Textination Newsline

Reset
8 results
Water hyacinth Photo: Pixabay, Hồng Vũ
15.10.2024

DITF: Water hyacinth plant pots

Together with Fiber Engineering GmbH, the DITF presents a process for the production of biodegradable plant pots. The products are cost effective and competitive. At the same time, the production process combats the spread of the invasive water hyacinth, whose biomass serves as the raw material for the plant pots.

Combating an invasive species and reaping economic benefits at the same time? What sounds like a contradiction in terms has been successfully achieved by DITF scientists in a joint project with several companies.

Together with Fiber Engineering GmbH, the DITF presents a process for the production of biodegradable plant pots. The products are cost effective and competitive. At the same time, the production process combats the spread of the invasive water hyacinth, whose biomass serves as the raw material for the plant pots.

Combating an invasive species and reaping economic benefits at the same time? What sounds like a contradiction in terms has been successfully achieved by DITF scientists in a joint project with several companies.

Water hyacinth is a rapidly spreading plant that has been recognized as a threat to existing ecosystems in many countries around the world. In particular, Lake Victoria in Africa is suffering from the widespread spread of water hyacinth. Fish deaths due to oxygen depletion, the production of climate-damaging methane gas during decomposition, and the obstruction of shipping and energy production are among the most prominent problems. They offer a grim preview of what is on the horizon in many other countries. As an invasive species, water hyacinth is spreading into many ecosystems around the world as a result of human activities, threatening the quality of human life.

Several approaches have been taken to control the spread of water hyacinth. The main focus is on removing the carpet of plants from the water and then recycling the resulting biomass. This is also the starting point for the research project co-led by the DITF, which aims to produce a new, cost-effective composite material from the fibrous plant material. The result is a prototype plant pot that is competitive and meets all the technical requirements of the project objectives.

At the beginning of the project, the project partners defined the material requirements for the plant pot. These include good dimensional stability, which must also be ensured when the pot is filled with wet soil. The use of physiologically harmless materials for contact with food plants is also an important requirement, as is a cost-effective and therefore competitive production method. However, the main focus is on complete biodegradability and thus the unrestricted compostability of the plant pot.

The biomaterial for the production of the plant pots comes from Louisiana and is directly marketed by In-Between International under the product name CYNTHIA®. This raw material has been extensively tested and modified at the DITF with regard to its composition and suitability for technical processing. It consists mainly of cellulose and must first be screened and treated with a hydrophobic agent for further processing. Hydrophobing is necessary to give the plant pots a certain resistance to moisture.

The prepared raw material now needs to be combined with a binder. The binder binds the plant fibers and ensures the dimensional stability of the plant pot. Laboratory tests with various binders have identified those that guarantee good processability and dimensional stability of the fiber composite. A thermoplastic was selected that was easy to process in a hot press and that fully met the requirements for biodegradability.

Further laboratory tests determined the ideal ratio of binder to fiber raw material. Tests in an industrial composting plant showed that the material was fully biodegradable and that the plant pots would decompose within a reasonable period of time - a stability of 4-6 weeks was the project goal.

The researchers produced test samples for all these preliminary tests in the form of fiber composite panels on a hot press. The next step was to produce the first prototypes of plant pots from the pre-treated fiber material with the appropriate binder. This part was carried out by the project partner, Fiber Engineering GmbH from Karlsruhe. This company has extensive expertise in the field of fiber injection molding (FIM), which makes it possible to produce 3-dimensional molded parts from fibers in simple and fast process steps. Fiber Engineering GmbH has optimized its existing process for processing the water hyacinth fiber material. It produced a series of plant pots and thus realized the last step of the project objective.

A cost calculation, taking into account all the materials and processes used, confirmed that the plant pots could be produced extremely cheaply at a production price of less than five cents per pot, making them marketable. In daily use, garden centers will appreciate the haptic advantages - strength and moisture resistance despite the fact that the material is completely biodegradable. The fact that the material used is helping to solve a global environmental problem should be another plus when it comes to marketing the product.

Bread waste + fungi = yarn (c) Photos by Kanishka Wijayarathna (bread waste), Erik Norving (prototypes), Andreas Nordin (researchers) and Sofie Svensson (microscope).
17.07.2024

Bread waste + fungi = yarn

The production of new materials from fungi is an emerging research area. In a research project at the Swedish School of Textiles at the University of Borås, wet spinning of fungal cell wall material has shown promising results. In the project, fungi were grown on bread waste to produce textile fibers with potential in the medical technology field.

Sofie Svensson's project addresses, among other things, the UN's Global Goals 9, sustainable industry, innovation, and infrastructure, and Goal 12, sustainable consumption and production, as the project aimed to use sustainable methods in a resource- and cost-effective way, with less impact on people and the environment.

Sofie Svensson, who recently defended her dissertation in the field of Resource Recovery, explained:

The production of new materials from fungi is an emerging research area. In a research project at the Swedish School of Textiles at the University of Borås, wet spinning of fungal cell wall material has shown promising results. In the project, fungi were grown on bread waste to produce textile fibers with potential in the medical technology field.

Sofie Svensson's project addresses, among other things, the UN's Global Goals 9, sustainable industry, innovation, and infrastructure, and Goal 12, sustainable consumption and production, as the project aimed to use sustainable methods in a resource- and cost-effective way, with less impact on people and the environment.

Sofie Svensson, who recently defended her dissertation in the field of Resource Recovery, explained:

“My research project is about developing fibres spun from filamentous fungi for textile applications. The fungi were grown on bread waste from grocery stores. Waste that would otherwise have a significant environmental impact if discarded.”

The novelty of the project lies in the method used – wet spinning of cell wall material.

“Wet spinning is a method used to spin fibres (filaments) from materials such as cellulose. In this project, cell wall material from filamentous fungi was used to produce fibres through wet spinning. The cell wall material from the fungi contains various polymers, mainly polysaccharides such as chitin, chitosan, and glucan. The challenge was to spin the material. It took some time initially before we found the right conditions”, explained Sofie Svensson.

Antibacterial properties
Filamentous fungi were cultivated in bioreactors to produce fungal biomass. Cell wall material was then isolated from the fungal biomass and used to spin a filament, which was tested for its suitability in medical applications.

“Tests of the fibers showed compatibility with skin cells and also indicated an antibacterial effect”, said Sofie Svensson, adding:

“In the method we worked with, we focused on using milder processes and chemicals. The use of hazardous and toxic chemicals is currently a challenge in the textile industry, and developing sustainable materials is important to reduce environmental impact.”

What is the significance of the results?
“New materials from fungi are an emerging research area. Hopefully, this research can contribute to the development of new sustainable materials from fungi”, explained Sofie Svensson.

Interest from the surrounding community has been significant during the project, and many have had a positive attitude toward the development of this type of material.

When will we see products made from these fibers?
“This particular method is at the lab scale and still in the research stage”, she explained.

The doctoral project was conducted within the larger research project Sustainable Fungal Textiles: A novel approach for reuse of food waste.

What is the next step in research on fungal fibers?
“Future studies could focus on optimizing the wet spinning process to achieve continuous production of fungal fibers. Additionally, testing the cultivation of fungi on other types of food waste.”

How have you experienced your time as a doctoral student in Resource Recovery?
“It has been an intense period as a doctoral student, and I have been really challenged and developed a lot.”

What is your next step?
“I will be taking parental leave for a while before taking the next step, which is yet to be decided.”

Sofie Svensson defended her dissertation on 14 June at the Swedish Centre for Resource Recovery, University of Borås.
 
Read the dissertation: Development of Filaments Using Cell Wall Material of Filamentous Fungi Grown on Bread Waste for Application in Medical Textiles

Opponent: Han Hösten, Professor, Utrecht University
Main Supervisor: Akram Zamani, Associate Professor, University of Borås
Co-Supervisors: Minna Hakkarainen, Professor, KTH; Lena Berglin, Associate Professor, University of Borå

Source:

University of Borås, Solveig Klug

(c) nova-Institut GmbH
14.03.2023

Bacteria instead of trees, textile and agricultural waste

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

The collaboration between Nanollose (AU) and Birla Cellulose (IN) with tree-free lyocell from bacterial cellulose called Nullarbor™ is the winning cellulose fibre innovation 2023, followed by Renewcell (SE) cellulose fibres made from 100 % textile waste, while Vybrana – the new generation banana fibre from Gencrest Bio Products (IN) won third place.
    
Winner: Nullarbor™ – Nanollose and Birla Cellulose (AU/IN)
In 2020, Nanollose and Birla Cellulose started a journey to develop and commercialize treefree lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to the joint patent application “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260 kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose and Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.  

Second place: Circulose® – makes fashion circular – Renewcell (SE)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile     
chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant is expected to reach an annual capacity of 120,000 tonnes.

Third place: Vybrana – The new generation banana fibre – Gencrest Bio Products (IN)
Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the banana stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and bio-based fertilizers and organic manure.

Photo: pixabay
17.05.2022

The industrial future needs climate-neutral process heat

IN4climate.NRW publishes discussion paper

Not only private households, but above all industrial companies have a high demand for heat. On the way to climate neutrality, greater focus must be placed on the supply of process heat to the industry - especially in the industrial state of North Rhine-Westphalia (NRW). This is shown by the discussion paper of the climate protection think tank IN4climate.NRW.

In 2020, process heat accounted for a large percentage of industrial energy demand - 67 percent of the energy consumed by German industry - and is still predominantly supplied by fossil fuels (BMWi 2021a). That's almost 20 percent of Germany's total energy demand. No wonder: Whether glass, metal, cement or paper are melted, forged, fired or dried - all these processes require process heat. And in some cases up to a temperature of 3,000 °C.

IN4climate.NRW publishes discussion paper

Not only private households, but above all industrial companies have a high demand for heat. On the way to climate neutrality, greater focus must be placed on the supply of process heat to the industry - especially in the industrial state of North Rhine-Westphalia (NRW). This is shown by the discussion paper of the climate protection think tank IN4climate.NRW.

In 2020, process heat accounted for a large percentage of industrial energy demand - 67 percent of the energy consumed by German industry - and is still predominantly supplied by fossil fuels (BMWi 2021a). That's almost 20 percent of Germany's total energy demand. No wonder: Whether glass, metal, cement or paper are melted, forged, fired or dried - all these processes require process heat. And in some cases up to a temperature of 3,000 °C.

In the discussion paper "Process heat for a climate-neutral industry (Prozesswärme für eine klimaneutrale Industrie)", IN4climate.NRW formulates approaches and recommendations for action for a process heat transition. A total of thirteen partners of the initiative have signed the paper.

Samir Khayat, Managing Director of NRW.Energy4-Climate: "The switch to sustainable process heat supply is one of the decisive factors in ensuring that the transformation of industry can succeed. With the IN4climate.NRW initiative, we are bringing together the expertise from science, politics as well as industry, and developing concrete strategies to put climate neutrality in industry into practice."

Various figures illustrate the need for action: Only 6 percent of the energy required for process heat has so far been covered by renewable energies. Electricity also currently accounts for only 8 percent - as an energy source, it is still far from emission-free in today's electricity mix, but must become so in the future through the switch to 100 percent renewables.

NRW alone needs 40 percent of the process heat required by the whole of Germany
Tania Begemann, Project Manager Industry and Production at NRW.Energy4Climate and author of the paper: "The sustainable conversion of process heat has always been an important and urgent topic at IN4climate.NRW, but it becomes even more explosive in times of a global energy crisis. It is estimated that NRW alone requires 40 percent of the process heat required by the whole of Germany. In order to remain economically strong and an industrial state in the long term, it is therefore of particular importance for NRW to become independent of fossil process heat sources in the near future. We would like to draw attention to this with this paper. At the same time, this enormous challenge also offers NRW the opportunity to become a pioneer."

How can this be accomplished? The discussion paper shows central approaches and recommendations for action:

  • Increase efficiency: The development and use of high-temperature heat pumps should be specifically promoted within the framework of pilot plants and concepts. In addition, companies should be supported in the development and implementation of concepts that minimize process temperatures and use waste heat within the company.
  • Promote renewable heat sources: Local, renewable energy sources such as deep geothermal energy and solar thermal energy can be an important component of climate-neutral process heat supply and at the same time reduce the reliance on energy imports. Where renewables can supply industrial heating needs, they should be used. These forms of energy should therefore be supported in a targeted manner through inquiries and tenders.
  • Increase renewable electricity: The electrification of processes and applications is the prerequisite for the energy transition. Expanding renewable power generation along with a solid power grid, creating competitive prices for green power, and developing flexible systems are therefore key tasks.
  • Promote storable alternative energy sources: To be able to generate process heat even when renewable energies are not available, industry needs large quantities of storable energy carriers. In particular, sustainable hydrogen must be available at competitive prices and the necessary conditions, such as a transport and storage infrastructure, must be created. In addition to hydrogen, biomass is a valuable and storable energy carrier and raw material at the same time. This limited resource must therefore be used in a targeted and efficient manner.

The climate-neutral generation of process heat is of great importance for the whole of Germany, but especially for the industrial state of North Rhine-Westphalia, and at the same time represents a major challenge. The heat transition in industry requires an overall systemic and supraregional view and strategy development. On the one hand, such strategies should take into account the interaction of different sectors. On the other hand, they should include all heat requirements - from buildings to industry. In this paper, decision-makers from politics, industry and society will find initial reference points and impulses for this important, common task.

The paper was developed by the IN4climate.NRW initiative under the umbrella of the NRW.Energy4Climate state organization. It is supported by the institutes Fraunhofer UMSICHT, RWTH Aachen (Chair of Technical Thermodynamics), the VDZ research institute as well as the Wuppertal Institute, the companies Amprion, Currenta, Deutsche Rohstofftechnik (German raw material technology - RHM Group), Georgsmarienhütte, Kabel Premium Pulp and Paper, Lhoist, Pilkington Germany (NSG Group) and Speira as well as the Federal Association of the German Glass Industry.

Source:

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT

(c) nova-Institut GmbH
07.12.2021

Finalists for „Cellulose Fibre Innovation of the Year 2022” announced

Cellulose Fibre Innovation of the Year 2022: Cellulose Fibre Solutions are expanding from hygiene and textiles as well as non-wovens up to alternatives for carbon fibres for light-weight applications.

Great submissions made the nomination for the Innovation Award difficult. All of them present promising sustainable solutions in the field of cellulose fibres value chain. Six of them now get the chance to demonstrate their potential to a wide audience in Cologne (Germany), and online.

Cellulose Fibre Innovation of the Year 2022: Cellulose Fibre Solutions are expanding from hygiene and textiles as well as non-wovens up to alternatives for carbon fibres for light-weight applications.

Great submissions made the nomination for the Innovation Award difficult. All of them present promising sustainable solutions in the field of cellulose fibres value chain. Six of them now get the chance to demonstrate their potential to a wide audience in Cologne (Germany), and online.

For the second time, nova-Institute grants the “Cellulose Fibre Innovation of the Year” within the framework of the “International Conference on Cellulose Fibres 2022” (2-3 February 2022). The advisory board of the conference nominated six  products, ranging from cellulose made of orange- and wood pulp to a novel technology for cellulose fibre production. The presentations, election of the winner by the conference audience and the award ceremony will take place on the first day of the conference.

Cellulose fibres show an increasingly expanding wide range of applications, while at the same time markets are driven by technological developments and political framework conditions, especially bans and restrictions on plastics and increasing sustainability requirements. The conference provides rich information on opportunities for cellulose fibres through policy assessment, a session on sustainability, recycling and alternative feedstocks as well as latest development in pulp, cellulose fibres and yarns. This includes application such as non-wovens, packaging and composites.

Here are the nominees:
Carbon Fibres from Wood – German Institutes of Textile and Fiber Research Denkendorf (Germany)
The HighPerCellCarbon® technology is a sustainable and alternative process for the production of carbon fibres made from wood. The technology starts with wet spinning of cellulosic fibres using ionic liquids (IL) as direct solvent in an environmentally friendly, closed loop filament spinning process (HighPerCell® technology). These filaments are directly converted into carbon fibres by a low-pressure stabilisation process, followed by a suitable carbonisation process. No exhaust fumes or toxic by-products are formed during the whole process. Furthermore, the approach allows a complete recycling of solvent and precursor fibres, creating a unique and environmentally friendly process. Carbon fibres are used in many lightweight applications and the fibres are a sustainable alternative to fossil-based ones.

Fibers365, Truly Carbon-Negative Virgin Fibres from Straw – Fibers365 (Germany)
Fibers365 are the first carbon-negative virgin straw fibres on the market. The Fibers365 concept is based on a unique, state of the art process to provide functional, carbon negative, and competitive non-wood biomass products such as virgin fibres for paper, packaging and textile purposes as well as high value process energy, biopolymer and fertilizer side streams. The products are extracted from the stems of annual food plants such as straw by a chemical-free, regional, farm level steam explosion pulping technology, allowing an easy separation of the fibres from sugars, lignin, organic acid and minerals. In the case of annual plants, CO2 emissions are recaptured within 12 months from their production date, offering “instant”, yearly compensation of corresponding emissions.

Iroony® Hemp and Flax Cellulose – RBX Créations (France)
Iroony® is a branded cellulose made by RBX Créations from hemp. This resistant hemp plant grows quickly within in a few months, massively captures carbon and displays a high content of cellulose. The biomass is directly collected from French farmers who cultivate without chemicals or irrigation, in extended rotation cycles, contributing to soil regeneration and biodiversity. For a diversified supply, the hemp can be combined with organically-grown flax. Through its patented process, RBX Créations extracts high-purity cellulose, perfectly suitable for spinning technologies such as HighPerCell® of DITF research centre. The resulting fibres display versatile properties of fineness, tenacity and stretch, for applications like clothing or technical textiles. Iroony® combines low impact, trackability and performance.

SPINNOVA, Sustainable Textile Fibre without Harmful Chemicals – Spinnova (Finland)
Spinnova’s innovative technology enables production of sustainable textile fibres in a mechanical process, without dissolving or any harmful chemicals. The process involves use of paper-grade pulp and mechanical refining to turn pulp into microfibrillated cellulose (MFC). The fibre suspension consisting of MFC is extruded to form textile fibre, without regeneration processes. The Spinnova process does not generate any side waste, and the environmental footprint of SPINNOVA® including 65 % less CO2 emissions and 99 % less water compared to cotton production. Spinnova’s solution is also scalable: Spinnova targets to reach 1 million tonnes annual production capacity in the next 10 to 12 years.    

Sustainable Menstruation Panties: Application-driven Fibre Functionalisation – Kelheim Fibres (Germany)
Kelheim’s plant-based and biodegradable fibres contribute significantly to a sustainable future in the field of reusable hygiene textiles. Through innovative functionalisation they are specifically adjusted to the requirements of the single layers and thereby reach a performance comparable to that of synthetic fibres. A unique duality in fibre technology is created: sustainably manufactured cellulosic fibres that allow for high wearing comfort and reusability with extraordinary, durable performance. Fibre concepts comprise Celliant® Viscose, an in-fibre infrared solution and Danufil® Fibres in the top sheet, Galaxy, a trilobal fibre for the ADL, Bramante, a hollow viscose fibre, in the absorbing core and a water repellent woven fabric, a biodegradable PLA film or a sustainable coating as a back sheet.

TENCEL™ branded Lyocell Fibre made of Orange and Wood Pulp – Orange Fiber (Italy)
Orange Fiber is the world's first company to produce a sustainable textile fibre from a patented process for the extraction of cellulose to be spun from citrus juice leftovers, which are more than 1 million tonnes a year just in Italy. The result of our partnership with Lenzing Group, leading global producer of wood-based specialty fibres, is the first ever TENCEL™ branded lyocell fibre made of orange and wood pulp. A novel cellulosic fibre to further inspire sustainability across the value chain and push the boundaries of innovation. This fibre, part of the TENCEL™ Limited Edition initiative, is characterized by soft appeal and high moisture absorbance and has already obtained the OEKO-TEX Standard 100 certificate and is undergoing a diverse set of other sustainability assessments.

(c) Toray
23.11.2021

Toray Industries: A Concept to change Lives

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

The fibers’ and textiles’ business is both the starting point and the foundation of Toray's business development today. We started producing viscose yarns in 1926 and conducted our own research and development in nylon fibers as early as 1940. And since new materials usually require new processing methods, Toray also began investing in its own process technology at an early stage. On the one hand, we want to increase our sales, and on the other hand, we want to expand the application possibilities for our materials. For this reason, Toray also began to expand its business from pure fibers to textiles and even clothing. This allows us to better respond to our customers' needs while staying at the forefront of innovation.

Over the decades, Toray has accumulated a great deal of knowledge in polymer chemistry and organic synthesis chemistry - and this know-how is the foundation for almost all of our other business ventures. Today, we produce a wide range of advanced materials and high-value-added products in plastics, chemicals, foils, carbon fiber composites, electronics and information materials, pharmaceuticals, medicine and water treatment. However, fibers and textiles remain our most important business area, accounting for around 40% of the company's sales.

What understanding, what heritage is still important to you today? And how do you live out a corporate philosophy in the textile sector that you formulate as "Contributing to society through the creation of new value with innovative ideas, technologies and products"?

Toray has consistently developed new materials that the world has never seen before. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. For textiles, this means we use new polymer structures, spinning technologies and processing methods to develop yarns with unprecedented properties. We always focus on the needs and problems of the market and our customers.

This approach enables us to integrate textiles with new functions into our everyday lives that natural fibers and materials cannot accomplish. For example, we offer sportswear and underwear that absorb water excellently and dry very quickly, or rainwear and outdoor clothing with excellent water-repellent properties that feature a less bulky inner lining. Other examples include antibacterial underwear, uniforms, or inner linings that provide a hygienic environment and reduce the growth of odor-causing bacteria. People enjoy the convenience of these innovative textiles every day, and we hope to contribute to their daily comfort and improve their lives in some way.

In 2015, the United Nations adopted 17 sustainable development goals – simply known as the 2030 Agenda, which came into force on January 01, 2016. Countries were given 15 years to achieve them by 2030. In your company, there is a TORAY VISION 2030 and a TORAY SUSTAINABILITY VISION. How do you apply these principles and goals to the textile business? What role does sustainability play for this business area?

Sustainability is one of the most important issues facing the world today - not only in the textile sector, but in all industries. We in the Toray Group are convinced that we can contribute to solving various problems in this regard with our advanced materials. At the same time, the trend towards sustainability offers interesting new business approaches. In our sustainability vision, we have set four goals that the world should achieve by 2050. And we have defined which problems need to be addressed to achieve this.

We must:

  1. accelerate measures to combat climate change,
  2. implement sustainable, recycling-oriented solutions in the use of resources and in production,
  3. provide clean water and air, and
  4. contribute to better healthcare and hygiene for people around the world.

We will drive this agenda forward by promoting and expanding the use of materials that respond to environmental issues. In the textile sector, for example, we offer warming and cooling textiles – by eliminating the need for air conditioning or heating in certain situations, they can help reduce energy costs. We also produce environmentally friendly textiles that do not contain certain harmful substances such as fluorine, as well as textiles made from biomass, which use plant-based fibers instead of conventional petrochemical materials. Our product range also includes recycled materials that reduce waste and promote effective use of resources.

The TORAY VISION 2030, on the other hand, is our medium-term strategic plan and looks at the issue of sustainability from a different angle: Toray has defined the path to sustainable and healthy corporate growth in it. In this plan, we are focusing on two major growth areas: Our Green Innovation Business, which aims to solve environmental, resource and energy problems, and the Life Innovation Business, which focuses on improving medical care, public health, personal safety and ultimately a longer expectancy of life.

Innovation by Chemistry is the claim of the Toray Group. In a world where REACH and Fridays for Future severely restrict the scope of the chemical industry, the question arises as to what position chemistry can have in the textile industry. How do chemistry, innovation and sustainability fit together here?

The chemical industry is at a turning point today. The benefits that this industry can bring to civilization are still enormous, but at the same time, disadvantages such as the waste of resources and the negative impact on the environment and ecosystems are becoming increasingly apparent. In the future, the chemical industry will have to work much more towards sustainability - there is no way around it.

As far as textiles are concerned, we believe there are several ways to make synthetic materials more sustainable in the future. One of these, as I said, is materials made from plants instead of petrochemical raw materials. Another is to reduce the amount of raw materials used in production in the first place – this can be achieved, for example, by collecting and recycling waste materials from production or sales. Biodegradable materials that reduce the impact of waste products on the environment are another option worth pursuing, as is the reduction of environmentally harmful substances used in the production process. We are already looking at all of these possibilities in Toray's synthetic textiles business. At the same time, by the way, we make sure to save energy in our own production and minimize the impact on the environment.

Toray's fibers & textiles segment focuses on synthetic fibers such as nylon, polyester and acrylic, as well as other functional fibers. In recent years, there has been a clear trend on the market towards cellulosic fibers, which are also being traded as alternatives to synthetic products. How do you see this development – on the one hand for the Toray company, and on the other hand under the aspect of sustainability, which the cellulosic competitors claim for themselves with the renewable raw material base?

Natural fibers, including cellulose fibers and wool, are environmentally friendly in that they can be easily recycled and are rapidly biodegradable after disposal. However, to truly assess their environmental impact, a number of other factors must also be considered: Primarily, there is the issue of durability: precisely because natural fibers are natural, it is difficult to respond to a rapid increase in demand, and quality is not always stable due to weather and other factors.

Climatic changes such as extreme heat, drought, wind, floods and damages from freezing can affect the quantity and quality of the production of natural fibers, so that the supply is not always secured. In order to increase production, not only does land have to be cleared, but also large amounts of water and pesticides have to be used to cultivate it – all of which is harmful to the environment.

Synthetic fibers, on the other hand, are industrial products manufactured in controlled factory environments. This makes it easier to manage fluctuations in production volume and ensure consistent quality. In addition, certain functional properties such as resilience, water absorption, quick drying and antibacterial properties can be embedded into the material, which can result in textiles lasting longer in use.

So synthetic fibers and natural fibers, including cellulose fibers, have their own advantages and disadvantages – there is no panacea here, at least not at the moment. We believe: It is important to ensure that there are options that match the consumer's awareness and lifestyle. This includes comfort in everyday life and sustainability at the same time.

To what extent has the demand for recycled products increased? Under the brand name &+™, Toray offers a fiber made from recycled PET bottles. Especially with the "raw material base: PET bottles", problems can occur with the whiteness of the fiber. What distinguishes your process from that of other companies and to what extent can you compete with new fibers in terms of quality?

During the production of the "&+" fiber, the collected PET bottles are freed from all foreign substances using special washing and filtering processes. These processes have not only allowed us to solve the problem of fiber whiteness – by using filtered, high-purity recycled polyester chips, we can also produce very fine fibers and fibers with unique cross sections. Our proven process technologies can also be used to incorporate specific textures and functions of Toray into the fiber. In addition, "&+" contains a special substance in the polyester that allows the material to be traced back to the recycled PET bottle fibers used in it.

We believe that this combination of aesthetics, sustainability and functionality makes the recycled polyester fiber "&+" more competitive than those of other companies. And indeed, we have noticed that the number of requests is steadily increasing as companies develop a greater awareness of sustainability as early as the product planning stage.

How is innovation management practiced in Toray's textile division, and which developments that Toray has worked on recently are you particularly proud of?

The textile division consists of three sub-divisions focusing on the development and sale of fashion textiles (WOMEN'S & MEN'S WEAR FABRICS DEPT.), sports and outdoor textiles (SPORTS WEAR & CLOTHING MATERIALS FABRICS DEPT.) and, specifically for Japan, textiles for uniforms used in schools, businesses and the public sector (UNIFORM & ADVANCED TEXTILES DEPT.).

In the past, each division developed its own materials for their respective markets and customers. However, in 2021, we established a collaborative space to increase synergy and share information about textiles developed in different areas with the entire department. In this way, salespeople can also offer their customers materials developed in other departments and get ideas for developing new textiles themselves.

I believe that the new structure will also help us to respond better to changes in the market. We see, for example, that the boundaries between workwear and outdoor are blurring – brands like Engelbert Strauss are a good example of this trend. Another development that we believe will accelerate after the Corona pandemic is the focus on green technologies and materials. This applies to all textile sectors, and we need to work more closely together to be at the forefront of this.

How important are bio-based polyesters in your research projects? How do you assess the future importance of such alternatives?

I believe that these materials will play a major role in the coming years. Polyester is made from purified terephthalic acid (PTA), which again consists of paraxylene (PX) and ethylene glycol (EG). In a first step, we already offer a material called ECODEAR™, which uses sugar cane molasses waste as a raw material for EG production.

About 30% of this at least partially bio polyester fiber is therefore biologically produced, and the material is used on a large scale for sportswear and uniforms. In the next step, we are working on the development of a fully bio-based polyester fiber in which the PTA component is also obtained from biomass raw materials, such as the inedible parts of sugar cane and wood waste.

Already in 2011, we succeeded in producing a prototype of such a polyester fiber made entirely from biomass. However, the expansion of production at the PX manufacturer we are working with has proven to be challenging. Currently, we are only producing small sample quantities, but we hope to start mass production in the 2020s.

Originally starting with yarn, now a leading global producer of synthetic fibers for decades, you also work to the ready-made product. The range extends from protective clothing against dust and infections to smart textiles and functional textiles that record biometric data. What are you planning in these segments?

In the field of protective clothing, our LIVMOA™ brand is our flagship material. It combines high breathability to reduce moisture inside the garment with blocking properties that keep dust and other particles out. The textile is suitable for a wide range of work environments, including those with high dust or grease levels and even cleanrooms. LIVMOA™ 5000, a high quality, also demonstrates antiviral properties and helps to ease the burden on medical personnel. The material forms an effective barrier against bacteria and viruses and is resistant to hygroscopic pressure. Due to its high breathability, it also offers high wearing comfort.

Our smart textile is called hitoe™. This highly conductive fabric embeds a conductive polymer – a polymer compound that allows electricity to pass through - into the nanofiber fabric. hitoe™ is a high-performance material for detecting biosignals, weak electrical signals that we unconsciously emit from our bodies.

In Japan, Toray has developed products for electrocardiographic measurements (ECGs) that meet the safety and effectiveness standards of medical devices. And in 2016, we submitted an application to the Japanese medical administrative authorities to register a hitoe™ device as a general medical device – this registration process is now complete. Overall, we expect the healthcare sector, particularly medical and nursing applications, to grow – not least due to increasing infectious diseases and growing health awareness among the elderly population. We will therefore continue to develop and sell new products for this market.

In 1885, Joseph Wilson Swan introduced the term "artifical silk" for the nitrate cellulose filaments he artificially produced. Later, copper, viscose and acetate filament yarns spun on the basis of cellulose were also referred to as artifical silk. Toray has developed a new innovative spinning technology called NANODESIGN™, which enables nano-level control of the fineness and shape of synthetic fibers. This is expected to create functions, aesthetics and textures that have not existed before. For which applications do you intend to use these products?

In NANODESIGN™ technology, the polymer is split into a number of microscopic streams, which are then recombined in a specific pattern to form a new fiber. By controlling the polymer flow with extreme precision, the fineness and cross-sectional shape of the fiber can be determined much more accurately than was previously possible with conventional microfiber and nanofiber spinning technologies. In addition, this technology enables the combination of three or more polymer types with different properties in one fiber – conventional technologies only manage two polymer types. This technology therefore enables Toray to specify a wide range of textures and functions in the production of synthetic fibers that were not possible with conventional synthetic fibers – and even to outperform the texture and feel of natural fibers. Kinari, our artificial silk developed with NANODESIGN technology, is a prime example here, but the technology holds many more possibilities – especially with regard to our sustainability goals.

What has the past period of the pandemic meant for Toray's textile business so far? To what extent has it been a burden, but in which areas has it also been a driver of innovation? What do you expect of the next 12 months?

The Corona catastrophe had a dramatic impact on the company's results: The Corona catastrophe had a dramatic impact on the company's results: In the financial year 2020, Toray's total sales fell by about 10% to 188.36 billion yen (about 1.44 billion euros) and operating profit by about 28% to 90.3 billion yen (about 690 million euros). The impact on the fiber and textile business was also significant, with sales decreasing by around 13% to 719.2 billion yen (approx. 5.49 billion euros) and operating profit by around 39% to 36.6 billion yen (approx. 280 million euros).

In the financial year 2021, however, the outlook for the fibers and textiles sector is significantly better: So far, the segment has exceeded its goals overall, even if there are fluctuations in the individual areas and applications. In the period from April to June, we even returned to the level of 2019. This is partly due to the recovering sports and outdoor sector. The fashion apparel market, on the other hand, remains challenging due to changing lifestyles that have brought lock-downs and home-office. We believe that a full recovery in business will not occur until the travel and leisure sector returns to pre-Corona levels.

Another side effect of the pandemic that we feel very strongly, is the growing concern about environmental issues and climate change. As a result, the demand for sustainable materials has also increased in the apparel segment. In the future, sustainability will be mandatory for the development and marketing of new textiles in all market segments. Then again, there will always be the question of how sustainable a product really is, and data and traceability will become increasingly important. In the coming years, the textile division will keep a close eye on these developments and develop materials that meet customers' needs.

About the person:
Koji Sasaki joined Toray in 1987. In his more than 30 years with the company, he has held various positions, including a four-year position as Managing Director of Toray International Europe GmbH in Frankfurt from 2016 to 2020. Since 2020, Koji Sasaki has been responsible for Toray's textile division and serves as acting chairman of Toray Textiles Europe Ltd. In these roles, he supervises the company's development, sales and marketing activities in the apparel segment, including fashion, sports and work or school uniforms.

The interview was conducted by Ines Chucholowius, Managing partner Textination GmbH

PERFORMANCE DAYS Nothing to Waste - Closing the Loop (c) PERFORMANCE DAYS
20.10.2020

PERFORMANCE DAYS Nothing to Waste - Closing the Loop

  • Finite resources and endless mountains of rubbish set the tone of the upcoming 25th edition of PERFORMANCE DAYS. Closing the loop means nothing is wasted, not even time, as recycled clothing gets recycled again and again.

In keeping with this topic, the trade fair organizers are planning expert discussion panels to help present the facts as well as visions of the future. Expect the corresponding displays of sustainable materials, chosen by the PERFORMANCE FORUM Jury. Look for materials such as fibers from recycled PET bottles, recyclable mono-component materials or blends, and shirts that decompose to biomass in a "Cradle-to-Cradle" approach. "Nothing to Waste - Closing the Loop" is open to the public at the Messe München fairgrounds and as a Digital Fair online starting on December 9-10, 2020.

  • Finite resources and endless mountains of rubbish set the tone of the upcoming 25th edition of PERFORMANCE DAYS. Closing the loop means nothing is wasted, not even time, as recycled clothing gets recycled again and again.

In keeping with this topic, the trade fair organizers are planning expert discussion panels to help present the facts as well as visions of the future. Expect the corresponding displays of sustainable materials, chosen by the PERFORMANCE FORUM Jury. Look for materials such as fibers from recycled PET bottles, recyclable mono-component materials or blends, and shirts that decompose to biomass in a "Cradle-to-Cradle" approach. "Nothing to Waste - Closing the Loop" is open to the public at the Messe München fairgrounds and as a Digital Fair online starting on December 9-10, 2020.

The PERFORMANCE DAYS trade fair has chosen a new Focus Topic that concerns not only our own industry. The textile industry has long been achieving more efficient production by recycling its own waste products and using recycled materials from outside the industry, for example, PET-bottles. Nevertheless, textiles exist alongside glass, paper, metal, and plastics as a separate branch of waste management. Despite ambitious efforts at recycling by the waste and textile industries, the efficient use of textile waste as a resource remains a challenge. Compounding this challenge are the difficulties caused by a global world: production, consumers, and disposal sites are miles apart, shared expert knowledge about the other industries is lacking, and international standards and political support are nearly non-existent.

Final destination: the waste bin
Information from the Federal Office for the Environment shows that 0.8% of the oil produced is used in the textile industry for the production of new textiles. But the costly processing chain of this finite resource ends all too quickly in waste. A Greenpeace survey reveals outdated fashions or clothing of worn quality is thrown away within three years, only to land in the trash dumpsters. The European Environmental Agency estimates that 5.8 million tons of used textiles are discarded every year and either incinerated, used for landfill, or taken to mechanical-biological sewage treatment plants. Even if used clothing is collected by state or private companies, in many cases it cannot be sold (as second hand), donated, or recycled (into rags or insulating material). In the best case scenario, it is incinerated and converted to thermal energy.

Recycling and circular design
From an economic and environmental perspective, the term recycling refers to waste-free products, waste avoidance, and waste recovery and disposal. In our industry as it stands, recycling at the end of the product life cycle usually means converting the product into some other product, i.e., not clothing. This is the "Open-Loop" process. Accordingly, textiles are eventually incinerated, but the amount of energy recovered can vary greatly depending on how efficiently the waste incineration plant works. Such devaluing of the product to a product with less value than the original product is known as Downcycling. However, Downcycling is not the only solution: the "Closed-Loop" approach has the goal of making new clothes out of old ones through recycling. The closed loop for renewable natural resources, for example, can mean that natural fibers used in textiles will end up becoming soil, which is the nutrient for new natural fibers, i.e., a cradle-to-cradle approach. Synthetic garments similarly require extracting the man-made fibers and reprocessing them to produce another garment.

Planning for the end in advance
Rather than thinking about recycling opportunities at the end of the product life cycle, brands can already begin developing closed loop options while in the design phase. Among other things, designing out the waste can reduce the environmental impact of the products. To extend the useful life, consider leasing the materials and/or adding labels with instructions for disposal, repair, or repurposing. And, what about the idea of preparing 100% used textiles that can be reintroduced into the supply chain as 100% new textiles? Separating the different types of fiber used in blends is complex, cost-intensive, and further complicated when labels are non-existent (or no longer existing) or it is simply not (yet) technically possible. More and more clothing makers and suppliers are trying to avoid mixing fibers and are switching to "mono-materials" or "mono-components." Shirts are easy to make in this way, but if you add buttons, zippers, etc., the issue becomes more complex.

Nothing to waste - not even time
If you are like many end consumers, brand managers, and producers and want to make use of valuable resources in a more sustainable manner, register now on the trade fair website under "Visitor Login." There you can access a free trade fair ticket for December 9-10, 2020. You can also learn about the complimentary and soon to be expanded offers at the Digital Fair. Don’t forget to sign-up for the free Newsletter mailings. 

•     09.-10. December 2020      DIGITAL FAIR  Trends Winter 2022/23 

 

UPDATE
CoVid-19 continues to keep the world on edge. Many PERFORMANCE DAYS visitors, as well as exhibitors, have already announced that travelling to Munich in December would be simply impossible for them. Due to the increasing number of infections, further international travel bans and company-internal travel restrictions are now threatening. As a result, the December 2020 edition of PERFORMANCE DAYS will unfortunately not take place at the Messe München, but as Digital Fair! On the planned dates of December 09-10, both approved and advanced new tools will go online and provide further proof of PERFORMANCE DAYS’ expansion of its pioneering role in creating a digital textile trade fair experience.

 

EuroShop 2017 © Messe Duesseldorf / ctillmann
18.10.2016

EUROSHOP 2017 – DISPLAY MANNEQUINS: REAL MOOD BOOSTERS!

  • Visual marketing increases in importance for offline retail in view of e-Commerce competitors
  • Display mannequins are in focus for this
  • Emotionalising is decisive
  • Individuality and flexibility are also demanded
  • There is a shift towards semi-abstract mannequins with regional and genre differences
  • Proportion of customised mannequins is rising
  • Sustainability remains an issue

EuroShop is one of those trade fairs always teeming with visual highlights. Guaranteed to present a special treat here is, of course, the Visual Merchandising Hall, the exhibition place of display mannequins and store window decorations. March 2017 will see Hall 11 of Düsseldorf Exhibition Centre (instead of Hall 4 previously), become a POS experience guaranteed to attract plenty of attention.

  • Visual marketing increases in importance for offline retail in view of e-Commerce competitors
  • Display mannequins are in focus for this
  • Emotionalising is decisive
  • Individuality and flexibility are also demanded
  • There is a shift towards semi-abstract mannequins with regional and genre differences
  • Proportion of customised mannequins is rising
  • Sustainability remains an issue

EuroShop is one of those trade fairs always teeming with visual highlights. Guaranteed to present a special treat here is, of course, the Visual Merchandising Hall, the exhibition place of display mannequins and store window decorations. March 2017 will see Hall 11 of Düsseldorf Exhibition Centre (instead of Hall 4 previously), become a POS experience guaranteed to attract plenty of attention. After all, in view of the e-Commerce competition, visual marketing and the resulting emotional, personalised appearance will become more and more important for bricks-and-mortar retailers. “Consumers’ emotional needs will become the overriding theme for EuroShop,” says Andreas Gesswein, CEO of Genesis Display from Auetal, with conviction.

Display mannequins hold special emotionalising potential. It is not by chance that Düsseldorf visual artist Domagoj Mrsic once presented them as “super heroes” in one of his stagings - as Superman and Wonder Woman, Batman and Catwoman, Spiderman and Spiderwoman. Provided the displays are done well mannequins are in a way real heroes. With their appearance, their posture, gestures and mimics they can really breathe life into shop windows and in-store decorations, serve as sales-promoting tools or arouse empathy, interest and curiosity. And if they are not just headless and very abstract they even give retail stores and brands a profile and signature style. With the power of their poses they send out a clear signal as to which target group is addressed, which degree of fashion and price range is served. Moreover, when arranged in groups, they can serve as story-tellers for passers-by. Unforgettable was the “Ugly’s” line of mannequins by supplier Hans Boodt, which mimicked “real-life” men rather than V-shaped boys with six packs. It included both a long, tall one and a short, fat one dressed in passion-killing underwear. “The new generation of mannequins will say more about the brand. They will participate in communicating more about each brand’s essential values and set them apart from the competition”, says Jean-Marc Mesguich, CEO of Window France headquartered in Carros.

The portfolio offered by the display mannequin industry is wide and varied: in addition to top-model lookalikes it features plus-size beauties, Europeans, Africans and Asians, the afore-mentioned super heroes and funny common people. Kissing couples feature alongside sumo wrestlers. In line with the motto "don't take yourself too seriously", vendors have long also included dogs and cats; and even chameleons since many mannequins prove to be true artists of disguise. “Cameleon”, for example, is a patented concept of Window France: Hundreds of eyes and lips are available to chose from, eye-lashes can be glued on, wigs attached/detached, different make-ups applied or the whole face can be replaced with the help of magnets – in brief, all it takes to ensure a constantly refreshed POS appearance. Add to this what is by now a huge range of colours and materials: surfaces from velvet and rubber are just as common these days as are metallic varnishes or concrete and copper coatings.     

In view of what has been presented over the past few years you may wonder what might come next. Although the majority of fashion retailers and brands have not nearly exploited the full potential already available today. In the past few years abstract mannequins were in highest demand. “They are fit for many applications and easy to handle, since no wigs or make-up have to be styled,” says Andreas Gesswein (Genesis Display) accounting for reasons and adds: “But they are also easier to copy and therefore available in every price segment.” In practice, efficiency sometimes clearly “overrides” emotion. “But when stores do not stand out with the image they project they do not prompt shoppers to enter either,” says Jean-Marc Mesguich (Window France). And for EuroShop 2017 Window France will definitely have far more in store than “exciting variations of the abstract theme”.

Faces are back again

The fact is: just like the fashion they are wearing, display mannequins follow trends. Triggered by a desire to cut a sharper profile and stronger expression, industry insiders have seen a trend towards semi-abstract mannequins. “A face is at least alluded to. Mannequins are less neutral and it becomes visible: Retailers want to make a statement again showing their true colours. There is a trend towards addressing target groups with a more high-profile message,” explains Cornel Klugmann, Country Manager for the D-A-CH region at Hans Boodt from the Dutch city of Zwijndrecht. Monica Ceruti, in charge of PR & Communication at Almax from Mariano Comense/Italy, agrees: “It is true that demand for abstract mannequins continues to be high but there is a clear trend towards more realistic facial characteristics. This includes such details as the application of eyelashes or wigs. And dynamic postures are also getting more popular again.”

Andreas Gesswein (Genesis Display) remarks: “Especially in the luxury segment we are registering stronger demand for more realistic mannequins with faces and emotional facial expressions that brands are looking for to stand out from the rest.” A trend that Jean-Marc Mesguich (Window France) confirms: “The Haute Couture brands have already abandoned the egghead in exchange for something that will have more impact and - more importantly - get people talking about their brand.” He adds: “The growing trend of viewing fashion and fashion windows online is pushing brands to make more attractive windows and to change their displays on a more regular basis.”

The days of faceless “eggheads” seem to be over. And above and beyond this? “The look and feel is becoming more and more high-end. White and grey are replacing darker shades, glossy replaces matt and aspirational looks with more charisma are more in demand,” says Cornel Klugmann (Hans Boodt). Monica Ceruti (Almax) sees great potential in “handcrafted looks”. This means torsos with and without arms with different materials for the individual components – pedestal, torso and head – and wood as well as metallic surfaces all set the tone here. Sabrina Ciofi from Design Office La Rosa from Palazzolo Milanese/Italy summarises the “principal themes of tomorrow” as follows: “Customers demand high product quality, the right price, maximum after-sales service and high product flexibility and/or diversity.” This statement should be valid across national borders. Otherwise she says despite all the globalisation: “There are as many trends as there are markets.” Monica Ceruti (Almax) concretized: “In Europe and the USA the differences are not fundamental. In the Middle East, however, mannequins without realistic traits continue to be in demand for religious and cultural reasons. This applies especially to female display mannequins.”

Customised becomes cheaper

Producers report that the percentage of customised mannequins is generally rising. These display mannequins are individually and exclusively manufactured to customers’ specifications. In this way retail companies and brands can stand out from their competitors and consistently leverage their CI. At Hans Boodt, for example, the proportion of customised mannequins is now said to be as high as 75%. And thanks to cost-cutting process optimisation it is expected to rise even further. Like Window France these Dutch vendors have now discovered 3D printing which can serve their purposes and their buyers. While in the past prototypes used to be elaborately modelled by sculptors in clay, these can now be “printed” in a time and cost-saving manner. “On top of this, the process is even more true to life and detailed,” delights Cornel Klugmann (Hans Boodt). Graphic designers create the desired mannequins with CAD systems where all the details can be freely configured. Then the files are uploaded to the printer that puts them into practice 1:1. “We can respond to trends so much faster and at the end of the day also design more new collections each year”, Klugmann explains further benefits. Jean-Marc Mesguich (Window France) adds: “Thanks to 3D we can create mannequins that really correspond to each and every brand and every brand’s precise image, to be perfectly in-sync with their public. This is an important evolution in the role that mannequins play.”

Alongside process optimisation sustainability remains important for the sector. “The fashion sector is now highly aware of this topic and attaches importance to its suppliers also complying with the relevant criteria,” explains Monica Ceruti (Almax).   The other market players polled also share this view. For La Rosa, whose mannequins are exclusively designed and manufactured in Italy, sustainability is an integral part of quality. By their own accounts, the Italians have analysed the whole life cycle of their mannequins with a view to minimising their ecological footprint. Almost half of the polystyrene used, they say, is recycled which saves substantial amounts of crude oil and carbon dioxide emissions. On top of this, La Rosa takes back its products after use and re-introduces them into the material cycle. Production operations work with a carbon-capture system, the cooling towers use process water, energy is generated by the company’s own PV park. Andreas Gesswein (Genesis Display) also underscores the importance of this topic: “Our customers focus on trust, honesty and partnership-based cooperation. And this includes providing evidence of sustainability rather than copying other peoples’ marketing straplines. In cooperation with Dupont Tate and Lyle BioProducts we have increased the percentage of biomass in our mannequins even further over the past few years, just the same way we constantly check and optimise our materials, packaging and transport routes for sustainability.” Hans Boodt is also opting for an interesting avenue. The company currently studies whether ocean plastics could be used as a raw material for production.

EuroShop as an opportunity of the future

The display mannequin market is and will be in motion – both on the supply and demand sides. “There are customers who buy their mannequins cheaply online and others who are interested in top quality, professional consulting and holistic visual-merchandising concepts,” explain Andreas Gesswein (Genesis Display) and Cornel Klugmann (Hans Boodt). There should be no doubt about who they expect to be more successful. Andreas Gesswein: “The challenges are enormous. 2016 has been especially challenging for fashion retailers, also in Asia and the USA. Companies are faced with changed market and shopper behaviours. EuroShop 2017 will therefore probably be one of the most important ones since the fair's inception.” Jean-Marc Mesguich emphasizes: “I think that it is essential to be present at EuroShop. For both suppliers and clients. It is a sure way of exchanging views and helps pave the way forward for both parties. This year we are at a turning point in the market, so it will be even more useful for everyone.” Cornel Klugmann also recommends retail representatives to visit the trade fair: “Our innovative power is the opportunity for the future.”
 
EuroShop 2017 will be open to visitors daily from Sunday 5 March 2017 to Thursday 9 March 2015, 10:00 am to 6:00 pm. A day ticket is EUR 70 (EUR 50 for an e-ticket, purchased online in advance), 2-day ticket EUR 90 (e-ticket: EUR 70) and a 4-day ticket EUR 150 (e-ticket: EUR 130). Entrance tickets include free trips to and from EuroShop on all trains, buses and trams within the networks of the VRR transport authority (Verkehrsverbund-Rhein-Ruhr).