Textination Newsline

Reset
52 results
(c) Messe Frankfurt Exhibition GmbH / Jens Liebchen
31.08.2021

Textile Services Industry a key to providing sustainable solutions and eco-friendly best practice

How can the major sustainability challenges in the textile industry be met? The textile services industry, whose business model has always been based on durability and re-use, has an important role to play here as ambassador. In the run-up to Texcare International, Elena Lai, Secretary General European Textile Services Association (ETSA), talks about these challenges and her expectations for Texcare International from 27 November to 1 December 2021.

How can the major sustainability challenges in the textile industry be met? The textile services industry, whose business model has always been based on durability and re-use, has an important role to play here as ambassador. In the run-up to Texcare International, Elena Lai, Secretary General European Textile Services Association (ETSA), talks about these challenges and her expectations for Texcare International from 27 November to 1 December 2021.

The textile sector was identified as a priority sector in the European Green Deal and in the Circular Economy Action Plan. What are the implications for the European textile services industry?
Elena Lai:
We are in a truly historic and exciting time for the textile services industry. We are all well-aware that our industry is the key to providing sustainable solutions and ecofriendly best practice. We had a series of webinars at ETSA dedicated to sustainability and circular economy being key elements of the Green Deal and our larger companies such as industrial laundries, key textile manufacturers and innovative machinery companies, are all up to the task and providing effective solutions. Our national associations too, members of ETSA, are all working synergistically to exchange their best ways forward, in Europe and beyond as we have also partners from the US. These efforts within ETSA’s value chain make us really proud and eager to go the extra mile, guiding our members also towards those areas which seem to be the most challenging. For instance, the new EU Climate Law, which calls for 55% CO2 reductions by 2030: this means that European industries will all have to do better to make us reach these targets in less than nine years. We know ETSA could represent the right network to identify the best way forward on this issue and truly perform and deliver what the EU is advocating for.

How can the textile services industry contribute to achieving circular economy in the textile industry?
Elena Lai:
The business model of textile services is inherently circular. By having a business model which is focused on renting and reusing textiles we can see a litany of benefits that it can offer to the EU’s Circular Economy Action Plan. Firstly, in renting textiles. Through rented textile services, textile service companies can extend the lifecycle of products and thus reduce the amount of production that is necessary to occur in the first place, while also reducing the amount of wastewater and energy needed in the laundry process. Secondly, through re-use and repair textile products can remain in consumer hands for longer, which is paramount as our industry is one that battles against planned obsolescence. Both of these are important pillars to our industries that will help both consumers and the planet. Lastly, by continuing to expand recycling and upcycling we can minimise waste, ensuring that a product stays inside the European economy as long as possible. These are all important steps and help us do our part to help Europe reach its emissions and sustainability goals.

Textile recycling is a very important point. How do you think the textile recycling rate can be increased?
Elena Lai:
The Commission will mandate separate waste sorting of textiles by the year 2025, thus recycling, upcycling and end of life re-use must be improved. A ban on the burning of unused textiles will also soon take effect, this will incentivise further recycling and waste reduction. Fundamentally what we in textiles services need to do is to continue to reduce, re-use and recycle. We can increase the rate of recycling by making consumers aware of rented textiles and textile services so to increase the public demand for such services.

How can sustainability in textile services be further improved?
Elena Lai:
In order to boost sustainability in our industry we need to build on the existing culture of innovation and entrepreneurship where exciting, new, out-of-the-box ideas can be developed and refined. EU programs like Horizon Europe, which emphasise green and digital solutions to common problems are an excellent way to empower citizens, textile service firms and local communities to take the initiative and take matters into their own hands. The EU’s Due Diligence legislation is one example of somewhere we can see both consumers and firms come together and take proactive action to improve sustainability, not only in textiles and textile services, but in European industry more broadly. To put it clearly, we have to strengthen our technological innovation while also empowering consumers, authorities and textile service firms, we believe our work at the EU level helps to make this a reality.

How does ETSA promote new projects in the field of sustainability?
Elena Lai:
We at ETSA have been hard at work lobbying EU policymakers for responsible legislation, while also spreading awareness of the industry’s best practice to the public. Recently ETSA has also become an EU Commission Climate Pact Ambassador. This is an exciting opportunity which will allow ETSA to work closely with European Institutions to inform and inspire real climate action amongst our members, national associations and the industry as a whole. ETSA is a platform where stakeholders, citizens, industries and European Union representatives can come together and have a dialogue on the best ways to improve Europe’s sustainability. Furthermore, we have been hard at work disseminating information on the best practice that will help Europe get to 55% emissions reductions, as well information on chemicals, waste-water, microplastics and other salient environmental issues. Our work is far from being done but we look forward to continuing to strive and advance via our focused Working Group on Environment and our webinars to make the world green and sustainable again.

What role will circular economy/sustainability play at Texcare?
Elena Lai:
A central role, several European and World Leaders have underlined, is that Climate Change is the most important issue of our time and it is imperative we act now. Climate Change is also an issue with a global spill over and therefore we all have a clear incentive to find solutions and work in synergy with each other. We need future-oriented dialogue which understands the urgent need for sustainability across the entire textile value chain. ETSA in synergy with one of our members, DTV, is working hard to put together a panel at Texcare dedicated to the sustainability debate, with lots of members and participants to get engaged.

What does ETSA expect from this year's Texcare?
Elena Lai:
We at ETSA are excited to be at Texcare, we think it’s a great opportunity to not only network and converse with other relevant actors in the industry but also to share best practice, concerns and most of all opportunities. Due to the pandemic we had a difficult year 2021 and this event will really enhance a stronger engagement of key actors in this sector. The need for green, sustainable and digital solutions is nonetheless imperative. We are looking forward to hearing of ways that the industry across the world not only continues to adapt to the evolving COVID situation, but also how it is embracing the green and digital transition that has been emphasised as being the futuristic approach by our EU policymakers. We at ETSA wholeheartedly look forward to this event.

Texcare International will take place from November 27 December 1, 2021 in Frankfurt am Main.

Photo: pixabay
24.08.2021

Air, Water, Oil: What PLA bioplastic can filter well - and what not

Air filters have been discussed so often in recent days in the fight against the pandemic. With filter material made of nonwoven fabric, they block the way back into rooms for aerosols containing viruses. But how can these devices not only protect health, but also be operated with filter material that is as environmentally friendly as possible?

Air filters have been discussed so often in recent days in the fight against the pandemic. With filter material made of nonwoven fabric, they block the way back into rooms for aerosols containing viruses. But how can these devices not only protect health, but also be operated with filter material that is as environmentally friendly as possible?

Under clearly defined conditions, the bioplastic polylactide (PLA), also known as polylactic acid, is suited for this purpose. This can be deduced from results obtained by researchers from the Zuse community in the recently completed "BioFilter" research project. The key question for this and other potential applications of biofilters is: How do the special properties of PLA affect the filter performance and durability? After all, PLA can have practical disadvantages compared to its fossil-based competitors. Its material tends to be brittle and it doesn't particularly like high temperatures beyond 60 degrees Celsius. As a biogenic material, polylactic acid is also potentially more susceptible to abrasion and organic degradation processes. This can play an even greater role in the use of filters, e.g. in sewage treatment facilities, than in air filters. Industrial customers, however, naturally want a durable, reliable product.

From monofilament to nonwoven
Against this background, the researchers studied the PLA properties in order to test nonwovens for biofilters on this basis. The German Textile Research Center North-West (German Textile Research Center North-West - DTNW) and the Saxon Textile Research Institute (STFI), where the nonwovens were produced, were involved. Granules from various commercially available manufacturers were used. However, the research did not start with nonwovens, in which the fibers are deposited close together in different layers, but with so-called monofilaments, i.e. fibers made of PLA that are comparable to threads. DTNW and STFI initially carried out tests on these monofilaments, e.g. in a climate chamber for aging and durability.

As can be seen in the picture, the monofilaments became brittle after only two weeks at higher temperatures from 70 degrees Celsius, as the DTNW authors recently reported in the Journal Applied Polymer Materials. Under normalized conditions, however, the monofilaments showed no measurable reduction in stability even after almost three years, and the PLA nonwovens were in no way inferior to their fossil-based counterparts in terms of filter performance. "In my opinion, the focus for the use of PLA as a filter material will be on applications where relatively low temperatures are present, with which PLA copes very well," says DTNW scientist Christina Schippers.

Besides temperature and humidity consider other factors
For the researchers, however, the project, which was funded by the German Federal Ministry for Economic Affairs and Energy, was not just about the suitability of polylactide for air filters, but also for other applications, such as filtering water. In addition, the research revealed that when evaluating filter media made from bio-based and biodegradable nonwovens, it is important to consider other influencing factors, such as mechanical loads caused by air currents, in addition to temperature and humidity. "The innovative core of the project was to evaluate the possibilities and application limits of PLA nonwovens as filter media with sufficient mechanical properties and long-term stability," says project leader Dr. Larisa Tsarkova. Like her colleagues at STFI, DTNW is involved in the Zuse Community's Bioeconomy Cluster, in which researchers from nonprofit institutes cooperate under the guiding principle of "Researching with Nature." "For us, the bioeconomy is a top cross-industry topic that connects numerous institutes of the Zuse Community and is lived through collaborations such as with the 'Bio-Filter'," explains the future STFI managing director Dr. Heike Illing-Günther.

Cooperation in the Bioeconomy Cluster
With the results obtained from the "Bio-Filter" project, DTNW and STFI now want to continue working in order to be able to make derivations for clearly described areas of application for PLA nonwoven filters in the future. These possible fields of application extend far beyond room air filters and thus beyond the pandemic. For example, the water-repellent property of PLA is potentially interesting for filters in large-scale kitchens for water-oil filtration or also in the industry for engine oils.

The research is also so important, because PLA is already quite well established in individual consumer-related segments - keyword: carrier bags. Traditionally, lactic acid was used to preserve food, for example in sauerkraut. Today, PLA is obtained via a multi-stage synthesis from sugar, which ferments to lactic acid and polymerizes this to PLA, as Kunststoffe.de explains. PLA is one of the best-known bioplastics, but has not always been readily available due to strong demand in recent years. The Netherlands-based company Total Corbion has announced plans to start up a PLA plant with an annual capacity of 100,000 tons in Grandpuits, France, by 2024. It would be the largest plant of its kind in Europe, with Asia leading the way so far.

Source:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

Photo: pixabay
10.08.2021

Stand-up paddle board made from renewable lightweight mater

Stand-up paddling has become a popular sport. However, conventional surfboards are made of petroleum-based materials such as epoxy resin and polyurethane.

Researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI, want to replace plastic boards with sustainable sports equipment: They are developing a stand-up paddle board that is made from one hundred percent renewable raw materials. The ecological lightweight material can be used in many ways, such as in the construction of buildings, cars and ships.

Stand-up paddling has become a popular sport. However, conventional surfboards are made of petroleum-based materials such as epoxy resin and polyurethane.

Researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI, want to replace plastic boards with sustainable sports equipment: They are developing a stand-up paddle board that is made from one hundred percent renewable raw materials. The ecological lightweight material can be used in many ways, such as in the construction of buildings, cars and ships.

Stand-up paddling (SUP) is a sport that is close to nature, but the plastic boards are anything but environmentally friendly. As a rule, petroleum-based materials such as epoxy resin, polyester resin, polyurethane and expanded or extruded polystyrene are used in combination with fiberglass and carbon fiber fabrics to produce the sports equipment. In many parts of the world, these plastics are not recycled, let alone disposed of correctly. Large quantities of plastic end up in the sea and collect in huge ocean eddies. For Christoph Pöhler, a scientist at Fraunhofer WKI and an avid stand-up paddler, this prompted him to think about a sustainable alternative. In the ecoSUP project, he is driving the development of a stand-up paddle board that is made from 100 percent renewable raw materials and which is also particularly strong and durable. The project is funded by the German Federal Ministry of Education and Research (BMBF). The Fraunhofer Center for International Management and Knowledge Economy IMW is accompanying the research work, with TU Braunschweig acting as project partner.

Recovering balsa wood from rotor blades
“In standard boards, a polystyrene core, which we know as styrofoam, is reinforced with fiberglass and sealed with an epoxy resin. We, instead, use bio-based lightweight material,” says the civil engineer. Pöhler and his colleagues use recycled balsa wood for the core. This has a very low density, i.e. it is light yet mechanically stressable. Balsa wood grows mainly in Papua New Guinea and Ecuador, where it has been used in large quantities in wind turbines for many years – up to six cubic meters of the material can be found in a rotor blade. Many of the systems are currently being disconnected from the grid. In 2020 alone, 6000 were dismantled. A large proportion of this is burnt. It would make more sense to recover the material from the rotor blade and recycle it in accordance with the circular economy. “This was exactly our thinking. The valuable wood is too good to burn,” says Pöhler.

Since the entire sandwich material used in conventional boards is to be completely replaced, the shell of the ecological board is also made from one hundred percent bio-based polymer. It is reinforced with flax fibers grown in Europe, which are characterized by very good mechanical properties. To pull the shell over the balsa wood core, Pöhler and his team use the hand lay-up and vacuum infusion processes. Feasibility studies are still underway to determine the optimal method. The first demonstrator of the ecological board should be available by the end of 2022. “In the interests of environmental protection and resource conservation, we want to use natural fibers and bio-based polymers wherever it is technically possible. In many places, GFRP is used even though a bio-based counterpart could do the same,” Pöhler sums up.

Patented technology for the production of wood foam
But how is it possible to recover the balsa wood from the rotor blade — after all, it is firmly bonded to the glass-fiber reinforced plastic (GFRP) of the outer shell? First, the wood is separated from the composite material in an impact mill. The density differences can be used to split the mixed-material structures into their individual components using a wind sifter. The balsa wood fibers, which are available as chips and fragments, are then finely ground. “We need this very fine starting material to produce wood foam. Fraunhofer WKI has a patented technology for this,” explains the researcher. In this process, the wood particles are suspended to form a kind of cake batter and processed into a light yet firm wood foam that holds together thanks to the wood’s own binding forces. The addition of adhesive is not required. The density and strength of the foam can be adjusted. “This is important because the density should not be too high. Otherwise, the stand-up paddle board would be too heavy to transport.”

Initially, the researchers are focusing on stand-up paddle boards. However, the hybrid material is also suitable for all other boards, such as skateboards. The future range of applications is broad: For example, it could be used as a facade element in the thermal insulation of buildings. The technology can also be used in the construction of vehicles, ships and trains.

Photo: Pixabay
03.08.2021

Composites Germany presents results of the 17th Composites Market Survey

  • Highly positive rating of current business situation
  • Future expectations are optimistic
  • Varied expectations for application industries
  • Still the same growth drivers

This is the seventeenth time that Composites Germany has identified the latest KPIs for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK (Industrievereinigung Verstärkte Kunststoffe e.V.), Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.

As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future market developments.

  • Highly positive rating of current business situation
  • Future expectations are optimistic
  • Varied expectations for application industries
  • Still the same growth drivers

This is the seventeenth time that Composites Germany has identified the latest KPIs for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK (Industrievereinigung Verstärkte Kunststoffe e.V.), Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.

As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future market developments.

Highly positive rating of current business situation
After ratings of the current business situation had been steadily declining for nearly two years in succession, last year’s survey already displayed a trend reversal towards a more positive outlook. This positive trend has now continued in the latest survey, with entirely positive ratings for all three regions (Germany, Europe and worldwide). For ex-ample, 80% described the current general business situation as either positive or indeed very positive.

Moreover, unlike in the last survey, this more optimistic assessment applies not only to the general business situation, but also to the respondents’ own businesses, as they gave even more positive ratings than last year.     

There are currently quite a few challenges in the industrial environment. In many cases, the Covid-19 pandemic, for example, has merely receded, but has not disappeared.      
Business models have been and are still requiring adjustments. In some cases, supply chains have been severely disrupted and there are still some serious bottlenecks. The blockage of the Suez Canal by the Ever Given has once again highlighted the vulnerability of international commerce.

Shortages of raw materials, sharp increases in the prices of many raw materials and, most recently, a shortage of chips are having a major impact on various application industries. Nevertheless, the overall picture in the composites in-dustry is extremely optimistic. Similarly positive ratings were last achieved in the autumn 2018 and spring 2019 surveys.

Future expectations are optimistic
The positive prevailing mood is further reinforced by positive expectations for the future. A consistently optimistic picture emerged when respondents were asked about their ex-pectations for future business developments. For example, more than 80% of respond-ents are expecting the business situation in Europe to improve over the next six months. The pattern is similar for the other regions.

Varied expectations for application industries
Expectations on selected application industries vary substantially. As in the previous survey, significant declines are expected, above all, in automotive, aviation and wind energy. However, we can see that the proportion of respondents giving more pessimistic assessments has once again declined significantly.
Whereas, in the last sur-vey, 46% were expecting to see the situation get worse in aviation, this value has now dropped to a “mere” 17%. In the automotive sector, it has dropped from 17% (second half of 2020) to only 14%.

Two areas of application, in particular – infrastructure/construction and sports/leisure – have long been seen by many respondents as major growth stimulants for the composites industry. Even in times of a more difficult industrial environment, these two areas are currently proving to be especially robust.

GRP is still a growth driver
As before, the current market survey shows Germany, Europe and Asia as the global regions expected to deliver the most important growth stimuli for the composites segment. Expectations for Asia, on the other hand, have declined somewhat in favour of Europe. Where materials are concerned, we are seeing a continuation of the ongoing paradigm shift.      

Respondents are still convinced that CRP (carbon fibre reinforced plastic) is losing ground as a growth driver. However, GRP (glass fibre reinforced plastic) is now ranking as the most important material for the third time in succession. A large number of respondents have also mentioned the area entitled “Across All Segments” this time.

Composites are still relatively young materials with a great deal of potential. It remains exciting to see to what extent composites will continue to emerge as alternative materials and whether they can benefit from the major forthcoming developments (e.g. alternative drives, a growing demand for sustainability, alternative power sources, 5G, etc.).
The next Composites Market Survey will be published in January 2022. 

Photo: pixabay
20.07.2021

Closed-Loop Recycling Pilot Project for Single Use Face Masks

  • Circular economy for plastics: Fraunhofer, SABIC, and Procter & Gamble join forces

The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics. The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

The transformation from a linear to a circular plastics economy can only succeed with a multi-stakeholder approach. The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE combines the competencies of six institutes of the Fraunhofer-Gesellschaft and cooperates closely with partners from industry. Together, we work on systemic, technical and social innovations and keep an eye on the entire life cycle of plastic products.  

  • Circular economy for plastics: Fraunhofer, SABIC, and Procter & Gamble join forces

The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics. The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

The transformation from a linear to a circular plastics economy can only succeed with a multi-stakeholder approach. The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE combines the competencies of six institutes of the Fraunhofer-Gesellschaft and cooperates closely with partners from industry. Together, we work on systemic, technical and social innovations and keep an eye on the entire life cycle of plastic products.  

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT is a pioneer in sustainable energy and raw materials management by supplying and transferring scientific results into companies, society and politics. Together with partners, the dedicated UMSICHT team researches and develops sustainable products, processes and services which inspire.

Fraunhofer Institute UMSICHT, SABIC and Procter & Gamble (P&G) are collaborating in an innovative circular economy pilot project which aimed to demonstrate the feasibility of closed-loop recycling of single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

“Recognizing the challenge, we set out to explore how used facemasks could potentially be returned into the value chain of new facemask production,” says Dr. Peter Dziezok, Director R&D Open Innovation at P&G. “But creating a true circular solution from both a sustainable and an economically feasible perspective takes partners. Therefore, we teamed up with Fraunhofer CCPE and Fraunhofer UMSICHT’s expert scientists and SABIC’s T&I specialists to investigate potential solutions.”

As part of the pilot, P&G collected used facemasks worn by employees or given to visitors at its manufacturing and research sites in Germany. Although those masks are always disposed of responsibly, there was no ideal route in place to recycle them efficiently. To help demonstrate a potential step change in this scenario, special collection bins were set up, and the collected used masks were sent to Fraunhofer for further processing in a dedicated research pyrolysis plant.

“A single-use medical product such as a face mask has high hygiene requirements, both in terms of disposal and production. Mechanical recycling, would have not done the job” explains Dr. Alexander Hofmann, Head of Department Recycling Management at Fraunhofer UMSICHT. “In our solution, therefore, the masks were first automatically shredded and then thermochemically converted to pyrolysis oil.

Pyrolysis breaks the plastic down into molecular fragments under pressure and heat, which will also destroy any residual pollutants or pathogens, such as the Coronavirus. In this way it is possible to produce feedstock for new plastics in virgin quality that can also meet the requirements for medical products” adds Hofmann, who is also Head of Research Department “Advanced Recycling” at Fraunhofer CCPE.

The pyrolysis oil was then sent to SABIC to be used as feedstock for the production of new PP resin. The resins were produced using the widely recognized principle of mass balance to combine the alternative feedstock with fossil-based feedstock in the production process. Mass balance is considered a crucial bridge between today’s linear economy and the more sustainable circular economy of the future.

“The high-quality circular PP polymer obtained in this pilot clearly demonstrates that closed-loop recycling is achievable through active collaboration of players from across the value chain,” emphasizes Mark Vester, Global Circular Economy Leader at SABIC. “The circular material is part of our TRUCIRCLE™ portfolio, aimed at preventing valuable used plastic from becoming waste and at mitigating the depletion of fossil resources.”

Finally, to close the loop, the PP polymer was supplied to P&G, where it was processed into non-woven fibers material. “This pilot project has helped us to assess if the close loop approach could work for hygienic and medical grade plastics.” says Hansjörg Reick, P&G Senior Director Open Innovation. “Of course, further work is needed but the results so far have been very encouraging”.

The entire closed loop pilot project from facemask collection to production was developed and implemented within only seven months. The transferability of advanced recycling to other feedstocks and chemical products is being further researched at Fraunhofer CCPE.

Photo: pixabay
06.07.2021

»Waste4Future«: Today's Waste becomes Tomorrow's Resource

Fraunhofer Institutes pave new ways in plastics recycling

A sustainable society, the renunciation of fossil raw materials, climate-neutral processes - also the chemical industry has committed itself to these goals. For the industry, this means a huge challenge within the next years and decades. This structural change can succeed if all activities - from the raw material base to material flows and process technology to the end of a product's life cycle - are geared towards the goal of sustainable value creation. The key to this is innovation.

Fraunhofer Institutes pave new ways in plastics recycling

A sustainable society, the renunciation of fossil raw materials, climate-neutral processes - also the chemical industry has committed itself to these goals. For the industry, this means a huge challenge within the next years and decades. This structural change can succeed if all activities - from the raw material base to material flows and process technology to the end of a product's life cycle - are geared towards the goal of sustainable value creation. The key to this is innovation.

Plastics such as polyethylene (PE), polypropylene (PP) or polystyrene (PS), which are currently produced almost entirely from fossil raw materials, are fundamental to many everyday products and modern technologies. The carbon contained in plastics is an important resource for the chemical industry. If it is possible to better identify such carbon-containing components in waste, to recycle them more effectively, and to use them again to produce high-quality raw materials for industry, the carbon can be kept in the cycle. This not only reduces the need for fossil resources, but also pollution with CO2 emissions and plastic waste. At the same time, the security of supply for industry is improved because an additional source of carbon is tapped.

The "Waste4Future" lighthouse project therefore aims to create new opportunities for recycling plastics in order to make the carbon they contain available as a "green" resource for the chemical industry. "We are thus paving the way for a carbon circular economy in which valuable new base molecules are obtained from plastic waste and emissions are largely avoided: Today's waste becomes tomorrow's resource," says Dr.-Ing. Sylvia Schattauer, deputy director of the Fraunhofer Institute for Microstructure of Materials and Systems IMWS, which is heading the project. "With the know-how of the participating institutes, we want to show how the comprehensive recycling of waste containing plastics without loss of carbon is possible and ultimately economical through interlocking, networked processes." The outcome of the project, which will run until the end of 2023, is expected to be innovative recycling technologies for complex waste that can be used to obtain high-quality recyclates.

Specifically, the development of a holistic, entropy-based assessment model is planned (entropy = measure of the disorder of a system), which will reorganize the recycling chain from process-guided to material-guided. A new type of sorting identifies which materials and in particular which plastic fractions are contained in the waste. Based on this analysis, the total stream is separated and a targeted decision is then made for the resulting sub-streams as to which recycling route is the most technically, ecologically and economically sensible for this specific waste quantity. What cannot be further utilized by means of mechanical recycling is available for chemical recycling, always with the aim of preserving the maximum possible amount of carbon compounds. Burning waste containing plastics at the end of the chain is thus eliminated.

The challenges for research and development are considerable. These include the complex evaluation of both input materials and recyclates according to ecological, economic and technical criteria. Mechanical recycling must be optimized, and processes and technologies must be established for the key points in the material utilization of plastic fractions. In addition, suitable sensor technology must be developed that can reliably identify materials in the sorting system. Machine learning methods will also be used, and the aim is to link them to a digital twin that represents the properties of the processed materials.

Another goal of the project is the automated optimization of the formulation development of recyclates from different material streams. Last but not least, an economic evaluation of the new recycling process chain will be carried out, for example with regard to the effects of rising prices for CO2 certificates or new regulatory requirements. The project consortium will also conduct comprehensive life cycle analysis (LCA) studies for the individual recycling technologies to identify potential environmental risks and opportunities.

For the development of the corresponding solutions, the participating institutes are in close exchange with companies from the chemical industry and plastics processing, waste management, recycling plant construction and recycling plant operation, in order to consider the needs of industry in a targeted manner and thus increase the chances of rapid application of the results achieved.

The following Institutes are involved in the Fraunhofer lighthouse project "Waste4Future":

  • Fraunhofer Institute for Microstructure of Materials and Systems IMWS (lead)
  • Fraunhofer Institute for Non-Destructive Testing IZFP
  • Fraunhofer Institute for Materials Recycling and Resource Strategy IWKS
  • Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB
  • Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR
  • Fraunhofer Institute for Structural Durability and System Reliability LBF
  • Fraunhofer Institute for Process Engineering and Packaging IVV
(c) Fraunhofer IAP
08.06.2021

Fraunhofer IAP: Recyclable, Fiber-reinforced Material made from Bio-based Polylactic Acid

"Packaging made from bio-based plastics has long been established. We are now supporting the further development of these materials for new areas of application. If in the future the market also offers plant-based materials for technically demanding tasks such as vehicle construction, the bioeconomy will take a decisive step forward," explained Uwe Feiler, Parliamentary State Secretary at the Federal Ministry of Food and Agriculture, in Potsdam. The occasion was the handover of a grant to the Fraunhofer Institute for Applied Polymer Research IAP. The Fraunhofer IAP wants to develop a composite material that consists entirely of bio-based polylactic acid (PLA) and is significantly easier to recycle than conventional fiber composites.

"Packaging made from bio-based plastics has long been established. We are now supporting the further development of these materials for new areas of application. If in the future the market also offers plant-based materials for technically demanding tasks such as vehicle construction, the bioeconomy will take a decisive step forward," explained Uwe Feiler, Parliamentary State Secretary at the Federal Ministry of Food and Agriculture, in Potsdam. The occasion was the handover of a grant to the Fraunhofer Institute for Applied Polymer Research IAP. The Fraunhofer IAP wants to develop a composite material that consists entirely of bio-based polylactic acid (PLA) and is significantly easier to recycle than conventional fiber composites.

The German Federal Ministry of Food and Agriculture (BMEL) is intensively promoting the development of biomaterials as part of its Renewable Resources funding program. More than 100 projects are currently underway, covering a wide range of topics: from plastics that are degradable in the sea to natural fiber-reinforced lightweight components for the automotive sector. The projects are supported by the Agency for Renewable Resources, the BMEL project management agency responsible for the Renewable Resources funding program.

Easier recycling of fiber-reinforced plastics
PLA is one of the particularly promising bio-based materials. The global market for this polymer is growing by around 10 percent a year. PLA is also used, among other things, as a matrix in fiber-reinforced plastics. In these mechanically resilient plastics, reinforcing fibers are embedded in a plastic matrix.

The Fraunhofer IAP project is now focusing on these reinforcing fibers: "We are further developing our PLA fibers in order to transfer them to industrial scale together with partners from industry. These fibers are ideally suited for reinforcing PLA plastics. The resulting self-reinforcing single-component composite promises great recycling benefits. Since the fiber and the matrix of PLA are chemically identical, complex separation steps are not necessary," explains Dr. André Lehmann, expert for fiber technology at Fraunhofer IAP.

Novel PLA fibers and films are more thermally stable
The challenge with this approach is that conventional PLA has a relatively low temperature resistance. Technical fibers can be produced most economically using the melt spinning process. The Fraunhofer IAP team is now using more thermally stable stereocomplex PLA (sc-PLA) for the fibers. The term stereocomplex refers to a special crystal structure that the PLA molecules can form. Sc-PLA fibers have a melting point that is 40 - 50 °C higher and can therefore withstand the incorporation process in a matrix made of conventional PLA. In the project, the researchers are developing and optimizing a melt spinning process for sc-PLA filament yarns. The partner in this work package is Trevira GmbH, a manufacturer of technical and textile fiber and filament yarn specialties that are in demand from automotive suppliers and contract furnishers, among others. Furthermore, the development of a manufacturing process for sc-PLA reinforced flat films is planned. The international adhesive tape manufacturer tesa SE is participating in this task, and will test the suitability of sc-PLA films as adhesive foils. In a third work package, the Fraunhofer IAP will finally process the filaments in a double pultrusion process to produce granules suitable for injection molding.

Bio-based solutions for the automotive and textile industries
The scientists led by Dr. André Lehmann are certain that the self-reinforced PLA material can conquer many new areas of application. The automotive and textile industries are already showing interest in bio-based materials that are also easier to recycle. In terms of price, PLA would already be competitive here, and now the material is also to be made technically fit for the new tasks.

Professor Alexander Böker, head of Fraunhofer IAP, says: "The steadily growing demand from industry for sustainable solutions underlines how important it is to develop biobased and at the same time high-performance materials. With our research, we are also actively driving the development of a sustainable and functioning circular economy and therefore very much welcome the support from the federal government."

Information on the project is available at fnr.de under the funding code 2220NR297X.

Photo: pixabay
18.05.2021

ECO PERFORMANCE AWARD and PERFORMANCE AWARD for innovative Summer Fabrics 2023

The digital Performance Days will kick off on May 17 through to May 21, providing online access to even more information, current trends, all the latest material innovations and enhanced tools while providing all within the industry the opportunity to interact with one another and with exhibitors.

The focus of the trend-setting PERFORMANCE FORUM in summer will highlight the winners of the two awards. This year, the jury will present a PERFORMANCE AWARD as well as an ECO PERFORMANCE AWARD.

The digital Performance Days will kick off on May 17 through to May 21, providing online access to even more information, current trends, all the latest material innovations and enhanced tools while providing all within the industry the opportunity to interact with one another and with exhibitors.

The focus of the trend-setting PERFORMANCE FORUM in summer will highlight the winners of the two awards. This year, the jury will present a PERFORMANCE AWARD as well as an ECO PERFORMANCE AWARD.

Function revisited: Outstanding fabric innovations for the Summer 2023 season
Plant-based fibers such as hemp, organic cotton, bamboo, wool, kapok or coconut shell remain in demand, with manufacturers increasingly refraining from the use of environmentally harmful chemicals, avoiding micro plastics, advocating natural dyeing processes and striving to either return fabrics back into the cycle, to recycle plastic and other waste or to produce fibers in such a way that they are biodegradable.

In the Marketplace, visitors have the opportunity to view more than 9.000 exhibitors’ products, including the fabric highlights of the individual PERFORMANCE FORUM categories. In order to present the fabrics to visitors in digital form as realistically as possible in terms of feel, design and structure, the PERFORMANCE FORUM has been equipped with state-of-the-art 3D technology, including innovative tools such as 3D images, video animations and U3M files for download.

Exceptional: PERFORMANCE AWARD & ECO PERFORMANCE AWARD Winners
For the Spring/Summer 2023 season, the jury also presented two awards for outstanding new developments – so in addition to the PERFORMANCE AWARD, presented to the winner Trenchant Textiles, there is also an ECO PERFORMANCE AWARD winner, in this year’s case, Utenos Trikotazas.

Sustainability at the highest level, wellbeing for body & soul:
With its fully biodegradable, brushed fleece material made of 11% hemp, 63% organic cotton and 26 % Tencel, Utenos Trikotazas fully convinced the jury and picked up the ECO PERFORMANCE AWARD for its sustainable comfort. The extremely comfy material is pleasant on the skin and impresses with an incredibly soft feel. Hemp is known for its natural anti-bacterial properties and natural UV protection. In combination with organic cotton and Tencel, this fabric guarantees ideal warmth and odour regulation.

Function redesigned, breaking down borders and creating space for the new: In keeping with the Focus Topic of the digital fair week “Still Physical – Your Success Story of 2020”, Trenchant Textiles combined functional features with fashionable design in its new fabric construction, fully deserving of the PERFORMANCE AWARD. The membrane on the outer side, SlickrB, is made of non-toxic, sustainable polypropylene membrane. By printing dot patterns on the surface of the membrane, the fabric provides greater abrasion resistance while maintaining its breathability properties. Absolutely revolutionary: patterns and colors can be altered individually according to preference. The inner liner made of N15DW (15D woven polyamide) also provides tear resistance as well as sufficient, adequate stretch.

(c) Porsche AG
04.05.2021

Fraunhofer: Lightweight and Ecology in Automotive Construction

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

Carbon fibers reinforce plastics and therefore provide lightweight components with the necessary stability. Mass-produced natural fibers are not only more cost-effective but can also be produced in a considerably more sustainable manner. For the “Bioconcept-Car” pilot vehicle, researchers at the Fraunhofer WKI have developed body parts with 100 percent natural fibers as reinforcing components.

“We utilize natural fibers, such as those made from hemp, flax or jute. Whilst natural fibers exhibit lower stiffnesses and strengths compared to carbon fibers, the values achieved are nonetheless sufficient for many applications,” explained Ole Hansen, Project Manager at the Fraunhofer WKI. Due to their naturally grown structure, natural fibers dampen sound and vibrations more effectively. Their lesser tendency to splinter can help to reduce the risk of injury in the event of an accident. Furthermore, they do not cause skin irritation during processing.

The bio-based composites were successfully tested by the Four Motors racing team in the “Bioconcept-Car” on the racetrack under extreme conditions. Porsche has actually been using natural fiber-reinforced plastics in a small series of the Cayman GT4 Clubsport since 2019. During production, the researchers at the Fraunhofer WKI also conducted an initial ecological assessment based on material and energy data. “We were able to determine that the utilized natural-fiber fabric has a better environmental profile in its production, including the upstream chains, than the fabric made from carbon. Thermal recycling after the end of its service life should also be possible without any problems,” confirmed Ole Hansen.

In the next project phase of the "Bioconcept-Car", the researchers at the Fraunhofer WKI, in collaboration with the cooperation partners HOBUM Oleochemicals GmbH, Porsche Motorsport and Four Motors, will develop a vehicle door with a biogenic content of 85 percent in the overall composite consisting of fibers and resin. They intend to achieve this by, amongst other things, utilizing bio-based resin-hardener blends as well as bio-based paint systems. The practicality of the door - and possibly additional components - will again be tested by Four Motors on the racetrack. If the researchers are successful, it may be possible to transfer the acquired knowledge into series production at Porsche.

The German Federal Ministry of Food and Agriculture (BMEL) is funding the “Bioconcept-Car” project via the project-management agency Fachagentur Nachwachsende Rohstoffe e. V. (FNR).

Background
Sustainability through the utilization of renewable raw materials has formed the focus at the Fraunhofer WKI for more than 70 years. The institute, with locations in Braunschweig, Hanover and Wolfsburg, specializes in process engineering, natural-fiber composites, surface technology, wood and emission protection, quality assurance of wood products, material and product testing, recycling procedures and the utilization of organic building materials and wood in construction. Virtually all the procedures and materials resulting from the research activities are applied industrially.

 

  • EU Project ALMA: Thinking Ahead to Electromobility

E-mobility and lightweight construction are two crucial building blocks of modern vehicle development to drive the energy transition. They are the focus of the ALMA project (Advanced Light Materials and Processes for the Eco-Design of Electric Vehicles). Nine European organizations are now working in the EU project to develop more energy-efficient and sustainable vehicles. Companies from research and industry are optimizing the efficiency and range of electric vehicles, among other things by reducing the weight of the overall vehicle. The Fraunhofer Institute for Industrial Mathematics ITWM is providing support with mathematical simulation expertise.

According to the low emissions mobility strategy, the European Union aims to have at least 30 million zero-emission vehicles on its roads by 2030. Measures to support jobs, growth, investment, and innovation are taken to tackle emissions from the transport sector. To make transport more climate-friendly, EU measures are being taken to promote jobs, investment and innovation. The European Commission's Horizon 2020 project ALMA represents one of these measures.

Photo: Pixabay
16.02.2021

Carbon with Multiple Lives: Bringing Innovations in Carbon Fiber Recycling to Market

When it comes to the future of motorized mobility, everyone talks about the power drive: How much e-car, how much combustion engine can the environment tolerate and how much do people need? At the same time, new powertrains place ineased demands not only on the engine, but also on its housing and the car body: Carbon fibers are often used for such demanding applications. Like the powertrain of the future, the materials on the vehicle should also be environmentally friendly. That is why recycling of carbon fibers is required. Institutes of the Zuse Community have developed solutions for this.

Carbon fibers consist almost completely of pure carbon. It is extracted from the plastic polyacrylonitrile at 1,300 degrees Celsius, using a lot of energy. The advantages of carbon fibers: They have almost no dead weight, are enormously break-resistant and sturdy. These properties are needed, for example, in the battery box of electric vehicles in structural components of a car body.

When it comes to the future of motorized mobility, everyone talks about the power drive: How much e-car, how much combustion engine can the environment tolerate and how much do people need? At the same time, new powertrains place ineased demands not only on the engine, but also on its housing and the car body: Carbon fibers are often used for such demanding applications. Like the powertrain of the future, the materials on the vehicle should also be environmentally friendly. That is why recycling of carbon fibers is required. Institutes of the Zuse Community have developed solutions for this.

Carbon fibers consist almost completely of pure carbon. It is extracted from the plastic polyacrylonitrile at 1,300 degrees Celsius, using a lot of energy. The advantages of carbon fibers: They have almost no dead weight, are enormously break-resistant and sturdy. These properties are needed, for example, in the battery box of electric vehicles in structural components of a car body.

The Saxon Textile Research Institute (STFI), for instance, is currently working with industrial partners on combining the static-mechanical strengths of carbon fibers with vibration damping properties to improve the housings of electric motors in cars. The project, which is funded by the German Federal Ministry for Economic Affairs and Energy, is aimed at developing hybrid nonwovens that contain other fibers, in addition to carbon fiber, as a reinforcement. "We want to combine the advantages of different fiber materials and thereby develop a product that is optimally tailored to the requirements", explains Marcel Hofmann, head of department of Textile Lightweight Construction at STFI.

The Chemnitz researchers would therefore complement previous nonwoven solutions. They look back on 15 years of working with recycled carbon fibers. The global annual demand for the high-value fibers has almost quadrupled in the past decade, according to the AVK Industry Association to around 142,000 t most recently. "Increasing demand has brought recycling more and more into focus", says Hofmann. According to him, carbon fiber waste is available for about one-tenth to one-fifth of the price of primary fibers, but they still need to be processed. The key issue for the research success of recycled fibers is competitive applications. STFI has found these not only in cars, but also in the sports and leisure sector as well as in medical technology, for example in components for computer tomography. "While metals or glass fibers cast shadows as potential competing products, carbon does not interfere with the image display and can fully exploit its advantages", explains Hofmann.
 
Using Paper Know-How
If recycled carbon fibers can pass through the product cycle again, this significantly improves their carbon footprint. At the same time it applies: The shorter the carbon fibers, the less attractive they are for further recycling. With this in mind, the Cetex Research Institute and the Papiertechnische Stiftung (PTS), both members of the Zuse Community, developed a new process as part of a research project that gives recycled carbon fibers, which previously seemed unsuitable, a second product life. "While classic textile processes use dry processing for the already very brittle recycled carbon fibers in fiber lengths of at least 80 mm, we dealt with a process from the paper industry that processes the materials wet. At the end of the process, in very simplified terms, we obtained a laminar mat made of recycled carbon fibers and chemical fibers", says Cetex project engineer Johannes Tietze, explaining the process by which even 40 mm short carbon fibers can be recycled into appealing intermediates.

The resulting product created in a hot pressing process serves as the base material for heavy-duty structural components. In addition, the mechanical properties of the semi-finished products were improved by combining them with continuous fiber-reinforced tapes. The researchers expect the recycled product to compete with glass-fiber-reinforced plastics, for example in applications in rail and vehicle construction. The results are now being incorporated into further research and development in
the cooperation network of Ressourcetex, a funded association with 18 partners from industry and science.

Successful Implementation in the Automotive Industry
Industrial solutions for the recycling of carbon fiber production waste are being developed at the Thuringian Institute of Textile and Plastics Research (TITK). Several of these developments were industrially implemented with partners at the company SGL Composites in Wackersdorf, Germany. The processing of the so-called dry waste, mainly from production, is carried out in a separate procedure. "Here, we add the opened fibers to various processes for nonwoven production", says the responsible head of the department at TITK, Dr. Renate Lützkendorf . In addition to developments for applications e.g. in the BMW i3 in the roof or rear seat shell, special nonwovens and processes for the production of Sheet Molding Compounds (SMC) were established at TITK. These are thermoset materials consisting of reaction resins and reinforcing fibers, which are used to press fiber-plastic composites. This was used, for example, in a component for the C-pillar of the BMW 7 Series. "In its projects, TITK is primarily focusing on the development of more efficient processes and combined procedures to give carbon fiber recycling materials better opportunities in lightweight construction applications, also in terms of costs", says Lützkendorf. The focus is currently on the use of CF recycled fibers in thermoplastic processes for sheet and profile extrusion. "The goal is to combine short- and continuous-fiber reinforcement in a single, high-performance process step."

1) Since February 1st, 2021, Dr.-Ing. Thomas Reussmann succeeds Dr.-Ing. Renate Lützkendorf, who retired 31 January.

Source:

Zuse Community

(c) PERFORMANCE DAYS functional fabric fair
29.12.2020

PERFORMANCE DAYS: Positive Feedback for Online Fair and sustain & innovate Conference

As a result of the Corona pandemic, the PERFORMANCE DAYS fair on December 9th - 10th and the accompanying sustain&innovate conference for sustainability on December 10 could only take place in digital form. Nevertheless: exhibitors, visitors and partners can look back on a successful event. The focus topic “Nothing to Waste – Closing the Loop“ relating to the issue of the textile circular economy in the course of the sustain&innovate conference also provided great discussion material while generating a positive response.

As a result of the Corona pandemic, the PERFORMANCE DAYS fair on December 9th - 10th and the accompanying sustain&innovate conference for sustainability on December 10 could only take place in digital form. Nevertheless: exhibitors, visitors and partners can look back on a successful event. The focus topic “Nothing to Waste – Closing the Loop“ relating to the issue of the textile circular economy in the course of the sustain&innovate conference also provided great discussion material while generating a positive response.

The PERFORMANCE DAYS team also expresses its satisfaction. Because despite the event being solely a digital event on the 9th and 10th of December 2020, an estimated 15,000 participants made extensive use of the comprehensive online offerings of the 191 digital exhibitors, among them drirelease/OPTIMER, Merryson, Stotz, HeiQ, Schoeller Textil, Long Advance, Dry-Tex, Utenos, Fidlock, Cifra, dekoGraphics and Jia Meir, during the week of the fair. The popular “Contact Supplier” function was supplemented with a new online tool that allows exhibitors to be contacted directly via chat, call or per video. A total of 3,250 fabric sample orders were placed with exhibitors. The variety on offer included fabric innovations for Autumn/Winter 2022/2023 within the top class PERFORMANCE FORUM and an extensive digital supporting program via live-stream with informative webinars, talks and rounds of discussions. Best of all: the resulting videos will be available on demand on the PERFORMANCE DAYS website free of charge.  
 
Finally standard: PERFORMANCE FORUM with sustainable materials
Innovative, sustainable and cutting-edge: the 240 fabrics plus accessory trends at this year’s PERFORMANCE FORUM impressed throughout with exciting environmentally conscious solutions. Natural fibers such as hemp, organic cotton, bamboo, wool or coconut shell remain in demand, while manufacturers are also increasingly refraining from the use of environmentally harmful chemicals, avoiding microplastics, advocating natural dyeing processes and either trying to return fabrics to the cycle, recycle plastic and other waste in order to produce fibres in such a way that they are biodegradable. This environmental awareness is also reflected in this year’s FOCUS TOPIC – so here the 24 best fabrics not only score in terms of sustainability, but also demonstrate that they are both functional and can be returned to the textile cycle, true to the motto “Nothing to Waste – Closing the Loop.   

In the Marketplace section, visitors have the opportunity to view more than 9,500 exhibitor products, including the fabric highlights of the individual categories of the PERFORMANCE FORUMS. In order to be able to digitally present the fabrics to visitors as realistically as possible in terms of feel, design and structure, the Forum has been equipped with innovative 3D technology, including innovative tools such as 3D images, video animations and U3M files for download.  

From fiber to fiber: successful sustain&innovate conference generates discussion  
Textile circular economy is considered part of the solution to the global waste problem, curbing the consumption of resources and reducing climate damaging greenhouse gases. But what exactly is the circular economy and how can it succeed? Most importantly, how far are fiber manufacturers in developing mono-component fabrics that can eventually be returned back into the textile cycle?    
The Focus Topic of this year’s sustainability conference, launched in cooperation with SPORTSFASHION by SAZ, offered a platform for discussion and strove to enlighten with evocative talks, discussion rounds and webinars. Christiane Dolva, Head of Sustainability at Fjällräven, got to the heart of the matter at the start of the expert talks on the second day of the fair, outlining how important emotional consistency is for the brand itself and ultimately also for the consumer – especially when it comes to textile recycling. Durability, good quality, in combination with timeless design are more important than ever today and in the future in terms of sustainable action. Added to this is the possibility of reviving products by means of a repair service. Equally exciting: the development of new technologies in terms of recycling. Erik Bang from the H&M Foundation provided a first glimpse of the new Greenmachine, which should make it possible to separate mixed fabrics such as cotton and polyester as early as 2021. Alternatively, old clothing is converted into new fibres thanks to companies such as WornAgain, Re:newcell, Spinnova or Infinited Fiber, which soon promises to be more than just a mere vision. For those who wish to gain insight into the supply chain of their purchased garment, the start-up know your stuff lets customers track the journey of the respective garment by simply scanning a QR code on the garment in a store or online.    
 
Free extensive retrospective
The next edition of PERFORMANCE DAYS is planned as a hybrid fair and will take place on May 19th and May 20th, 2021 in Munich as well as online. Until then, the PERFORMANCE DAYS platform will remain accessible, for instance with the Marketplace and further inspiring topics of (video) material stories to make online sourcing even easier. The talks from the first day of the fair and the conference will be accessible free of charge on the fair website.

The most importantt links:
Highlights of Expert Talks & Webinars
https://www.performancedays.com/digital-fair/expert-talk-webinar.html

Marketplace:
https://www.performancedays.com/marketplace.html

3D-Forum:
https://www.performancedays.com/digital-fair/forum-highlights/3d-forum.html

PERFORMANCE COLORS by Nora Kühner
https://www.performancedays.com/digital-fair/color-trends.html

More information:
Performance Days
Source:

PERFORMANCE DAYS functional fabric fair

(c) Pixabay
15.12.2020

Protection against Corona: Materials research provides findings at institutes of the Zuse Community

As the year draws to a close, expectations are growing that protection against COVID-19 will soon be available. Until this is the case for large sections of the population, the successes achieved in research and industry to protect against the virus in 2020 offer a good starting point in the fight against corona and beyond. At institutes in the Zuse community, progress have been made not only in medical but also in materials research.

As the year draws to a close, expectations are growing that protection against COVID-19 will soon be available. Until this is the case for large sections of the population, the successes achieved in research and industry to protect against the virus in 2020 offer a good starting point in the fight against corona and beyond. At institutes in the Zuse community, progress have been made not only in medical but also in materials research.

These successes in materials research include innovations in the coating of surfaces. "In the wake of the pandemic, the demand for antiviral and antimicrobial surfaces has risen sharply, and we have successfully intensified our research in this area," explains Dr. Sebastian Spange, Head of Surface Technology at the Jena research institute INNOVENT. He expects to see an increasing number of products with antiviral surfaces in the future. "Our tests with model organisms show that an appropriate coating of surfaces works", emphasizes Spange. The spectrum of techniques used by INNOVENT includes flame treatment, plasma coating and the so-called Sol-Gel process, in which organic and inorganic substances can be combined in one layer at relatively low temperatures. According to Spange, materials for the coatings can be antibacterial metal compounds as well as natural substances with antiviral potential.

Nonwovens produced for mask manufacturers
In 2020, the textile expertise of numerous institutes in the Zuse community ensured that application-oriented research could prove its worth in the practical fight against pandemics. After the shortage of mask supplies in Germany at the beginning of the pandemic, textile research institutes reacted to the shortage by jumping into the breach. The Saxon Textile Research Institute (STFI), for example, converted its research facilities to the production of nonwovens to supply German and European manufacturers of particle filtering protective masks. "From March to November 2020, we supplied nonwovens to various manufacturers in order to provide the best possible support for mask production and thus help contain the pandemic. At a critical time for industry and the population, we were able to help relieve critical production capacity - an unaccustomed role for a research institute, but one we would assume again in similar situations," explains Andreas Berthel, Managing Commercial Director of STFI.

Development of reusable medical face masks
For the improvement of everyday as well as medical face masks the German Institutes for Textile and Fiber Research (DITF) are working on this project. In cooperation with an industrial partner, they are currently developing in Denkendorf, among other things, reusable medical face masks made of high-performance precision fabric using Jacquard weaving technology. The multiple use avoids waste and possible supply bottlenecks.

There are regulations for all types of masks, now also for everyday masks. At Hohenstein, compliance with standards for masks is checked. A new European guideline defines minimum requirements for the design, performance evaluation, labelling and packaging of everyday masks. "As a testing laboratory for medical products, we test the functionality of medical masks from microbiological-hygienic and physical aspects", explains Hohenstein's Managing Director Prof. Dr. Stefan Mecheels. In this way, Hohenstein supports manufacturers, among other things, with technical documentation to prove the effectiveness and safety. Respiratory protection masks (FFP 1, FFP 2 and FFP 3) have been tested at the Plastics Centre (SKZ) in Würzburg since the middle of this year. Among other things, inhalation and exhalation resistance and the passage of particles are tested. In addition, SKZ itself has entered into mask research. In cooperation with a medical technology specialist, SKZ is developing an innovative mask consisting of a cleanable and sterilizable mask carrier and replaceable filter elements.

ILK tests for mouth-nose protection
The fight against Corona is won by the contributions of humans: Of researchers in laboratories, of developers and manufacturers in the Industry as well as from the citizens on the street.
Against this background, the Institute for Air and Refrigeration Technology (ILK) in Dresden has carried out investigations into the permeability of the mouth and nose protection (MNS), namely on possible impairments when breathing through the mask as well as the protective function of everyday masks. Result: Although the materials used for the mouth-nose protection are able to retain about 95 percent of the exhaled droplets, "under practical aspects and consideration of leakages" it can be assumed that about 50 percent to 70 percent of the droplets enter the room, according to the ILK. If the mask is worn below the nose only, it can even be assumed that about 90 percent of the exhaled particles will enter the room due to the large proportion of nasal breathing. This illustrates the importance of tight-fitting and correctly worn mouth and nose protection. "On the other hand, from a physical point of view there are no reasons against wearing a mask", ILK managing director Prof. Dr. Uwe Franzke emphasizes. The researchers examined the CO2 content in the air we breathe as well as the higher effort required for breathing and based this on the criterion of overcoming the pressure loss. "The investigations on pressure loss showed a small, but practically irrelevant increase," explains Franzke.

The complete ILK report "Investigations on the effect of mouth and nose protection (MNS)" is available here.

PERFORMANCE DAYS Nothing to Waste - Closing the Loop (c) PERFORMANCE DAYS
20.10.2020

PERFORMANCE DAYS Nothing to Waste - Closing the Loop

  • Finite resources and endless mountains of rubbish set the tone of the upcoming 25th edition of PERFORMANCE DAYS. Closing the loop means nothing is wasted, not even time, as recycled clothing gets recycled again and again.

In keeping with this topic, the trade fair organizers are planning expert discussion panels to help present the facts as well as visions of the future. Expect the corresponding displays of sustainable materials, chosen by the PERFORMANCE FORUM Jury. Look for materials such as fibers from recycled PET bottles, recyclable mono-component materials or blends, and shirts that decompose to biomass in a "Cradle-to-Cradle" approach. "Nothing to Waste - Closing the Loop" is open to the public at the Messe München fairgrounds and as a Digital Fair online starting on December 9-10, 2020.

  • Finite resources and endless mountains of rubbish set the tone of the upcoming 25th edition of PERFORMANCE DAYS. Closing the loop means nothing is wasted, not even time, as recycled clothing gets recycled again and again.

In keeping with this topic, the trade fair organizers are planning expert discussion panels to help present the facts as well as visions of the future. Expect the corresponding displays of sustainable materials, chosen by the PERFORMANCE FORUM Jury. Look for materials such as fibers from recycled PET bottles, recyclable mono-component materials or blends, and shirts that decompose to biomass in a "Cradle-to-Cradle" approach. "Nothing to Waste - Closing the Loop" is open to the public at the Messe München fairgrounds and as a Digital Fair online starting on December 9-10, 2020.

The PERFORMANCE DAYS trade fair has chosen a new Focus Topic that concerns not only our own industry. The textile industry has long been achieving more efficient production by recycling its own waste products and using recycled materials from outside the industry, for example, PET-bottles. Nevertheless, textiles exist alongside glass, paper, metal, and plastics as a separate branch of waste management. Despite ambitious efforts at recycling by the waste and textile industries, the efficient use of textile waste as a resource remains a challenge. Compounding this challenge are the difficulties caused by a global world: production, consumers, and disposal sites are miles apart, shared expert knowledge about the other industries is lacking, and international standards and political support are nearly non-existent.

Final destination: the waste bin
Information from the Federal Office for the Environment shows that 0.8% of the oil produced is used in the textile industry for the production of new textiles. But the costly processing chain of this finite resource ends all too quickly in waste. A Greenpeace survey reveals outdated fashions or clothing of worn quality is thrown away within three years, only to land in the trash dumpsters. The European Environmental Agency estimates that 5.8 million tons of used textiles are discarded every year and either incinerated, used for landfill, or taken to mechanical-biological sewage treatment plants. Even if used clothing is collected by state or private companies, in many cases it cannot be sold (as second hand), donated, or recycled (into rags or insulating material). In the best case scenario, it is incinerated and converted to thermal energy.

Recycling and circular design
From an economic and environmental perspective, the term recycling refers to waste-free products, waste avoidance, and waste recovery and disposal. In our industry as it stands, recycling at the end of the product life cycle usually means converting the product into some other product, i.e., not clothing. This is the "Open-Loop" process. Accordingly, textiles are eventually incinerated, but the amount of energy recovered can vary greatly depending on how efficiently the waste incineration plant works. Such devaluing of the product to a product with less value than the original product is known as Downcycling. However, Downcycling is not the only solution: the "Closed-Loop" approach has the goal of making new clothes out of old ones through recycling. The closed loop for renewable natural resources, for example, can mean that natural fibers used in textiles will end up becoming soil, which is the nutrient for new natural fibers, i.e., a cradle-to-cradle approach. Synthetic garments similarly require extracting the man-made fibers and reprocessing them to produce another garment.

Planning for the end in advance
Rather than thinking about recycling opportunities at the end of the product life cycle, brands can already begin developing closed loop options while in the design phase. Among other things, designing out the waste can reduce the environmental impact of the products. To extend the useful life, consider leasing the materials and/or adding labels with instructions for disposal, repair, or repurposing. And, what about the idea of preparing 100% used textiles that can be reintroduced into the supply chain as 100% new textiles? Separating the different types of fiber used in blends is complex, cost-intensive, and further complicated when labels are non-existent (or no longer existing) or it is simply not (yet) technically possible. More and more clothing makers and suppliers are trying to avoid mixing fibers and are switching to "mono-materials" or "mono-components." Shirts are easy to make in this way, but if you add buttons, zippers, etc., the issue becomes more complex.

Nothing to waste - not even time
If you are like many end consumers, brand managers, and producers and want to make use of valuable resources in a more sustainable manner, register now on the trade fair website under "Visitor Login." There you can access a free trade fair ticket for December 9-10, 2020. You can also learn about the complimentary and soon to be expanded offers at the Digital Fair. Don’t forget to sign-up for the free Newsletter mailings. 

•     09.-10. December 2020      DIGITAL FAIR  Trends Winter 2022/23 

 

UPDATE
CoVid-19 continues to keep the world on edge. Many PERFORMANCE DAYS visitors, as well as exhibitors, have already announced that travelling to Munich in December would be simply impossible for them. Due to the increasing number of infections, further international travel bans and company-internal travel restrictions are now threatening. As a result, the December 2020 edition of PERFORMANCE DAYS will unfortunately not take place at the Messe München, but as Digital Fair! On the planned dates of December 09-10, both approved and advanced new tools will go online and provide further proof of PERFORMANCE DAYS’ expansion of its pioneering role in creating a digital textile trade fair experience.

 

Carl Meiser GmbH & Co. KG (c) Carl Meiser GmbH & Co. KG
06.10.2020

Nopma - Experts for antimicrobial finishing: Technical textile coatings from the Swabian Alb

The Carl Meiser GmbH & Co. KG - started in the early 1950s as a day- and nightwear manufacturer. Over the last 20 years the company has become a specialist in the field of technical textiles. With its brand nopma Technical Textiles the company is present as developer and producer of textile solutions via coatings. The main products are nopma anti-slip - textiles with anti-slip effect, nopma adhesion - adhesive pre-coated films, spacer fabrics and substrates for lamination in automotive interiors, nopma ceramics - abrasive more resistant textile surfaces and nopma silicones - silicone coatings on textile surfaces.

Textination talked to the managing director, Jens Meiser, who joined the company in 2005, realigned the division and developed it into a service provider, about his plans and objectives.

The Carl Meiser GmbH & Co. KG - started in the early 1950s as a day- and nightwear manufacturer. Over the last 20 years the company has become a specialist in the field of technical textiles. With its brand nopma Technical Textiles the company is present as developer and producer of textile solutions via coatings. The main products are nopma anti-slip - textiles with anti-slip effect, nopma adhesion - adhesive pre-coated films, spacer fabrics and substrates for lamination in automotive interiors, nopma ceramics - abrasive more resistant textile surfaces and nopma silicones - silicone coatings on textile surfaces.

Textination talked to the managing director, Jens Meiser, who joined the company in 2005, realigned the division and developed it into a service provider, about his plans and objectives.

Founded in 1952, Carl Meiser GmbH & Co.KG has changed from a day- and nightwear manufacturer to an innovator in the field of technical textiles, presenting themselves as a specialist for plastic-based coating processes. If you had to introduce yourself in 100 words to someone who does not know the company: What has influenced you most in this development process and what makes you unique?
Innovation is the new normal - This has been true for the textile industry not just since Sars CoV-2. Our industry was one of the first to be disrupted in the early 1990s and has always been subject to constant change. This urge for further development, which is essential for survival, has left its mark on us intensively and has enabled us to manage huge leaps in innovation in recent years

Today we regard ourselves as an innovative development and production service provider with a focus on textile coating. We develop and produce almost exclusively customized special solutions.

Through the combination of coatings on textiles these hybrid materials receive completely new properties.

You manufacture exclusively at your location in Germany. Why? Have you never been tempted to set up subsidiaries in other countries, for example to benefit from lower wage levels?
Today we supply global supply chains from our headquarter in southern Germany. Although we produce in a high-wage country, much more important for us are know-how and the drive of our team to create something new. Globalization will continue to be the key to success in the future. Therefore, subsidiaries in North America and Asia could be very interesting for us in the medium- and long-term perspective. However, this is still too early for us.

You use CIP and Kaizen techniques intensively in your company. How did a Japanese concept come about in the Swabian Alb?
KAIZEN, the change for the better, are actually German virtues. The urge to improve and optimize things is in all of us. Due to the continuous improvement process we do not stand still but evolve constantly. Besides, there is the personal affinity to Japan. A look at another culture simply opens the horizon. And if you additionally recognize parallels in the working methods, it’s even better. 

10 years ago, you turned your attention to new markets: aviation, automotive, protection, caravan and furniture manufacturing, to name just a few. Some of these segments have collapsed significantly during the Covid 19 pandemic. What market development do you expect in the medium term and what consequences will this have for your company?
Of course, the aviation or automotive industry, for example, have substantial problems during or due to the Covid-19 pandemic. Quite honestly, many of these problems existed before. They were further tightened, as if a fire accelerator has been used. Of course, these cut-backs are also hitting us hard economically. But we are pursuing long-term goals. As a medium-sized company, you have to have the resilience to continue on your path. Thanks to our specialisation and the split of our industrial sectors, which we drive forward every day, we manage to decouple ourselves more and more from economic developments in individual industries. For our customers this is a great advantage of relying on a very stable partner with long-term orientation.

We are positive about the future. Megatrends like sustainability, digitization and ongoing globalization will lead to new business models in the above-mentioned sectors, as in many others, and to renewed growth. Our coatings on textiles and flexible woven materials can contribute a wide range of solutions to this. If, for example, materials become lighter with identical usage properties or suddenly become biodegradable, because of biodegradable plastics, many new opportunities will arise.

Tailor-made instead of solutions for major customers: The topic of individualization down to batch size 1 is making up a large part of the discussion today. In 2015, you opened a large development laboratory where you have a wide range of testing technologies for textiles and plastics available. What do you think about individual product solutions, and in which application areas have you successfully implemented them?
In principle, we do not use any standards. We live individualization with the smallest possible batch sizes. In our field, we do not manage batch size 1, but we start with MOQs of 300 running meters at process-safe series production. We have very few finished products, and above all we have no collections. Our development laboratory is the key for this. Together with our customers we have the possibilities to realize very lean development processes.

Even on a laboratory scale, we can develop and test new products within just a few hours. We then strive to scale up to production at a very early stage in order to obtain production series results. This way, we offer our clients speed and power that represent a special potential for our partners.

You register important input factors in the production process and evaluate them in monthly environmental analyses. What are these factors in concrete terms and to what extent have their analyses already changed production operations? How do you define environmental management for your company?
For us, environmental management means a holistic approach. In principle, we operate production units and manufacture products that consume many resources. Due to the high production volumes, this continues to accumulate. Because of this, it is self-understanding that we record and evaluate our input and output flows and derive measures from them. This makes economic sense, but is also necessary because of our responsibility for our environment. Specifically, these are energy consumption values, consumption data of primary chemicals, electricity load peaks, our Co2 footprint, just to name a few. This consideration has changed us in many areas. Today we operate a power plant with gas condensing technology, our free roof areas are greened or carry photovoltaic modules, we offer our employees and visitors electric filling stations and finally we have converted the entire power supply of our factory to environmentally friendly hydroelectric power.

With nopma, you have been building up a brand for the technical textiles industry since several years and communicate this via an Individual website parallel to Carl Meiser GmbH & Co. KG. How did this brand name come about and what is the product portfolio behind it?
This is the name of a first technical textile product from the 1990s. It was a textile - coated with dots. Dots on a knitted fabric. NOPMA. My father created this brand.

In 2016 you invested in an additional production line for nopma products and were able to start a directly serial delivery in the NAFTA area. How do you currently assess the market opportunities for North America and Mexico?
We continue to see opportunities in globalization and thus on the North American market also. However, these markets are still severely affected by the pandemic and there are major distortions. When these return to normal, we surely will see more success on these markets again.

As an innovation leader, Meiser offers solvent-free PU adhesive systems as pre-coatings for lamination. How do you assess the importance of such innovations in the context of REACH?
These innovations offer our customers the opportunity to decouple themselves from the pressure REACH triggers in some industries. However, we also have some products that have been developed newly in recent months. This keeps us busy, but also creates opportunities to open up new market segments.

How have you felt about the corona era to date - as a company and personally? What would you on no account want to go through again and what might you even consider maintaining on a daily basis?
I think this time has also strengthened us as a society, as people and even as entrepreneurs. Each crisis you go through makes you a little more relaxed for the unforeseen, but also more motivated to achieve your goals. In my opinion, there have been a lot of positive things in the last few months. Suddenly, for example, digitalization tools have become accepted in our everyday lives, and I feel that people are paying more attention to others again. Hopefully this will stay this way.

The futuristic "tube" escalator at the Elbphilharmonie Concert Hall is just as impressive as the building itself and the longest escalator in western Europe. In August, a start-up based in Cologne installed an UV technology that keeps the handrails clean at all times. At the same time, you presented an antiviral functional coating that can be applied to all textiles in the form of yard goods. How does this work and for what purposes will this technology be suitable?
We have already been working with antimicrobial finishing techniques for many years. This already started with the swine flu in 2009/2010, when we made initial contacts with a young start-up and launched a development. Due to a lack of market interest, however, this had to be discontinued after a few months. Today we are experts in the field of "antimicrobial equipment by means of coatings". We were also able to build up an enormous amount of knowledge on the subject of approval and biocide regulation. Today, we can support our customers holistically in these areas. The function by skin-compatible active substances from the cosmetics sector with a vesicle booster can kill viruses and bacteria within a few minutes.
Since the pandemic has shown us the enormous importance of a new level of hygiene, the applications are very diverse and differentiated. We have already realized the use in personal protective equipment, work furniture, vehicles and for example gloves. In principle, every application is predestined where textile carriers are exposed to many touches by different persons in high frequency. Here our nopma products offer a new level of protection and hygiene.

To break new ground means decisiveness, overcoming fears - and thus the courage to fail. Not every project can succeed. In retrospect - about which entrepreneurial decision are you particularly glad to have made it?
We fail again and again. This is part of the game. But it has never happened that we did not learn anything. The pandemic situation is another good example. In spring we accepted our corporate responsibility for our society and were one of two companies in Baden-Württemberg to achieve certification for FFP protective masks. Since we did not want to participate in the revolver market at that time, we offered these products only to the public sector at favourable pre-crisis prices. However, the decision makers could not make up their minds for weeks and did not order. This disappointed our whole team very much at that time. Today we have overcome this and have taken a lot of knowledge with us from this development.


The interview was conducted by Ines Chucholowius, CEO Textination GmbH

Cell cultures or microorganisms can already replace many animal experiments. This is even more successful if the technologies are integrated into suitable data models. Photo: EMPA
04.08.2020

Nanosafety Research without Animal Testing

  • Risk analyses for nanoparticles

In order to reduce the number of animal experiments in research, alternative methods are being sought. This is a particular challenge if the safety of substances that have hardly been studied is to be ensured, for instance, the completely new class of nanomaterials. To accomplish just that, Empa researchers are now combining test tube experiments with mathematical modelling.

  • Risk analyses for nanoparticles

In order to reduce the number of animal experiments in research, alternative methods are being sought. This is a particular challenge if the safety of substances that have hardly been studied is to be ensured, for instance, the completely new class of nanomaterials. To accomplish just that, Empa researchers are now combining test tube experiments with mathematical modelling.

They are already in use in, say, cosmetics and the textile industry: Nanoparticles in sun blockers protect us from sunburn, and clothing with silver nanoparticles slows down bacterial growth. But the use of these tiny ingredients is also linked to the responsibility of being able to exclude negative effects for health and the environment. Nanoparticles belong to the still poorly characterized class of nanomaterials, which are between one and 100 nanometers in size and have a wide range of applications, for example in exhaust gas catalytic converters, wall paints, plastics and in nanomedicine. As new and unusual as nanomaterials are, it is still not clear whether or not they pose any risks to humans or the environment.

This is where risk analyses and life cycle assessments (LCA) come into play, which used to rely strongly on animal experiments when it came to determining the harmful effects of a new substance, including toxicity. Today, research is required to reduce and replace animal experiments wherever possible. Over the past 30 years, this approach has led to a substantial drop in animal testing, particularly in toxicological tests. The experience gained with conventional chemicals cannot simply be transferred to novel substances such as nanoparticles, however. Empa scientists are now developing new approaches, which should allow another substantial reduction in animal testing while at the same time enabling the safe use of nanomaterials.

"We are currently developing a new, integrative approach to analyze the risks of nanoparticles and to perform life cycle assessments," says Beatrice Salieri from Empa's Technology and Society lab in St. Gallen. One new feature, and one which differs from conventional analyses, is that, in addition to the mode of action of the substance under investigation, further data is included, such as the exposure and fate of a particle in the human body, so that a more holistic view is incorporated into the risk assessment.

These risk analyses are based on the nanoparticles' biochemical properties in order to develop suitable laboratory experiments, for example with cell cultures. To make sure the results from the test tube ("in vitro") also apply to the conditions in the human body ("in vivo"), the researchers use mathematical models ("in silico"), which, for instance, rely on the harmfulness of a reference substance. "If two substances, such as silver nanoparticles and silver ions, act in the very same way, the potential hazard of the nanoparticles can be calculated from that," says Salieri.

But for laboratory studies on nanoparticles to be conclusive, a suitable model system must first be developed for each type of nanoparticle. "Substances that are inhaled are examined in experiments with human lung cells," explains Empa researcher Peter Wick who is heading the "Particles-Biology Interactions" lab in St. Gallen. On the other hand, intestinal or liver cells are used to simulate digestion in the body.

This not only determines the damaging dose of a nanoparticle in cell culture experiments, but also includes all biochemical properties in the risk analysis, such as shape, size, transport patterns and the binding – if any – to other molecules. For example, free silver ions in a cell culture medium are about 100 times more toxic than silver nanoparticles bound to proteins. Such comprehensive laboratory analyses are incorporated into so-called kinetic models, which, instead of a snapshot of a situation in the test tube, can depict the complete process of particle action.

Finally, with the aid of complex algorithms, the expected biological phenomena can be calculated from these data. "Instead of 'mixing in' an animal experiment every now and then, we can determine the potential risks of nanoparticles on the basis of parallelisms with well-known substances, new data from lab analyses and mathematical models," says Empa researcher Mathias Rösslein. In future, this might also enable us to realistically represent the interactions between different nanoparticles in the human body as well as the characteristics of certain patient groups, such as elderly people or patients with several diseases, the scientist adds.

As a result of these novel risk analyses for nanoparticles, the researchers also hope to accelerate the development and market approval of new nanomaterials. They are already being applied in the "Safegraph" project, one of the projects in the EU's "Graphene Flagship" initiative, in which Empa is involved as a partner. Risk analyses and LCA for the new "wonder material" graphene are still scarce. Empa researchers have recently been able to demonstrate initial safety analyses of graphene and graphene related materials in fundamental in vitro studies. In this way, projects such as Safegraph can now better identify potential health risks and environmental consequences of graphene, while at the same time reducing the number of animal experiments.

More information:
Empa nano particles
Source:

EMPA

Compostable agricultural textiles with adjustable service life Foto: Pixabay
30.06.2020

Compostable agricultural textiles with adjustable service life

In the "AgriTex" innovation project, WESOM Textil GmbH, together with the Fiber Institute Bremen e.V. and the Institute for Polymer and Production Technologies e.V., has set itself the goal of developing a compostable technical textile that is to be used in agriculture, among other things. The project is funded over three years by the Central Innovation Program for SMEs (ZIM) and has a funding volume of around 570,000 Euros. A corresponding application was approved by the Federal Ministry for Economic Affairs and Energy (BMWi) in April 2020.

In the "AgriTex" innovation project, WESOM Textil GmbH, together with the Fiber Institute Bremen e.V. and the Institute for Polymer and Production Technologies e.V., has set itself the goal of developing a compostable technical textile that is to be used in agriculture, among other things. The project is funded over three years by the Central Innovation Program for SMEs (ZIM) and has a funding volume of around 570,000 Euros. A corresponding application was approved by the Federal Ministry for Economic Affairs and Energy (BMWi) in April 2020.

Plastics have become an integral part of our everyday lives and are used in a wide variety of areas. At the same time, pollution from plastic waste is one of the greatest global problems of our time. There are already various options for the sensible and environmentally friendly disposal of plastics, e.g. recycling or thermal recovery. However, it cannot always be guaranteed that the waste is also disposed of in the corresponding disposal routes. For example, in agriculture, even if used properly, a release cannot always be prevented or a return is not possible depending on the application. Biodegradable plastics can help to solve this problem, but many of today's products only rot very slowly, as otherwise the required stability and robustness cannot be guaranteed.
     
The aim of the "AgriTex" project partners is to develop an innovative, biodegradable textile for applications in agriculture. On the one hand, the textile withstands the highest mechanical and weather-related requirements during use, on the other hand it rots quickly after a predefined period of use under natural conditions in the environment or on the compost. This two-phase behavior is made possible by a new type of bicomponent fiber made from the biodegradable plastic PLA. The new technology is to be developed and tested using a hail protection net for fruit growing. Hail protection nets are exposed to considerable loads from various weather conditions and usually have to be replaced after a few seasons. Proper disposal of the old nets represents a considerable cost factor for agricultural businesses. With "AgriTex" the nets can be composted with other biological waste in a cost-neutral manner. In addition, unintentionally released netting components from the structure remain, e.g. by storms or damage caused by game, no longer in the long term in the environment and the pollution of ecosystems by plastic waste is effectively prevented. The ecological and economic advantages of the new technology are not only in demand in fruit growing, but will also be of interest for many other applications in agriculture, landscaping or fishing in the future.
 
The idea for the “AgriTex” project came about as part of the PREVON - Production Evolution Network innovation network, which is funded by the Central Innovation Program for SMEs (ZIM). As part of the membership, the partners are actively supported in the implementation of R&D projects and in securing funding.

More information:
agricultural textiles AgriTex
Source:

IWS Innovations- und Wissensstrategien GmbH

(c) SANITIZED AG
16.06.2020

‘WHAT SMELLS LESS HAS TO BE WASHED LESS OFTEN’

Swiss Quality Principles plus Innovation Strength: Hygiene and Material Protection from SANITIZED 

SANITIZED AG is known as a worldwide leading Swiss company in hygiene functions and material protection for textiles and plastics. Globally oriented, pioneering work is done with federal thoroughness in the development of innovative, effective and safe technologies for antimicrobial equipment. Textination had the opportunity to speak to CEO Urs Stalder about the growing importance of hygiene in times of the pandemic.

Swiss Quality Principles plus Innovation Strength: Hygiene and Material Protection from SANITIZED 

SANITIZED AG is known as a worldwide leading Swiss company in hygiene functions and material protection for textiles and plastics. Globally oriented, pioneering work is done with federal thoroughness in the development of innovative, effective and safe technologies for antimicrobial equipment. Textination had the opportunity to speak to CEO Urs Stalder about the growing importance of hygiene in times of the pandemic.

Founded in 1935, the majority ownership of the public company SANITIZED still lies with the founding families. You are the market leader in Europe in hygiene functions and material protection for textiles and plastics. If you had to introduce yourself in 100 words to someone who doesn't know the company: What influenced you in particular in the development of the company and what made it unique?
Preventing odor in shoes, that's how it started in 1935. This is where our business model came from: the antimicrobial protection of plastics and textiles.
SANITIZED develops ready-to-use additives that are individually tailored to the protection goals of the end products and that work, for example, against the development of odors in work clothing, against permastink (resilient odors) in synthetic textiles or against mold growth.
The 360-degree service is unique: This includes backing in product development, support for all regulatory questions and assistance with marketing topics.
SANITIZED AG is globally active and yet committed to Swiss quality principles. More than 400 brands worldwide use the ingredient brand Sanitized® on their end products.

Think global – act local? You have sister companies in France, the United States and Asia. Your roots and headquarters are based in Switzerland. The pandemic is currently increasing the question of intact supply chains. What does this mean for your company in the future?
Indeed, the broad global positioning enables us to do business locally. The local anchoring results in synergies, also in sourcing. That will be even more important for us in the future. And, of course, the issues of speed and customer proximity are also positive aspects of this approach.

From textiles to plastic surfaces to cans: SANITIZED Preservation AG was founded in 2018 to take care of colors and coatings. SANITIZED is thus opening up another market. Which markets are you particularly interested in and which product areas do you feel particularly challenged by?
Customers want paints and varnishes without solvents, which is better for people and the environment. But with the alternative water-based products, there is a high risk of contamination by microbes. This starts with the production, continues with the storage in the can and also in the application. The result is mold formation.
Antimicrobial protection for paints or coatings is particularly relevant in hygiene-sensitive areas of industrial production and, of course, in the medical environment. The risk of contamination and mold multiplies in regions with high air humidity. This is another reason why India is a growth market for this business area.   

To break new ground means decisiveness, overcoming fears - and thus the courage to fail. Not every project can succeed. In retrospect - about which entrepreneurial decision are you particularly glad to have made it?
Let me mention just three decisions that are important for corporate development: This is definitely the foundation of the SANITIZED Preservation division. This is about the antimicrobial protection of paints and varnishes. This also includes setting up our in-house TecCenter, in which we can perform laboratory services even faster. It was recently accredited by the International Antimicrobial Council. And right now it is the sales cooperation with Consolidates Pathway on the US market for our textile hygiene function solutions.

You state that innovation is embedded in the company's DNA. How do you live your inno-vation management and which role do the requirements of end consumers and your indus-trial customers play in this setting?
We ourselves as well as our global sales partners are in close contact with the manufacturers of textile products. This is also why we know the requirements and needs of the market. Sustainability is emerging from the niche in the mass market.
This is exactly what our product Sanitized® Odoractiv 10 has been developed for and awarded by the Swiss Innovation Award.
It is a dual-acting, biocide-free, patented technology against odor development and odor adsorption in textiles. Many customers appreciate our expertise and use it in the development of new products to create innovative textiles with additional benefits for the requirements of the market.

Tailor-made or solutions only for major customers? The topic of individualization up to lot size 1 takes up a lot of space today. What do you think about individual product solutions - or can you cover everything with the SANITIZED portfolio comprising 40 products?
We have a very versatile technology “kit” at our disposal. It is part of our daily business to respond individually to the special customer needs and the respective product requirements. We offer tailor-made recipes for this and our extensive application know-how flows into the advice for the individual application situation at the customer.

There are various definitions for sustainability. Customers expect everything under this term - from climate protection to ecology, from on-site production in the region to the ex-clusion of child labor, etc. Textile finishing does not always sound unproblematic. Public procurement is increasingly switching to sustainable textiles. What does this mean for SANITIZED and what do you do to bring the concept of sustainability to life for your company, and which activities and certifications do you focus on?
Resource conservation is a key issue for us. Since we “think” about the topic of sustainability along the entire production chain, including in research and development, resource-saving application techniques for the textile industry are important to us. Sanitized® additives can be integrated into standard production processes, so that additional energy is not required for complementary finishing processes.
Our portfolio also includes biocide-free products. Sanitized® Odoractiv10 prevents odors from sticking to textiles. Sanitized® Mintactiv uses the natural antibacterial effect of mint and was specially developed for cotton textiles.
And what smells less has to be washed less often. This saves water and electricity and extends the useful life of textiles.
          
SANITIZED supports its customers with a so-called 360° service. What do you mean by that and why don't you concentrate exclusively on the technical aspects of the products?
The SANITIZED brand wants to create real added value for its customers. That is why we have expanded our core competence as a developer and provider of innovative antimicrobial additives with an all-round service. The obvious thing to do is to support the production process, of course that is part of it. Furthermore; we also provide the latest knowledge on regulatory issues - world-wide. And we offer comprehensive marketing assistance for our license partners who use Sanitized® as an ingredient brand. Making correct advertising statements is important not only in times of Corona. Because it's always about transparency and security for people. Warning letters or delivery stops due to incorrect claims can be prevented.
Cooperation with the institutes is absolutely sensible; after all, it is their job to do research for com-panies that they cannot shoulder on their own. This includes testing facilities, as well as applying for funding, which is only possible in cooperation with research institutes. However, they are public institutions and therefore have different objectives per se than a company: We have to bring a promising idea to the market as quickly as possible to show a profit. A research institute does not have this pressure.

Which goal do you pursue with the website https://www.sanitized.house for example?
Yes, it may seem unusual when SANITIZED as a B2B company designs a platform for end customers. But more than 400 brands use Sanitized® as an ingredient brand. So, we are connected to the end customer in this way.
In the virtual house - Sanitized® the house -, visitors can playfully experience in which areas of life hygiene and material protection contribute to the quality of life. A click in the wardrobe links to products - including brand names - that have been equipped with Sanitized®: clothing in the wardrobe, the carpet in the living room or the towel in the bathroom. The best thing to do is try it yourself.

The company is working consistently on implementing Sanitized® as a brand. The hygiene function for textiles and plastics shall be documented and thus offer added value to customers and consumers. Co-branding is not always welcome, especially in the clothing, sports and outdoor sector. How rocky was the road until Sanitized® was advertised as an ingredient brand by 400 license partners on the product?
Of course, there are brands that do not want a second brand on their end product. But a trend is causing more and more manufacturers to rethink: Customers are increasingly asking questions about ingredients and their origins. Elucidation and transparency are growing needs. And that's exactly what we contribute to. In addition, this is an opportunity for a textile brand to stand out positively in the flood of suppliers. Differentiation through added value - donated by Swiss technology from SANITIZED. Those arguments work worldwide.

You have a diversified network. Just to mention to two of them - you have been a system partner since the foundation of bluesign® and you work closely with Archroma in sales matters. In which aspects do you see the special value of partnerships? Are there segments existing where you can imagine new partners and collaborations?
Partnerships are important and work if all pursue common goals and can mutually fertilize each other. For example, the partnership with the company Consolidates Pathway in the United States is brand new one.

For which socially relevant topics do you see a particularly great need for innovation and action in the next 5 years? What is your assessment that your company will be able to offer solutions for this with its products? And what role do the experiences from the corona pandemic play in this assessment?
Nobody can predict what the corona pandemic will change in the long term. Environmental protection and thus the conservation of our resources is and remains an important issue.
The fact that the textile industry can make a big contribution to this is slowly gaining awareness among the masses. Keywords are cheap production or water consumption for jeans production. People are becoming more sensitive to what companies and brands are doing. It will be all the more important to act and communicate openly and transparently.
For SANITIZED, it is a mission and a matter of course that only products with official approvals are used and that we work ac-cording to the bluesign principle. This is where traceability and transparency begin.


This interview was conducted by Ines Chucholowius, CEO Textination GmbH

ISPO TREND REPORT (c) Messe München GmbH
28.01.2020

ISPO: SPORT BECOMES A SYNONYM FOR HEALTH

TREND REPORT

  • Winter sports trends for 2020/2021
  • The winter sports industry is increasingly focusing on sustainability
  • ISPO Munich (January 26 to 29) to showcase next season’s products

Health will be one of the next decade’s megatrends. The sports industry is, for its part, one of the growth drivers, not least because society now views fitness as a synonym for health. In the future, athleticism will have an ever greater bearing on our everyday lives.

TREND REPORT

  • Winter sports trends for 2020/2021
  • The winter sports industry is increasingly focusing on sustainability
  • ISPO Munich (January 26 to 29) to showcase next season’s products

Health will be one of the next decade’s megatrends. The sports industry is, for its part, one of the growth drivers, not least because society now views fitness as a synonym for health. In the future, athleticism will have an ever greater bearing on our everyday lives.

“Medical fitness” refers to ensuring both a sporty lifestyle and the right medical care tailored to the individual needs. Winter sports are also set to assume a challenging yet important role in the future as a vehicle for teaching values within society. Veit Senner, Professor of Sports Equipment and Sports Materials at the Technical University of Munich, says: “Sports must be used as an emotional Trojan Horse for teaching skills and in particular for teaching values.”

There are also other challenges that will need to be faced in the next few years: Children and adolescents need to be encouraged to lead more active lifestyles and our aging population needs to be kept fit and mobile for as long as possible. Senner believes that winter sports could hold the key for today’s youth: “We need to demonstrate the kinds of educational content and values that can be taught through sports.” Attractive products and services therefore need to be created for children. The latest winter sports trends and pro ducts will be showcased at ISPO Munich from January 26 to 29.

Textile manufacturers are giving the winter sports industry an eco-boost
Swedish label Klättermusen impressed the ISPO Award jury so much with its first fully compostable down jacket “Farbaute” that they named it the Gold Winner in the Outdoor category and the winner of the ISPO Sustainability Award.

The first 100% biodegradable down jacket biologically decomposes on the compost heap after around three months (all apart from the zippers and a few snap fasteners which can be removed and reused).

When washed it does not release any microplastics into the environment. Norwegian clothing manufacturer Helly Hansen is launching a new membrane technology for winter 2020/2021 which can be produced without any additional chemicals. The microporous Lifa Infinity membrane is made using a solvent-free process and, together with a water-repellent Lifa outer material, provides extremely impressive protection from the elements. Helly Hansen’s new Lifa Infinity Pro technology also uses the spinning jet dyeing process whereby the color pigments are already injected during the fiber production process. This can save up to 75% water. What’s more, no harmful wastewater is produced.

The winter sports industry is increasingly focusing on sustainability
“The really big trend is for biopolymer fabrics and materials,” says Senner. “The idea is to replace the many different types of plastics that are used in the sports industry with biopolymers.” Together with his team, he is working hard to conduct in-depth research in both areas. This is a trend which French ski brand Rossignol has also identified, whereby it has focused on the use of raw and recycled materials for the production of its new Black Ops Freeride skis. The Black Ops Sender TI model was crowned the winner in its category by the ISPO Award jury.

Alpina Sports is also exploring new ecological avenues and launching a completely sustainable back protector made from 100% sheep’s wool, obtained exclusively from sheep in Switzerland and Norway. The back protector, which consists of three layers of pressed sheep’s wool, meets the standards for protection class 1 and boasts all the impressive properties that the natural material has to offer: In icy temperatures it remains supple, can both warm and cool the wearer, and is odorless. The ISPO Award jury chose Alpina Sports’ “Prolan Vest” as the “Product of the Year”* in the Snowsports Hardware category.

Swedish label Spektrum uses plant-based polymers made from castor oil as well as corn and recycled polyester for its ski and snowboard goggles. The ISPO Award jury was extremely impressed with both the ecological aspects and the execution and named the “Östra Medium” model the Gold Winner.

The new AddiTex compound comes out of the extruder as a filament for 3D printing. © Fraunhofer UMSICHT
12.11.2019

FRAUNHOFER UMSICHT: COMPOUNDS FOR ADDITIVE MANUFACTURING, GEOTEXTILES AND WEARABLES

Whether biodegradable geotextiles, wearables from thermoplastic elastomers or functional textiles from 3D printers - the scope of plastics developed at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT is wide.

Insights into these projects were provided from October 16th - 23rd  in Düsseldorf: At the K, scientists presented their work on thermally and electrically conductive, biodegradable, bio-based compounds as well as compounds suitable for additive production.
 
Textile composites from the 3D printer
In the "AddiTex" project, plastics were developed that are applied to textiles in layers using 3D printing and give them functional properties. A special challenge in the development was the permanent adhesion: The printed plastic had to be both a strong bond with the textile and sufficiently flexible to be able to participate in movements and twists.

Whether biodegradable geotextiles, wearables from thermoplastic elastomers or functional textiles from 3D printers - the scope of plastics developed at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT is wide.

Insights into these projects were provided from October 16th - 23rd  in Düsseldorf: At the K, scientists presented their work on thermally and electrically conductive, biodegradable, bio-based compounds as well as compounds suitable for additive production.
 
Textile composites from the 3D printer
In the "AddiTex" project, plastics were developed that are applied to textiles in layers using 3D printing and give them functional properties. A special challenge in the development was the permanent adhesion: The printed plastic had to be both a strong bond with the textile and sufficiently flexible to be able to participate in movements and twists.

A flexible and flame-retardant compound was developed, which is particularly suitable for use in the field of textile sun and sound insulation, as well as a rigid compound, which is used, among other things, for reinforcing the shape of protective and functional clothing.

Geotextile filter for technical-biological bank protection
Geotextile filters for technical-biological bank protection are the focus of the "Bioshoreline" project. It stands for gradually biodegradable nonwovens, which allow a near-natural bank design of inland waterways with plants. They consist of renewable raw materials and are intended to stabilize the soil in the shore area until the plant roots have grown sufficiently and take over both filter and retention functions. The ageing and biodegradation of the fleeces begin immediately after installation, until the fleeces are gradually completely degraded.

Prototypes of the geotextile filters are currently being tested. Female scientists evaluate the plant mass formed above and below ground with and without geotextile filters as well as the influence of the soil type on plant growth and the biological degradation of the filter.

Wearables made of thermoplastic elastomers
In addition, Fraunhofer UMSICHT is developing novel, electrically conductive and flexible compounds that can be processed into thermoplastic-based bipolar plates. These plastics are highly electrically conductive, flexible, mechanically stable, gas-tight and chemically resistant and - depending on the degree of filling of electrically conductive additives - can be used in many different ways. For example, in electrochemical storage tanks (batteries), in energy converters (fuel cells), in chemical-resistant heat exchangers or as resistance heating elements.

Another possible field of application for these plastics: Wearables. These portable materials can be produced easily and cheaply with the new compounds. It is conceivable, for example, to form garments such as a vest by means of resistance heating elements. The idea behind this is called Power-to-Heat and enables the direct conversion of energy into heat.

FUNDING NOTES

"AddiTex" is funded with a grant from the State of North Rhine-Westphalia using funds from the European Regional Development Fund (ERDF) 2014-2020 "Investments in growth and employment". Project Management Agency: LeitmarktAgentur.NRW – Projektmanagement Jülich.

The "Bioshoreline" project (funding reference: 22000815) is funded by the Federal Ministry of Food and Agriculture (BMEL) on the basis of a resolution of the German Bundestag.

More information:
Fraunhofer-Institute UMSICHT K 2019
Source:

Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT

DIGITALE PROZESSKETTE SICHERT ZUKUNFT DES LEICHTBAUS © Reed Exhibitions Deutschland GmbH
10.09.2019

DIGITAL PROCESS CHAIN SECURES THE FUTURE OF LIGHTWEIGHT CONSTRUCTION

  • At COMPOSITES EUROPE from 10 to 12 September
     
  • Incubator of ideas for multi-material lightweight construction
     
  • „Ultralight in Space“: Market study examines lightweight construction trends in aerospace

Whenever there’s movement, mass and weight quickly become destroyers of energy. From 10 to 12 September, the Lightweight Technologies Forum (LTF) at COMPOSITES EUROPE in Stuttgart will show how lightweight construction contributes to more efficient and better cars, airplanes and machines. The focus at the Forum will be on the commercially viable implementation of cross-material and holistic lightweight construction systems. The way to get there is through the digitalisation of the process chain.

  • At COMPOSITES EUROPE from 10 to 12 September
     
  • Incubator of ideas for multi-material lightweight construction
     
  • „Ultralight in Space“: Market study examines lightweight construction trends in aerospace

Whenever there’s movement, mass and weight quickly become destroyers of energy. From 10 to 12 September, the Lightweight Technologies Forum (LTF) at COMPOSITES EUROPE in Stuttgart will show how lightweight construction contributes to more efficient and better cars, airplanes and machines. The focus at the Forum will be on the commercially viable implementation of cross-material and holistic lightweight construction systems. The way to get there is through the digitalisation of the process chain.

From the idea to the component – that’s the path the Lightweight Technologies Forum aims to illuminate and support. To that end, the forum will gather current lightweight construction projects in Stuttgart, including from automotive engineering, aerospace and mechanical engineering – precisely those industries whose stringent material, safety and reliability demands make them idea generators for many other industries.
The commonality that runs through all the projects: a consistently digital process chain contributes significantly to the implementation of innovations. Another focus area is connecting and joining technology in multi-material lightweight construction.

"The Lightweight Technologies Forum is conceived as a cross-industry and cross-material incubator of ideas, a place where all stakeholders can consider new concepts. For that, we’re bringing successful flagship projects to Stuttgart”, says Olaf Freier, who on behalf of organiser Reed Exhibitions is responsible for the programme of the forum.

The growing significance of digitalisation and bionics
Support in putting together the forum programme comes from Automotive Management Consulting (AMC). The consulting company specialises in lightweight construction strategies, processes and structures in the automotive industry. “Lightweight construction requires comprehensive, systematic thinking”, says Rainer Kurek, the managing director of AMC. “The most important key factor, though, is the digitalisation of the process chain. Only virtual and simulation-driven design work can bring about competitive lightweight construction products, because they’re launched faster and ensure process safety while costing far less in development”, Kurek adds.

„Ultralight in Space“: Market study on lightweight construction trends in the aerospace industry
When it comes to ultra-lightweight construction, space travel has played a pioneering role since its inception, having driven many disciplines to new record performances. In cooperation with the Luxembourg-based aerospace suppliers GRADEL, AMC are currently conducting a market study to examine the latest technological trends. The results will be revealed at the LTF in Stuttgart on 10 September.
"Even though aerospace is a niche business: technical solutions that meet the stringent material demands here lead the way into the future, which in turn impacts other industries. That’s why it’s important to know the customer’s needs as well as the lightweight strategies, processes, structures and material decision-making of this market”, Rainer Kurek says assuredly.

Also underlining how important space travel is for the development of new technologies is Claude Maack, managing director of GRADEL: “All components are exposed to extreme conditions. Right from the launch of the rocket, they have to withstand enormous acceleration forces. In space, material must resist radiation exposure – and for many years. Then there are the high temperature differences from minus 185 to plus 200 degrees Celsius – alternating every couple of hours from one extreme to the other.“

The material question: Composites with biggest growth potential
Metals currently hold the largest market share among lightweight materials – but fibre-reinforced composites are said to have the biggest growth potential. More and more often they get to apply their strengths in lightweight construction. In the exhibition area, the LTF demonstrates how glass-fibre reinforced (GFRP) and carbon-fibre reinforced plastics (CFRP) play to their strengths in hybrid structural components.
On display, among other things, will be an ultra-lightweight seat by Automotive Management Consulting (AMC), Alba tooling & engineering and csi entwicklungstechnik GmbH, which was presented as a feasibility study – based on the lightweight construction innovation xFK in 3D – and virtual prototype at the 2018 LTF.

The innovative ultra-lightweight seat, which only weighs 10 kg, is based on a special winding process for fibre-composite components. The  “xFK in 3D process” uses a resin-impregnated continuous fibre from which components are wound and produced without waste to match the load. Conceivable uses for the concept seat include the so-called hypercars, sports cars and the air taxis of the future. Just a few weeks ago, the prototype was presented to the public and swiftly recognised with the German Innovation Award.

Exhibitors will be presenting additional lightweight construction solutions in the adjacent Lightweight Area. Some examples include structural components, semi-finished goods, technical textiles, adhesives and resins for automotive engineering and aerospace.

Altogether, visitors of the Lightweight Technologies Forum and COMPOSITES EUROPE will meet 300 exhibitors from 30 countries who will come to Stuttgart to showcase the entire process chain of fibre-reinforced plastics – from materials to machines for processing to concrete application examples from automotive engineering, aerospace, mechanical engineering, construction, wind power, and the sports and leisure sector. Besides new products, a special focus of the trade fair will be on advances in process technologies for large-scale series production.