started in all Austrian glaciers, which are used for tourism.

"We are pleased with the positive results and see the project as a sustainable solution for glacier protection - not only in Austria, but beyond national borders," Berndt Köll continues. There should also be a possibility to explore for recycling after the nonwovens are used: These geotextiles can be recycled and ultimately used to make yarn for textile products.

Awarded with the Swiss BIO TOP
The sustainable glacier protection and its results also convinced the jury of industry experts of the BIO TOP, a major award for wood and material innovations in Switzerland. With this award innovative projects in the field of bio-based woods and materials are promoted and supported. At the award ceremony on September 20, 2023, Geotextiles containing LENZING™ fibers were honored with the award for its solution.

Source:

Lenzing AG

offshore windpark Nicholas Doherty, unsplash
17.10.2023

Pyrolysis processes promise sustainable recycling of fiber composites

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Today, the vast majority of wind turbines can already be recycled cleanly. In the case of rotor blades, however, recycling is only just beginning. Due to the 20-year operation period and the installation rates, the blade volume for recycling will be increasing in the coming years and decades. In 2000, for example, around 6,000 wind turbines were erected in Germany, which now need to be fed into a sustainable recycling process. In 2022, about 30,000 onshore and offshore wind turbines with a capacity of 65 gigawatts were in operation in Germany alone.

As wind energy is the most important cornerstone for a climate-neutral power supply, the German government has set itself the goal of further increasing its wind energy capacity by 2030 by installing larger and more modern turbines. Rotor blades will become longer, the proportion of carbon fibers used will continue to increase - and so will the amount of waste. In addition, the existing material mix in rotor blades is expected to increase in the future and precise knowledge of the structure of the components will become even more important for recycling. This underscores the urgency of developing sustainable processing methods, especially for recycling the thick-walled fiber composites in the rotor blades.

Economic and ecological recycling solution for fiber composites on the horizon
Rotor blades of wind turbines currently up for recycling consist of more than 85 percent of glass- and carbon-fiber-reinforced thermosets (GFRP/CFRP). A large proportion of these materials is found in the flange and root area and within the fiber-reinforced straps as thick-walled laminates with a wall thicknesses of up to 150 mm. Research into high-quality material fiber recycling as continuous fibers is of particular importance, not only because of the energy required for carbon fiber production. This is where the project "Pyrolysis of thick-walled fiber composites as a key innovation in the recycling process for wind turbine rotor blades" – "RE SORT" for short – funded by the German Federal Ministry of Economics and Climate Protection comes in. The aim of the project team is the complete recycling by means of pyrolysis.

A prerequisite for high-quality recycling of fiber composites is the separation of the fibers from the mostly thermoset matrix. Although pyrolysis is a suitable process for this purpose, it has not yet gained widespread adoption. Within the project, the project partners are therefore investigating and developing pyrolysis technologies that make the recycling of thick-walled fiber composite structures economically feasible and are technically different from the recycling processes commonly used for fiber composites today. Both quasi-continuous batch and microwave pyrolysis are being considered.

Batch pyrolysis, which is being developed within the project, is a pyrolysis process in which the thermoset matrix of thick fiber composite components is slowly decomposed into oily and especially gaseous hydrocarbon compounds by external heating. In microwave pyrolysis, energy is supplied by the absorption of microwave radiation, resulting in internal rapid heat generation. Quasi-continuous batch pyrolysis as well as microwave pyrolysis allow the separation of pyrolysis gases or oils. The planned continuous microwave pyrolysis also allows for the fibers to be preserved and reused in their full length.

How the circular economy succeeds - holistic utilization of the recycled products obtained
In the next step, the surfaces of the recovered recycled fibers are prepared by means of atmospheric plasmas and wet-chemical coatings to ensure their suitability for reuse in industrial applications. Finally, strength tests can be used to decide whether the recycled fibers will be used again in the wind energy industry or, for example, in the automotive or sporting goods sectors.

The pyrolysis oils and pyrolysis gases obtained in batch and microwave pyrolysis are evaluated with respect to their usability as raw materials for polymer synthesis (pyrolysis oils) or as energy sources for energy use in combined heat and power (CHP) plants (pyrolysis gases).

Both quasi-continuous batch pyrolysis and continuous-flow microwave pyrolysis promise economical operation and a significant reduction in the environmental footprint of wind energy. Therefore, the chances for a technical implementation and utilization of the project results are very good, so that this project can make a decisive contribution to the achievement of the sustainability and climate goals of the German Federal Government.

Source:

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from. Photo: © Fraunhofer IPMS. A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from.
10.10.2023

Checking clothing using a smartphone, AI and infrared spectroscopy

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Infrared spectrometers are powerful measuring instruments when it comes to non-destructive analysis of organic materials. The Fraunhofer Institute for Photonic Microsystems IPMS in Dresden has recently developed a spectral analyzer system that recognizes and analyzes textile fabrics. The system can also reliably recognize mixed fabrics. Possible applications range from checking fabrics when out shopping to cleaning garments correctly, and even sustainable, sorted recycling. The spectrometer is so tiny, it can be integrated into a smartphone.

Researchers at Fraunhofer rely on near-infrared (NIR) spectroscopy to achieve the required reliability and accuracy when identifying textiles. The system works for wavelengths between 950 and 1900 nanometers, which is close to the visible spectrum. Advantages of near-infrared technology include being easy to use and having a wide range of applications. “We combine NIR spectroscopy with imaging and AI to achieve higher accuracy when recognizing and analyzing objects,” explains Dr. Heinrich Grüger, research scientist in the Sensoric Micromodules department at Fraunhofer IPMS.

How textile analysis works
Firstly, a conventional camera module captures an image of the garment. The AI selects a specific point from the fabric’s image data to be examined by the spectral analyzer module. Light reflected from the fabric is captured by the spectrometer module. There, it passes through an entrance slit, is transformed into parallel light beams using a collimating mirror and projected onto a grating using a scanning mirror. Depending on the angle of incidence and exit, the grating splits the light beams into different wavelengths. Light reflected from the grating is directed by the scanner mirror to a detector which captures the light as an electrical signal. An A/D converter then digitizes these signals, which are subsequently analyzed in the signal processor. The resulting spectrometric profile for the textile fabric reveals which fibers it is made from by comparing to a reference database.“ The optical resolution is 10 nanometers. This high resolution means the NIR spectrometer can also use AI to identify mixed fabrics such as items of clothing made from polyester and cotton,” says Grüger. Measuring just 10 mm × 10 mm and being 6.5 mm thick, the system is so compact it could easily be integrated into a standard smartphone.

Recycling old clothing
Grüger sees an important application for the AI-controlled spectrometer when it comes to recycling. According to the Federal Statistical Office of Germany, approximately 176,200 tons of textile and clothing waste was collected from private homes in Germany in 2021. NIR spectroscopy could improve recycling efficiency and reduce the mountain of old clothing. This would enable companies that recycle old clothing to sort it more efficiently and faster. Textiles that are still in one piece, for instance, go to the second-hand trade. Damaged textiles are sorted for recycling, and the fibers they are made from, such as linen, silk, cotton or lyocell, can be reused. Severely soiled textiles would be incinerated or processed into insulation mats, for example. Spectroscopic identifies and sorts textiles more accurately and much faster than a human can.

If NIR spectroscopy was to be integrated into a smartphone, end-users might also benefit from the Fraunhofer institute’s technology. When buying clothes, a quick check with a smartphone reveals whether that expensive silk scarf is genuinely made from silk, or whether that exclusive dress from the fashion label is not instead a counterfeit, exposed through an alternative mix of fabrics. And should the label with the cleaning instructions no longer be legible, the smartphone has a textile scanner to identify the fabric and so determine the appropriate wash cycle.

Food check and dermatology
Researchers at Fraunhofer IPMS can even envisage applications beyond the textile industry. Smartphones fitted with spectrometers might be used to provide information about the quality of groceries such as fruit and vegetables when out shopping. The technology might conceivably also be used to examine skin. A quick scan with the cell phone spectrometer could identify particularly dry or greasy patches. Perhaps applications in medical diagnostics might even be conceivable — examining patches of skin where a melanoma is suspected, for example — but this would need professional involvement too.

Source:

Fraunhofer Institute for Photonic Microsystems

Heimtextil Trends 24/25 © SPOTT trends & business for Heimtextil
12.09.2023

Heimtextil Trends 24/25: New Sensitivity

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

How does New Sensitivity translate into something concrete in the lifestyle industry, and what does having a sensitive approach to design and products mean? Also the adoption of Artificial General Intelligence (AGI) is transforming current times. AGI has the potential to bring innovative solutions and help tackle significant challenges, also in the textile industry. However, AGI can have the opposite effect on society. AGI needs the mindset of New Sensitivity that helps simplify complexity, expand creativity, and find unseen solutions, also within the world of textiles.
     
"With Heimtextil Trends 24/25: New Sensitivity, we encourage the textile industry to approach the future with thoughtfulness and consideration. Specifically, we see this change in three different trends for a more sensitive world of textiles: biotechnical, plant-based and technological," Bisgaard Gaede continues.

Plant-based: textiles made from plant crops or plant by-products
Plant-based textiles mean that the fibres are derived from something that grows rather than being synthetically produced. The sustainable advantage of plant-based textiles is that their origin is natural and, therefore, more able to recirculate in existing ecosystems. They can be divided into two groups. The first group of textiles are made from plant crops. New resilient crops like cactus, hemp, abaca, seaweed, and rubber offer new sustainable textile solutions. Because of mechanical extraction, they can grow despite climate changes and require fewer chemicals in their development. The second group consists of textiles made of plant by-products which are leftover raw materials from production such as banana, olive, persimmon and hemp.

Technological: technology and technical solutions transforming textiles
Technology can support the transformation of textiles through the use of different methods: upcycling and recycling of textiles, textile construction, and textile design. Due to decades of production, textiles are now a material available in abundance. Developing technologies for recycling textile waste and methods for upcycling textiles increases the circular usage of existing textiles. Furthermore, old textile construction techniques also offer pathways to sustainable solutions: For instance, using knitting technology for furniture upholstery produces less fabric waste; alternatively, weaving technique allows the creation of several colours using only a few coloured yarns. Textile Design Thinking is another method that addresses critical issues such as energy usage and durability of natural fibres and enhances these through technological textile advancement.

Bio-engineered: engineered to enhance bio-degrading
To a certain degree, bio-engineered textiles represent a fusion of plant-based and technological textiles. Bio-engineering bridges nature and technology and transforms the way textiles are made. They can be divided into two directions: fully bio-engineered and bio-degradable textiles. In the production of fully bio-engineered textiles nature-inspired strategies are adopted. Instead of growing plants and extracting their fibres, textiles are made from the protein, carbohydrates, or bacteria in corn, grass, and cane sugar. Manufacturing involves a bio-molecular process that creates filaments which are made into yarn. The sustainable advantage of bio-engineered textiles is that they can have some of the same functionalities as synthetically produced textiles, while still being biodegradable because of their natural origin. Biodegradable fibres can be added to conventional textiles like polyester to enhance the conventional textiles’ ability to revert to materials found in nature and hence biodegrade in natural environments such as water or soil. Although not biodegrading completely, these bio-enhanced textiles will biodegrade up to 93 % compared to conventional textiles.

Heimtextil Trends 24/25: new colourways
A sensitive approach to colouring methods is expressed by a dynamic yet subtle colour palette created through natural pigments deriving from the earth, as traditional colouring processes are brought to the next level through innovative bioengineering technology. In pursuit of creating colours that evoke emotions in our senses while at the same time respecting our values in protecting the environment, we see colour bacteria growing pigments generating hues with great richness and depth.
               
This New Sensitivity includes acceptance of natural colour flows, as colours may fade with time or morph into new colourways. The colourways for Heimtextil Trends 24/25 were inspired by natural colours deriving from avocado seeds, algae, living bacteria, antique pigments such as raw sienna, and bio-engineered indigo and cochineal. The high black component in most colours allows for widespread application and a greater variety of combinations. The punchy saturated accents enhance our senses as they lift our spirits. In contrast, the grounding neutrals in different shades of grey, terra and even dark purple allow for calmness and tranquillity.

Future Materials: regenerative design
How are regenerative textiles and materials defined? Regenerative design is dedicated to developing holistic creative practices that restore or renew resources, have a positive impact on the environment, and encourage communities to thrive. For Heimtextil 2024, design futures consultancy FranklinTill is curating a global showcase of cutting-edge textiles and materials to illustrate the principles of regenerative design and recognize pioneering designers, producers and manufacturers who are at the forefront of regenerative design.
The Trend Space at Heimtextil in Frankfurt, Germany, January 9-12, 2023, will showcase these pioneering solutions in an inspiring way. In addition, Heimtextil Trends will offer visitors orientation and insights into the future of home and contract textiles in the form of workshops, lectures and other interactive formats.

Source:

Heimtextil, Messe Frankfurt